

中國科學院為能物相為完備 Institute of High Energy Physics Chinese Academy of Sciences

BESIII上超子绝对分支比的测量

第二届强子物理新发展研讨会

沈宏飞 (On behalf of BESIII) 高能物理研究所

shenhongfei@ihep.ac.cn

Outline

2023-07-27

/// Study hyperons at BESIII

With 10 billion J/ψ and 2.7 billion $\psi(3686)$ collected at BESIII, ~10⁷ entangled hyperon pairs can be produced, which enables precise measurements of the hyperon absolute BFs.

 Front. Phys. 12(5), 121301 (2017)					
 Decay mode	$B(\times 10^{-3})$	$N_B(imes 10^6)$			
 $J/\psi ightarrow \Lambda\overline{\Lambda}$	1.89 ± 0.09	~18.9			
$J/\psi ightarrow \Sigma^0 \overline{\Sigma}{}^0$	1.172 ± 0.032	~11.7			
 $J/\psi ightarrow \Sigma^+ \overline{\Sigma}^-$	1.07 ± 0.04	~10.7			
$J/\psi ightarrow \Xi^0 \overline{\Xi}{}^0$	1.17 ± 0.04	~11.7			
$J/\psi ightarrow \Xi^- \overline{\Xi}^+$	0.97 ± 0.08	~9.7			
$\psi(2S)\to \Omega^-\overline{\Omega}{}^+$	0.057 ± 0.003	~0.17			

Physics Motivation

Hyperon weak radiative decays (WRHDs)

- flavor changing neutral current (FCNC) process ($s \rightarrow d\gamma$ transition)
- significant non-perturbative QCD effects
- A symphony of strong, weak, and EM interaction •

III Physics Motivation

Phys. Rev. Lett. 12 (1964) 378-379

- Hara's theorem predicts the parity-violating decay amplitudes for the $\Sigma^+ \to p\gamma$ and $\Xi^- \to \Sigma^- \gamma$ decays vanish in the SU(3) limit.
- The experimentally measured asymmetry decay parameter for $\Sigma^+ \rightarrow p\gamma$ is surprisingly large.

$-0.720 \pm 0.086 \pm 0.045$		35k	² FOUCHER	1992	SPEC	\varSigma^+ 375 GeV
$-0.86 \pm 0.13 \pm 0.04$	<i>α</i>	190	KOBAYASHI	1987	CNTR	$\pi^+ p \to \Sigma^+ K^+$
$-0.53 \ {}^{+0.38}_{-0.36}$	αγ	46	MANZ	1980	HBC	$K^- p \to \Sigma^+ \pi^-$
$-1.03 \ {}^{+0.52}_{-0.42}$		61	GERSHWIN	1969B	HBC	$K^- p \rightarrow \Sigma^+ \pi^-$

• In the SM, the branching fraction of $\Omega^- \rightarrow \Xi^- \gamma$ is very small, there are many new physics models can enhance it so that this decay can serve as a probe for the physics beyond SM.

Phys. Rev. D 53, 3620 (1996) Phys. Rev. D 61, 114022 (2000) $\int \int \Lambda \to n\gamma$ $J/\psi \to \Lambda \overline{\Lambda}, \Lambda \to n\gamma, \overline{\Lambda} \to \overline{p}\pi^+ + c. c.$

Analysis Method Highlights

Phys. Rev. Lett. 129 (2022) 21, 212002

Kinematic fit with missing particle/energy

- **Hypothesis:** $\overline{\Lambda}(\rightarrow \overline{p}\pi^{-})\gamma + n$ (missing particle)
- **Hypothesis:** $\Lambda(\rightarrow p\pi^+)\gamma + \overline{n}(\text{missing energy, the direction})$ of the anti-neutron is reconstructed)
- Superiority of well-constrained kinematics

MVA-base background photon suppression

Rejected 96.9% background B with 50.1% signal efficiency

$\blacksquare \land \land n \gamma$

Phys. Rev. Lett. **129** (2022) 21, 212002

Analysis results

$\blacksquare \Sigma^+ \to p\gamma$

 $J/\psi \to \Sigma^+ \overline{\Sigma}^-, \Sigma^+ \to p\gamma, \overline{\Sigma}^- \to \overline{p}\pi^0 + c.c.$

Analysis Method Highlights

Phys. Rev. Lett. 130 (2023) 21, 211901

Utilize joint decay length to discriminate short-lived baryons from signals

$\blacksquare \Sigma^+ \to p\gamma$

Analysis results

Phys. Rev. Lett. 130 (2023) 21, 211901

shenhongfei@ihep.ac.cn

/// Ongoing analysis

In the final internal review stage, the results will be released very soon!

	$\Xi^0 o \Lambda \gamma$	
Experiment	$BF(10^{-3})$	$lpha_{\gamma}$
BESIII	$xxx \pm 0.066 \pm 0.054$	$xxx \pm 0.062 \pm 0.019$
PDG	1.17 ± 0.07	-0.70 ± 0.07

$\Xi^0 ightarrow \Sigma^0 \gamma$						
Experiment	$BF(10^{-3})$	$lpha_\gamma$				
BESIII	$xxx \pm 0.21 \pm 12$	$xxx \pm 0.095 \pm 0.015$				
PDG	3.33 ± 0.10	-0.69 ± 0.06				

Competitive precision with PDG.

III Physics Motivation

III Test lepton flavor universality

Average of R(D) and R(D*) from HFLAV (2024)

SM NLO

 0.153 ± 0.008

强子物理论坛

 0.0084 ± 0.0004

 0.275 ± 0.014

 0.444 ± 0.022

PRL 127, 121802 (2021)

III Search for second-class currents

> About second-class currents, previous nuclear β decay experiments gave contradictory conclusions.

- ✓ Refs. [1-4] are in favor of the existence of the second-class currents
- ✓ Refs. [5-8] reported the absence of second-class currents.

► In hyperon β decay, axial-vector form factor g_2 is related to second-class currents, but the flavor-SU(3)-symmetrybreaking effects [9-10] or second-class currents [11] can cause a nonzero axial-vector form factor g_2 , and some of the experiments suggest a large g_2 [12].

Phys. Rev. Lett. 35, 1566 (1975).
 Phys. Rev. Lett. 34, 1533 (1975).
 Phys. Rev. C 59, 1113 (1999).
 Phys. Rev. C 95, 035501 (2017).

[5] Phys. Rev. Lett. 26, 1127 (1971).[9] Ph[6] Phys. Rev. Lett. 32, 314 (1974).[10] P[7] Eur. Phys. J. A 7, 307 (2000).[11] A[8] Phys. Rev. C 84, 055501 (2011).[12] P

[9] Phys. Rev. D 8, 2963 (1973).
[10] Phys. Rev. D 79, 074508 (2009).
[11] Annu. Rev. Nucl. Part. Sci. 53, 39 (2003).
[12] Phys. Rev. D 3, 2638 (1971).

$\Sigma^+ \to \Lambda e^+ \nu_e$

> To search for the second-class currents, a unique observable (R) was first proposed by S. Weinberg [1] in 1958.

$$R \equiv \frac{\Gamma(\Sigma^- \to \Lambda e^- \bar{\nu}_e)}{\Gamma(\Sigma^+ \to \Lambda e^+ \nu_e)}$$

If there are no second-class currents, R value should be just the phase-space ratio for these two decays, no matter flavor-SU(3)-symmetry-breaking effects exist or not, so any experimental deviation from this deduction would be decisive

evidence for the existence of second-class currents.

PHYSICAL REVIEW

VOLUME 112, NUMBER 4

Charge Symmetry of Weak Interactions*

STEVEN WEINBERG Columbia University, New York, New York (Received June 25, 1958)

Phys. Rev. 112, 1375 (1958)

$\Sigma^+ \to \Lambda e^+ \nu_e$

 \succ T. D. Lee and C. N. Yang calculate *R* based on no second-class currents.

R = 1.57

PHYSICAL REVIEW

VOLUME 119, NUMBER 4

AUGUST 15, 1960

Implications of the Intermediate Boson Basis of the Weak Interactions: Existence of a Quartet of Intermediate Bosons and Their Dual Isotopic Spin Transformation Properties

> T. D. LEE Columbia University, New York, New York

> > AND

C. N. YANG Institute for Advanced Study, Princeton, New Jersey (Received April 11, 1960)

Chen Ning Yang

Tsung-Dao Lee

Phys. Rev. 119, 1410 (1960)

shenhongfei@ihep.ac.cn

$\iiint \Sigma^+ \to \Lambda e^+ \nu_e$

$$R = \frac{\Gamma(\Sigma^{-} \to \Lambda e^{-} \bar{\nu}_{e})}{\Gamma(\Sigma^{+} \to \Lambda e^{+} \nu_{e})} = \frac{\mathcal{B}(\Sigma^{-} \to \Lambda e^{-} \bar{\nu}_{e}) \cdot \tau_{\Sigma^{+}}}{\mathcal{B}(\Sigma^{+} \to \Lambda e^{+} \nu_{e}) \cdot \tau_{\Sigma^{-}}} \qquad 1. \text{ Fixed-target experiments}$$
From PDG2022 :
$$3. \text{ Indirect measurement}$$

$$\sigma[\mathcal{B}(\Sigma^{-} \to \Lambda e^{-} \bar{\nu}_{e})] \sim 4.7\%$$

$$\sigma[\mathcal{B}(\Sigma^{+} \to \Lambda e^{+} \nu_{e})] \sim 25\%$$

$$R = \frac{\Gamma(\Sigma^{-} \to \Lambda e^{-} \bar{\nu}_{e}) \cdot \tau_{\Sigma^{+}}}{\mathcal{B}(\Sigma^{+} \to \Lambda e^{+} \nu_{e})} = 25\%$$

$\Sigma^+ \to \Lambda e^+ \nu_e$

III Rare/forbidden decays

III Rare/forbidden decays

Search for the hyperon lepton number violating decay $\Sigma^- \rightarrow p e^- e^-$

PHYS. REV. D 103, 052011 (2021)

Search for hyperon baryon and lepton number violating decay $\Xi^0 \rightarrow Ke$

PHYS. REV. D 108, 012006 (2023)

	ngo	oing an	alysis						
	$g_{av} \equiv \frac{g_1(0)}{f_1(0)}, g_w \equiv \frac{f_2(0)}{f_1(0)} \qquad V_{us}$						CERN	PLB37(1971)535	0.89±0.61
			$\Lambda ightarrow pe^- \overline{ u}_{ m e}$						
Experiment	В	$F(10^{-4})$	g av		g_w		CERN	PLB43(1973)237	0.80±0.90
BESIII	$xxx \pm$	0.22 ± 0.15	$xxx \pm 0.048 \pm$	£ 0.007	$xxx \pm 0.35 \pm 0.14$			g_w	
PDG	8.3	4 ± 0.14	-0.718 ± 0	.015		Very large	CERN	Z.Phys.C21(1983)1	1.32±0.81
						uncertainti	es		
		Ξ	$T \to \Lambda e^- \overline{\nu}_{e}$				Fermilab	PRD41(1990)780	0.15±0.30
Experiment BF((0^{-4}) g_{av}							
BESIII		$xxx \pm 0$.	40 ± 0.10	0 ± 0.10 $xxx \pm 0.068 \pm 0.019$					
PDG		5.63	<u>+</u> 0.31	$0.31 -0.25 \pm 0.05$					
Ω^- –		$\rightarrow \Xi^0 e^- \overline{\nu}_e$							
		Experiment	BF(10	⁻³)	First observatio	n			
		BESIII	$xxx \pm 1.3$	(stat)		11			
		PDG	5.6 ± 2	2.8					
shenhongfei@ihep.ac.cn							23		

III Physics Motivation

- Dominant decay models of the hyperons, many studies will benefit from precise measurements of BFs of the hyperon nonleptonic decays.
- All the previous results of the hyperon nonleptonic decays are relative BFs, no absolute BFs are measured.

Absolute BF measurement of the Ω^- and test of the $\Delta I = 1/2$ rule

If $\Delta I=1/2$ rule is valid in Ω^- decay, the BF ratio between two decay channels $\Omega^- \rightarrow \Xi^0 \pi^-, \Omega^- \rightarrow \Xi^- \pi^0$ should be 2. This ratio in PDG is 2.74 ± 0.15, inconsistent with the prediction of the $\Delta I=1/2$ rule.

The result was only measured by one experiment, and therefore, received some skepticism!

Partial reconstruction to improve the efficiencies, only a π^- , a π^0 and a K^- in the signal side for the decay channels $\Omega^- \to \Xi^0 \pi^-$, $\Omega^- \to \Xi^- \pi^0$, and $\Omega^- \to \Lambda K^-$, respectively.

BFs	$\mathcal{B}_{\Omega^- o \Xi^0 \pi^-}$	$\mathcal{B}_{\Omega^- o \Xi^- \pi^0}$	$\mathcal{B}_{\Omega^- o \Lambda K^-}$
This work	$25.03 \pm 0.44 \pm 0.53$	$8.43 \pm 0.52 \pm 0.28$	$66.3 \pm 0.8 \pm 2.0$
PDG	23.6 ± 0.7	8.6 ± 0.4	67.8 ± 0.7

Phys. Rev. D 108 (2023) 9, L091101

Our result: $R = 2.97 \pm 0.19 \pm 0.11$, consistent with the PDG value, confirms the $\Delta I=1/2$ rule is not suitable for describing the decays of the Ω^- hyperon.

shenhongfei@ihep.ac.cn

Search for $\Delta S = 2 \Omega^-$ nonleptonic

PHYS. REV. D 108, 055012 (2023)

In the SM, $\Delta S = 2$ nonleptonic hyperon decays are highly suppressed, however, there are new physics models that can enhance the BF of such decays, the $\Delta S = 2$ nonleptonic hyperon decays could be used as probes for new physics.

 $\mathcal{B}(\Omega^- \to nK^-) < 2.4 \times 10^{-4} @90\% CL$

JHEP 05 (2024) 141

/// Ongoing analysis

$\Sigma^+ ightarrow$	$p\pi^0$	$\Sigma^+ o n \pi^+$		
Experiment	BF(%)	Experiment	BF(%)	
BESIII	$xxx \pm 0.06 \pm 0.16$	BESIII	$xxx \pm 0.06 \pm 0.12$	
PDG	51.57 ± 0.30	PDG	48.31 ± 0.30	

Summary

✓ BESIII has made fruitful achievements in the studies of hyperon absolute decay BFs:

- ✓ Hyperon weak radiative decays
- ✓ Hyperon semi-leptonic decays
- ✓ Hyperon nonleptonic decays

 \checkmark More exciting hyperon results are expected in the next several years.

THANKS!

Backup

Measure the CKM matrix element $|V_{us}|$

Measure the CKM matrix element $|V_{us}|$

Decay width of $\Lambda \rightarrow pe^-\overline{\nu}_e$ in the SM

$$\begin{split} \Gamma_{\rm SM} &= \frac{\mathcal{B}_{\Lambda \to pe^{-}\overline{\nu}_{e}}}{\tau_{\Lambda}} = \frac{G_{F}^{2}|V_{us}|^{2}f_{1}(0)^{2}\Delta^{5}}{60\pi^{3}} \left[(1 - \frac{3}{2}\delta + \frac{6}{7}\delta^{2}) + \frac{4}{7}\delta^{2}g_{w}^{2} \right] & \Delta \equiv M_{\Lambda} - M_{p} \\ &+ \left(3 - \frac{9}{2}\delta + \frac{12}{7}\delta^{2} \right)g_{av}^{2} + \frac{12}{7}\delta^{2}g_{av2}^{2} + \frac{6}{7}\delta^{2}g_{w} + (-4\delta + 6\delta^{2})g_{av}g_{av2} \right] & \delta \equiv \frac{M_{\Lambda} - M_{p}}{M_{\Lambda}} \end{split}$$

► Extracting $|V_{us}|$, requires $\mathcal{B}_{\Lambda \to pe^- \overline{\nu}_e}$, $f_1(0)$, $g_{a\nu} \equiv \frac{g_1(0)}{f_1(0)}$, $g_w \equiv \frac{f_2(0)}{f_1(0)}$, and $g_{a\nu 2} \equiv \frac{g_2(0)}{f_1(0)}$,

 \Box $f_1(0)$: From LQCD

 $\square \mathcal{B}_{\Lambda \to pe^- \overline{\nu}_e}, g_{av}, g_w, \text{ and } g_{av2}$: From experimental measurement

III Physics Motivation

Fixed target experiments govern the results in 1965-2010 (~23 papers from over 5 experiments)

$\Sigma^+ \to p \gamma$						
时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}			
2023	BESIII	$0.996 \pm 0.021 \pm 0.018$	$-0.652 {\pm} 0.056 {\pm} 0.020$			
1995	E761	1.20 ± 0.08	-			
1992	SPEC		-0.720 ± 0.086			
1989	CNTR	1.45 ± 0.31	-			
1987	CNTR	1.23 ± 0.20				
1985	CNTR	1.27 ± 0.18				
1980	HBC	1.09 ± 0.20	-0.53 ± 0.36			
1969	HBC	1.1 ± 0.2	-			
1969	HBC	1.42 ± 0.26	-1.03 ± 0.52			
1965	HBC	1.9 ± 0.4				
		$\Lambda \to n\gamma$				
时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}			
2022	BESIII	$0.846 \pm 0.039 \pm 0.052$	$-0.160 \pm 0.101 \pm 0.046$			
1994	E761	1.75 ± 0.15	-			
1992	SPEC	1.78 ± 0.24	-			

		$\Xi^0\to\Lambda\gamma$					
时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}				
2010	NA48	-	-0.704 ± 0.064				
2004	NA48	1.17 ± 0.09	-0.78 ± 0.18				
2000	NA48	1.91 ± 0.34	-				
1990	SPEC	1.06 ± 0.18	-0.43 ± 0.44				
		$\Xi^0 \to \Sigma^0 \gamma$					
时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}				
2010	NA48		-0.729 ± 0.076				
2001	KTEV	3.34 ± 0.09	-0.63 ± 0.09				
2000	NA48	3.16 ± 0.76	-				
1989	SPEC	3.56 ± 0.42	0.20 ± 0.32				
		$\Xi^-\to \Sigma^- \gamma$					
时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}				
1994	E761	0.122 ± 0.023	2 - 1				
1987	SPEC	0.227 ± 0.102	122				
	$\Omega^-\to \Xi^-\gamma$						
时间	实验名或实验方案	分支比(×10⁻³)	α_{γ}				
1994	E761	< 0.46	-				
1984	SPEC	< 0.22	-				
1979	SPEC	< 0.31	3 7 .				