

# Highlight on CPV test of hyperon at BESII

强子物理在线论坛100期特别活动

张剑宇

University of Chinese Academy of Sciences, Beijing, China

# **Outline** • CP tests in hyperon decays

#### Recent results from BESIII

#### Hyperon CP test in future plans

#### Summary and outlooks

# **CP tests in hyperon decays**

2024/07/01

强子物理论坛100期特别活动

### Matter-antimatter asymmetry in the universe

The Big Bang model predicts:

- > Matter and antimatter are produced in equal amounts
- ➤ Matter and antimatter annihilated into energy







However the very fact that we exist in a matter-dominated universe.

Sakharov three conditions require *C* and *CP* violation processes exist.



Andrei Sakharov (1921-1989)

#### Sakharov three conditions:

- 1. Baryon number *B* violation
- 2. *C* and *CP* symmetry violation
- 3. Interactions out of thermal equilibrium

强子物理论坛100期特别活动

Pisma Zh. Eksp. Teor. Fiz., 1967, 5: 32-35.

2024/07/01

# A brief history of Parity and CP violation



### **CPV in Standard Model: CKM matrix**



$$\neq$$
 0, if  $\delta \neq$  0 and  $\phi \neq$  0

# **CPV in hyperon decay**



#### General Partial Wave Analysis of the Decay of a Hyperon of Spin $\frac{1}{2}$

T. D. LEE\* AND C. N. YANG Institute for Advanced Study, Princeton, New Jersey (Received October 22, 1957)

Phys. Rev. 108, 1645 (1957)

The amplitude of spin  $\frac{1}{2}$  baryon  $B_i$  decay to a spin  $\frac{1}{2}$  baryon  $B_f$  and  $\pi$ :

$$\boldsymbol{\mathcal{A}} \sim \boldsymbol{S} \sigma_0 + \boldsymbol{P} \boldsymbol{\sigma} \cdot \boldsymbol{\hat{n}}$$

The decay parameters are defined as:

$$\alpha_Y = \frac{2 \operatorname{Re} \left( S^* P \right)}{|S|^2 + |P|^2}, \quad \beta_Y = \frac{2 \operatorname{Im} \left( S^* P \right)}{|S|^2 + |P|^2}, \quad \gamma_Y = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$$

Two complex amplitudes:  $\phi$  weak phase,  $\delta$  strong phase

$$S = \Sigma^{i} S_{i} e^{i(\phi_{i}^{S} + \delta_{i}^{S})}, \qquad P = \Sigma^{i} P_{i} e^{i(\phi_{i}^{P} + \delta_{i}^{P})}$$

Under CP transformation:

$$\bar{S} = -\Sigma^{i} S_{i} e^{i(-\phi_{i}^{S} + \delta_{i}^{S})}, \qquad \bar{P} = \Sigma^{i} P_{i} e^{i(-\phi_{i}^{P} + \delta_{i}^{P})}$$
If CP conserved:  $S \xrightarrow{CP} - S$ 

$$P \xrightarrow{CP} P$$

$$\alpha \xrightarrow{CP} \bar{\alpha} = -\alpha$$

$$\beta \xrightarrow{CP} \bar{\beta} = -\beta$$







2024/07/01

强子物理论坛100期特别活动

# **CP** observable in hyperon decay



John F. Donoghue Xiao-Gang He Sandip Pakvasa

PHYSICAL REVIEW D

**VOLUME 34, NUMBER 3** 

1 AUGUST 1986

Hyperon decays and CP nonconservation

John F. Donoghue Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003

Xiao-Gang He and Sandip Pakvasa Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (Received 7 March 1986)

We study all modes of hyperon nonleptonic decay and consider the CP-odd observables which result. Explicit calculations are provided in the Kobayashi-Maskawa, Weinberg-Higgs, and left-right-symmetric models of CP nonconservation.

PRD 34,833 1986

8

Not sensitive to CPV



Polarization of decayed baryon needs to be measured

Decay width difference

Decay parameter difference

**Decay parameter difference** 

 $\Xi^-, \Xi^0, \Omega^-$  cascade decay

$$\Delta = \frac{\Gamma - \overline{\Gamma}}{\Gamma + \overline{\Gamma}} \approx \sqrt{2} \frac{T_{\frac{3}{2}}}{T_{\frac{1}{2}}} \sin \Delta_s \sin \phi_{CP}$$
$$A = \frac{\Gamma \alpha + \overline{\Gamma} \overline{\alpha}}{\Gamma \alpha - \overline{\Gamma} \overline{\alpha}} \approx \tan \Delta_s \tan \phi_{CP}$$

 $T_{2}$ 

$$B = \frac{\Gamma\beta + \Gamma\beta}{\Gamma\alpha - \overline{\Gamma}\overline{\alpha}} \approx \tan\phi_{CP}$$

Λ decay -5. 4×10<sup>-7</sup>

**SM Prediction of** 

 $-0.5 \times 10^{-4}$ 

 $3.0 \times 10^{-3}$ 

2024/07/01

8

# **BESIII and STCF : a hyperon factory**

#### 10 billion $J/\psi$ events collected at BESIII:

- Large Br. in  $J/\psi$  decay
- Quantum entangled pair productions
- High efficiency, background free

| Decay                                | ${\cal B}~(10^{-5})$ | Events at BESIII     |
|--------------------------------------|----------------------|----------------------|
| $J/\psi \to \Lambda \bar{\Lambda}$   | $189\pm9$            | $18.9 \times 10^{6}$ |
| $J/\psi \to \Sigma^+ \bar{\Sigma}^-$ | $150\pm24$           | $15.0 	imes 10^6$    |
| $J/\psi  ightarrow \Xi \bar{\Xi}$    | $97\pm8$             | $9.7 	imes 10^6$     |
| $\psi(2S) 	o \Sigma \bar{\Sigma}$    | $23.2\pm1.2$         | $116 \times 10^3$    |
| $\psi(2S) 	o \Omega \bar{\Omega}$    | $5.66 \pm 0.30$      | $28 	imes 10^3$      |

#### Front. Phys. 12(5), 121301 (2017) Phys. Rev. D 100, 114005 (2019)

#### Electromagnetic **Muon** Counter Calorimeter RPC Barrel: 9 lavers CsI(Tl): L=28 cm Endcap: 8 layers Barrel $\sigma_E$ =2.5% $\sigma_{\text{spatial}}=1.48 \text{ cm}$ Endcap $\sigma_E = 5.0\%$ RPC:8 RPC: 9 layers SC Solenoid Barrel ToF Endcap, ToF SC -Main Drift Chamber **Time Of Flight** Small cell, 43 layer Plastic scintillator $\sigma_{xy}=130 \ \mu m$ $\sigma_T$ (barrel)=80 ps dE/dx~6% $\sigma_T$ (endcap)=110 ps $\sigma_n/p=0.5\%$ at 1 GeV (update to 65 ps with MRPC)

With 10 billion  $J/\psi$  collected at BESIII and ~10<sup>7</sup> entangled hyperon pairs can be studied.

At future, the STCF will collect 1 trillion  $J/\psi$  per year, and will provide ~10<sup>9</sup> hyperon pairs.

#### Proposed: Super Tau-Charm Facility (STCF)



#### **BESIII** Detector

#### **Polarized hyperon pairs produced in** $e^+e^-$ collisions



• Angular distribution of  $\frac{d\Gamma}{d\Omega} \propto 1 + \alpha_{\psi} \cos^2 \theta$ ,  $\alpha_{\psi} \in [-1.0, 1.0]$ 

2024/07/0

• Unpolarized  $e^+e^-$  beams  $\Rightarrow$  transverse polarized hyperon (if  $\Delta \Phi \neq 0$ ):

# **Recent results from BESIII**

强子物理论坛100期特别活动

 $e^+e^- \to J/\psi \to \Lambda \overline{\Lambda}, \Lambda(\overline{\Lambda}) \to p\pi$ 

• Joint amplitude:

$$M = \frac{ie^2}{q^2} j_\mu \bar{u}(p_1) \left( F_1 \gamma_\mu + \frac{F_2}{2m} p_\nu \sigma^{\nu\mu} \gamma_5 \right) v(p_2)$$

• Differential cross section:

 $d\sigma \sim 1 + \alpha_{\psi} \cos^{2} \theta_{\Lambda} + (\alpha_{\psi} + \cos^{2} \theta_{\Lambda}) s_{\Lambda}^{z} s_{\overline{\Lambda}}^{z} +$   $\sin^{2} \theta_{\Lambda} s_{\Lambda}^{x} s_{\overline{\Lambda}}^{x} - \alpha_{\psi} \sin^{2} \theta_{\Lambda} s_{\Lambda}^{y} s_{\overline{\Lambda}}^{y} + \sqrt{1 - \alpha_{\psi}^{2} \cos\Delta \Phi \sin\theta_{\Lambda} \cos\theta_{\Lambda} (s_{\Lambda}^{x} s_{\overline{\Lambda}}^{z} + \frac{SPIN CORRELATIONS}{1 - \alpha_{\psi}^{2} \sin\Delta \Phi \sin\theta_{\Lambda} \cos\theta_{\Lambda} (s_{\Lambda}^{y} + s_{\overline{\Lambda}}^{y}) }$  POLARIZATIONS

- The spin vector of  $\Lambda$  is denoted by  $s_{\Lambda}$
- Only  $\langle s^{\gamma} \rangle$  could be non-zero, if  $\sin \Delta \Phi \neq 0$

Nuovo Cim. A 109, 241 (1996) Phys. Rev.185 D 75, 074026 (2007) Nucl. Phys. A190 771, 169 (2006) Phys. Lett. B 772, 16(2017) 50 cm

$$e^+e^- \to J/\psi \to \Lambda\overline{\Lambda}, \Lambda(\overline{\Lambda}) \to p\pi$$

BESIII has publish 2 works based on 1.3 billion and 10 billion  $J/\psi$  data sample:

[1] 1.3 billion: Nature Phys.15(2019)631

[2] 10 billion: Phys.Rev.Lett. 129 (2022) 13, 131801

- Most precise values for  $\Lambda$  decay parameter
- One of the most precise *CP* test in the hyperon sector:  $A_{CP} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}} = -0.0025 \pm 0.0046 \pm 0.0011$

Standard mode prediction : A<sub>CP</sub>~ 10<sup>-4</sup> (PRD 34, 833 (1986))

| Par.              | BESIII 10 billion [2]           | BESIII 1.3 billion [1]       |
|-------------------|---------------------------------|------------------------------|
| $\alpha_{J/\psi}$ | $0.4748 \pm 0.0022 \pm 0.0031$  | $0.461 \pm 0.006 \pm 0.007$  |
| $\Delta \Phi$     | $0.7521 \pm 0.0042 \pm 0.0066$  | $0.740 \pm 0.010 \pm 0.009$  |
| lpha              | $0.7519 \pm 0.0036 \pm 0.0024$  | $0.750 \pm 0.009 \pm 0.004$  |
| $lpha_+$          | $-0.7559 \pm 0.0036 \pm 0.0030$ | $-0.758 \pm 0.010 \pm 0.007$ |
| $A_{CP}$          | $-0.0025 \pm 0.0046 \pm 0.0012$ | $0.006 \pm 0.012 \pm 0.007$  |
| $lpha_{ m avg}$   | $0.7542 \pm 0.0010 \pm 0.0024$  | -                            |



$$e^+e^- \rightarrow J/\psi \rightarrow \Xi^- \overline{\Xi}^+, \Xi^- \rightarrow \Lambda(\rightarrow p\pi^-)\pi^- + c.c.$$

• For the sequential weak decays, the formula of sequential decays is:

$$\mathcal{W}(\boldsymbol{\xi}, \boldsymbol{\omega}) = \sum_{\mu, \bar{\nu} = 0}^{3} \underbrace{C_{\mu \bar{\nu}}}_{\mu', \bar{\nu}' = 0} \sum_{\mu', \bar{\nu}' = 0}^{3} \underbrace{a^{B_1}_{\mu \mu'} a^{\bar{B}_1}_{\bar{\nu} \bar{\nu}'} a^{B_2}_{\mu' 0} a^{\bar{B}_2}_{\bar{\nu}' 0}}_{\mathcal{H}(\bar{\boldsymbol{\xi}}, \bar{\boldsymbol{\omega}})}$$

PRD99(2019)056008 PRD100(2019)114005

- Angular distribution  $d\Gamma \propto W(\xi, \omega)$ 
  - $\xi$ : 9 kinematic variables, denoted by 9 helicity angles
  - $\omega = (\alpha_{\psi}, \Delta \Phi, \alpha_{\Xi}, \alpha_{\overline{\Xi}}, \phi_{\Xi}, \phi_{\overline{\Xi}}, \alpha_{\Lambda}, \alpha_{\overline{\Lambda}})$ : 8 free parameters first measurement



More parameters in sequential decay!



- Data sample: 1.3 billion  $J/\psi$  events.
- Final dataset:  $73.2 \cdot 10^3$  events with 199 backgrounds.

强子物理论坛100期特别活动

# $e^+e^- \rightarrow J/\psi \rightarrow \Xi^- \overline{\Xi}^+, \Xi^- \rightarrow \Lambda(\rightarrow p\pi^-)\pi^- + c.c.$

|                                    | Nature 606 (2022) 7912, 64-69           |                                       |                                                                  | 7                                                          |
|------------------------------------|-----------------------------------------|---------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|
|                                    | Parameter                               | This work                             | Previous result                                                  |                                                            |
|                                    | $\overline{a_{\psi}}$                   | 0.586±0.012±0.010                     | 0.58±0.04±0.08                                                   |                                                            |
|                                    | ΔΦ                                      | 1.213±0.046±0.016 rad                 | -                                                                | First measurement of the $\Xi^-$                           |
| First direct and                   | a₌                                      | -0.376±0.007±0.003                    | -0.401±0.010                                                     | polarization in $J/\psi$ decay                             |
| simultaneously measurement         | $\phi_{\Xi}$                            | 0.011±0.019±0.009rad                  | -0.037±0.014 rad                                                 |                                                            |
| of the charged <b>E</b> decay      | ā <sub>Ξ</sub>                          | 0.371±0.007±0.002                     | -                                                                |                                                            |
| parameters                         | $\bar{\phi}_{{\scriptscriptstyle \Xi}}$ | -0.021±0.019±0.007rad                 | -                                                                |                                                            |
|                                    | av                                      | 0.757±0.011±0.008                     | 0.750±0.009±0.004                                                | HyperCP: $\phi_{\Xi,HyperCP} = -0.042 \pm 0.011 \pm 0.011$ |
|                                    | $\overline{a}_{\Lambda}$                | -0.763±0.011±0.007 -0.758±0.010±0.007 | BESIII: $\langle \phi_{\Xi} \rangle = 0.016 \pm 0.014 \pm 0.007$ |                                                            |
| First measurement of weak          | $\xi_{P} - \xi_{S}$                     | (1.2±3.4±0.8)×10 <sup>-2</sup> rad    | -                                                                | We obtain the same precision for                           |
| phase difference in <b>E</b> decay | $\delta_P - \delta_S$                   | (-4.0±3.3±1.7)×10 <sup>-2</sup> rad   | (10.2±3.9)×10⁻²rad                                               | of magnitude smaller data sample!                          |
|                                    | A <sup>Ξ</sup> <sub>CP</sub>            | (6±13±6)×10 <sup>-3</sup>             | -                                                                |                                                            |
| Three independent <i>CP</i> tests  | $\Delta \phi_{\rm CP}^{\Xi}$            | (-5±14±3)×10⁻³rad                     | -                                                                | HyperCP: PRL 93(2004) 011802                               |
|                                    | A <sup>A</sup> <sub>CP</sub>            | (-4±12±9)×10 <sup>-3</sup>            | (-6±12±7)×10 <sup>-3</sup>                                       |                                                            |
|                                    | $\langle \phi_{\Xi} \rangle$            | 0.016±0.014±0.007rad                  |                                                                  |                                                            |

#### **Polarization behavior in different hyperon pair productions**



16

0.6

0.8

#### Summary of BESIII achievement on hyperon decay



#### **Summary of BESIII achievement on hyperon decay**

|                                                 | PRL 129, 131801(2022)           | PRL 125,052004(2020)          | Nature 606,64(2022)          | Phys.Rev.D 108 (2023) 3, L031106 |
|-------------------------------------------------|---------------------------------|-------------------------------|------------------------------|----------------------------------|
| Parameters                                      | $\Lambda\overline{\Lambda}$     | $\Sigma^+\overline{\Sigma}^-$ | E<br>                        | $\Xi^0\overline{\Xi}^0$          |
| $\alpha_{\Xi^-/\Xi^0}$                          | -                               | -                             | $-0.376 \pm 0.007 \pm 0.003$ | $-0.3750 \pm 0.0034 \pm 0.0016$  |
| $\alpha_{\overline{\Xi}^+/\overline{\Xi}^0}$    | -                               | -                             | $0.371 \pm 0.007 \pm 0.002$  | $0.3790 \pm 0.0034 \pm 0.0021$   |
| $\phi_{\Xi^-/\Xi^0}$                            | -                               | -                             | $0.011 \pm 0.019 \pm 0.009$  | $0.0051 \pm 0.0096 \pm 0.0018$   |
| $\phi_{\overline{\Xi}^+/\overline{\Xi}^0}$      | -                               | -                             | $-0.021 \pm 0.019 \pm 0.007$ | $-0.0053 \pm 0.0097 \pm 0.0019$  |
| $A_{CP}(\Xi^-/\Xi^0)$                           | -                               | -                             | $0.006 \pm 0.013 \pm 0.006$  | $-0.0054 \pm 0.0065 \pm 0.0031$  |
| $\Delta\phi_{CP}(\Xi^-/\Xi^0)$                  | -                               | -                             | $-0.005 \pm 0.014 \pm 0.003$ | $-0.0001 \pm 0.0069 \pm 0.0009$  |
| $\alpha_{\Lambda/\Sigma^+}$                     | $0.7519 \pm 0.0036 \pm 0.0024$  | $-0.998 \pm 0.037 \pm 0.009$  | $0.757 \pm 0.011 \pm 0.008$  | $0.7551 \pm 0.0052 \pm 0.0023$   |
| $lpha_{\overline{\Lambda}/\overline{\Sigma}}$ - | $-0.7559 \pm 0.0036 \pm 0.0030$ | $0.990 \pm 0.037 \pm 0.011$   | $-0.763 \pm 0.011 \pm 0.007$ | $-0.7448 \pm 0.0052 \pm 0.0023$  |
| $A_{CP}(\Lambda/\Sigma^+)$                      | $-0.0025 \pm 0.0046 \pm 0.0012$ | $-0.004 \pm 0.037 \pm 0.010$  | $-0.004 \pm 0.012 \pm 0.009$ | $0.0069 \pm 0.0058 \pm 0.0018$   |

**BESIII best measurements:**  $A_{CP}^{\Lambda} = -0.0025 \pm 0.0046 \pm 0.0012$ Systematic uncertainties are well controlled!

• Excellent performance of BESIII detectors.

2024/07/01

• Data-driven method to study data-MC inconsistency.

# **Hyperon CP test in future plans**

2024/07/01

强子物理论坛100期特别活动

- 19

### **CPV in Standard Model**



#### Strong CP

- $\bar{\theta}$  term:  $\mathcal{L}_{\bar{\theta}} = -\frac{\alpha_s}{16\pi^2} \bar{\theta} \operatorname{Tr}(G^{\mu\nu}\tilde{G}_{\mu\nu})$
- Mainly through measuring the Electric Dipole Moment (EDM) of atomic nuclei, atoms, and molecular systems,
- The current most stringent constraints come from the EDM experiments of neutrons and 199Hg:  $\bar{\theta} < 10^{-10}$

# **Electric Dipole Moment**

µ: magnetic dipole momentd: electric dipole momentS: particle spin

$$\begin{array}{c} E B \\ \uparrow \uparrow \uparrow \\ \uparrow \uparrow \\ T \end{array} \begin{array}{c} P \\ \downarrow \uparrow \\ F \\ \downarrow \\ \mu \end{array} \begin{array}{c} F \\ S(d) \\ E B \\ \downarrow \uparrow \\ F \\ S(d) \end{array} \right)$$

$$\mathcal{H} = -\boldsymbol{\mu} \cdot \mathbf{B} - \boldsymbol{\delta} \cdot \mathbf{E} \stackrel{P}{\longrightarrow} \mathcal{H} = -\boldsymbol{\mu} \cdot \mathbf{B} + \boldsymbol{\delta} \cdot \mathbf{E}$$
$$\mathcal{H} = -\boldsymbol{\mu} \cdot \mathbf{B} - \boldsymbol{\delta} \cdot \mathbf{E} \stackrel{T}{\longrightarrow} \mathcal{H} = -\boldsymbol{\mu} \cdot \mathbf{B} + \boldsymbol{\delta} \cdot \mathbf{E}$$

Non-zero EDM will violate P and T symmetry: T violation  $\leftrightarrow$  CP violation, if CPT holds.

The contribution of the Standard Model to EDM is very small:
 ➤ CKM: highly suppressed by loop level (≥ 3) interaction
 ➤ QCD θ
 term: main SM contributors to the EDM, θ

 Imited by neutron EDM:

 $d_n < 1.6 \times 10^{-26} \ ecm$ 

$$\mathcal{L}_{\text{CPV}} = \mathcal{L}_{\text{CKM}} + \mathcal{L}_{\overline{\theta}} + \mathcal{L}_{\text{BSM}}^{\text{eff}}$$

Very sensitive to BSM physics, large windows of opportunity for observing New Physics!

# Map of EDM



# Map of EDM

The identification of the nature of the fundamental CP-violating mechanisms requires the study of EDMs in various systems



C. R. Physique 13 168 (2012)





### **EDM Status**

# Only $\Lambda$ hyperon has been measured with a large uncertainty!



2024/07/01

## What can BESIII / STCF do for EDM?



## What can BESIII / STCF do for EDM?

• Direct approach: spin procession 难以用来测量短寿命粒子的EDM

$$\begin{split} \frac{d\mathbf{s}}{dt} &= \mathbf{s} \times \mathbf{\Omega} \\ \mathbf{\Omega} &= \mathbf{\Omega}_{\text{MDM}} + \mathbf{\Omega}_{\text{EDM}} + \mathbf{\Omega}_{\text{TH}} \\ \mathbf{\Omega}_{\text{MDM}} &= \underbrace{\frac{g\mu_B}{\hbar} \left( \mathbf{B} - \frac{\gamma}{\gamma+1} (\boldsymbol{\beta} \cdot \mathbf{B}) \boldsymbol{\beta} - \boldsymbol{\beta} \times \mathbf{E} \right)}_{\boldsymbol{\Omega}_{\text{EDM}}} \\ & \boldsymbol{\Omega}_{\text{EDM}} &= \underbrace{\frac{d\mu_B}{\hbar} \left( \mathbf{E} - \frac{\gamma}{\gamma+1} (\boldsymbol{\beta} \cdot \mathbf{E}) \boldsymbol{\beta} - \boldsymbol{\beta} \times \mathbf{B} \right)}_{\end{split}$$



• Indirect approach: time-like dipole form factors  $(q^2 \neq 0)$ 

$$L_{\text{dipole}} = i \frac{d_{\Lambda}}{2} \bar{\Lambda} \sigma_{\mu\nu} \gamma_5 \Lambda F^{\mu\nu}$$
$$L_{c-\Lambda} = -\frac{2}{3M^2} e d_{\Lambda} (p_1^{\mu} - p_2^{\mu}) \bar{c} \gamma_{\mu} c \bar{\Lambda} i \gamma_5 \Lambda$$

X.G.He, J.P. Ma, Bruce McKellar, Phys.Rev.D47(1993)1744 X.G.He, J.P. Ma, Phys.Lett.B 839(2023)137834

## **Polarization of** $J/\psi$

е Z<sup>0</sup> J/4 B  $\rho^+$ 

No beam polarization:

$$P_L = \frac{\rho_{++} - \rho_{--}}{\rho_{++} + \rho_{--}}$$

Considering  $Z^0$  contribution:  $J/\psi$  has longitude polarization: denoted by  $P_L$ 

 $\rho_{mm'}$ :  $J/\psi$  spin density matrix

$$P_L = \mathcal{A}_{LR}^0 = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{-\sin^2 \theta_W^{\text{eff}} + 3/8}{2\sin^2 \theta_W^{\text{eff}} \cos^2 \theta_W^{\text{eff}}} \frac{M_{J/\psi}^2}{m_Z^2}$$

With beam polarization:

$$\xi = \frac{\sigma_R (1 + P_e)/2 - \sigma_L (1 - P_e)/2}{\sigma_R (1 + P_e)/2 + \sigma_L (1 - P_e)/2} = \frac{\mathcal{A}_{LR}^0 + P_e}{1 + P_e \mathcal{A}_{LR}^0} \approx P_e$$

Can be used for precise measurement beam polarization

#### Spin density matrix of hyperon-antihyperon

Polarization effects encoded in hyperon pair spin density matrix

$$R(\lambda_1, \lambda_2; \lambda'_1, \lambda'_2) \propto \sum_{m,m'} \rho_{m,m'} d^{j=1}_{m,\lambda_1 - \lambda_2}(\theta) d^{j=1}_{m',\lambda'_1 - \lambda'_2}(\theta) \times \mathcal{M}_{\lambda_1,\lambda_2} \mathcal{M}^*_{\lambda'_1,\lambda'_2} \delta_{m,m'},$$

Lorentz invariance introduces P and CP violation form factors in helicity amplitude

$$\mathcal{M}_{\lambda_1,\lambda_2} = \epsilon_{\mu} (\lambda_1 - \lambda_2) \bar{u}(\lambda_1, p_1) (F_V \gamma^{\mu} + \frac{i}{2M_{\Lambda}} \sigma^{\mu\nu} q_{\nu} H_{\sigma} + \gamma^{\mu} \gamma^5 F_A + \sigma^{\mu\nu} \gamma^5 q_{\nu} H_T) v(\lambda_2, p_2).$$

X.G.He, J.P. Ma, Bruce McKellar, Phys.Rev.D47(1993)1744

X.G.He, J.P. Ma, Phys.Lett.B 839(2023)137834

### **Dynamics in** $J/\psi \rightarrow B\overline{B}$

Detailed dynamics in  $J/\psi$  decay to hyperon pair, have been studied: X.G.He, J.P. Ma, Phys.Lett.B 839(2023)137834

$$\mathcal{A} = \epsilon_{\mu}(\lambda)\bar{u}(\lambda_{1})\left(\boldsymbol{F}_{\boldsymbol{V}}\gamma^{\mu} + \frac{i}{2M_{\Lambda}}\sigma^{\mu\nu}q_{\nu}\boldsymbol{H}_{\boldsymbol{\sigma}} + \gamma^{\mu}\gamma^{5}\boldsymbol{F}_{\boldsymbol{A}} + \sigma^{\mu\nu}\gamma^{5}q_{\nu}\boldsymbol{H}_{\boldsymbol{T}}\right)\nu(\lambda_{2})$$







#### 2024/07/01

强子物理论坛100期特别活动

 $\frac{G_1}{G_2} = \left| \frac{G_1}{G_2} \right| e^{-i\Delta\Phi}$ 

ionic form factors 
$$G_1, G_2$$

Psionic form factors

$$F_V = G_1 - \frac{4M^2}{Q^2}(G_1 - G_2)$$

Hyperon polarization parameters

 $\alpha_{J/\psi} = \frac{s |G_1|^2 - 4m^2 |G_2|^2}{s |G_1|^2 + 4m^2 |G_2|^2}$ 

$$H_{\sigma} = \frac{4M^2}{Q^2} (G_1 - G_2)$$

X.G.He, J.P. Ma, Bruce McKellar, Phys.Rev.D47(1993)1744 X.G.He, J.P. Ma, Phys.Lett.B 839(2023)137834 Goran Faldt, Andrzej Kupsc Physics Letters B 772 (2017) 16–20

 $G_1$  can be extracted from the measurement of  $\Gamma(J/\psi \rightarrow B\overline{B})$ 

#### 31



# Primarily from Z-boson exchange between $c\overline{c}$ and light quark pairs

Related to weak mixing angle in SM

$$F_A \approx -\frac{1}{6} Dg_V \frac{g^2}{4\cos^2 \theta_W^{\text{eff}}} \frac{1 - 8\sin^2 \theta_W^{\text{eff}}/3}{m_Z^2} \approx -1.07 \times 10^{-6}$$

X.G.He, J.P. Ma, Phys.Lett.B 839(2023)137834



Several CPV sources contributed to  $H_T$ 

Take hyperon EDM as the major source for  $H_T$ 

$$H_T = \frac{2e}{3M_{J/\psi}^2} g_V d_B \qquad (q = M_{J/\psi})$$

Neglect q dependence,  $d_B$  for hyperon EDM

X.G.He, J.P. Ma, Bruce McKellar, Phys.Rev.D47(1993)1744

```
X.G.He, J.P. Ma,
Phys.Lett.B 839(2023)137834
```

Angular formular based on helicity amplitude are developed:

J. Fu, H.B. Li, J. Wang, F. Yu, and J. Zhang, PhysRevD.108.L091301

$$R(\lambda_1, \lambda_2; \lambda'_1, \lambda'_2) \propto \sum_{m,m'} \rho_{m,m'd_{m,\lambda_1-\lambda_2}^{j=1}(\theta)d_{m',\lambda'_1-\lambda'_2}^{j=1}(\theta)\mathcal{M}_{\lambda_1,\lambda_2}\mathcal{M}^*_{\lambda'_1,\lambda'_2}\delta_{m,m'}$$

Total angular distribution of  $J/\psi$  to spin-1/2 baryon pair:

$$\begin{split} & > J/\psi \rightarrow B\bar{B}, B = \Lambda^{0}, \Sigma^{-}, \Sigma^{+} \\ & \frac{d\sigma}{d\Omega_{k}d\Omega_{p}d\Omega_{\bar{p}}} = N \sum_{[\lambda]} R(\lambda_{1}, \lambda_{2}; \lambda_{1}', \lambda_{2}') D_{\lambda_{1},\lambda_{p}}^{j=1/2}(\theta_{1}, \phi_{1}) D_{\lambda_{1}',\lambda_{p}}^{*j=1/2}(\theta_{1}, \phi_{1}) \left| h_{\lambda_{p}} \right|^{2} D_{\lambda_{2},\lambda_{\bar{p}}}^{j=1/2}(\theta_{2}, \phi_{2}) D_{\lambda_{2}',\lambda_{\bar{p}}}^{*j=1/2}(\theta_{2}, \phi_{2}) \left| h_{\lambda_{\bar{p}}} \right|^{2} \\ & > J/\psi \rightarrow B\bar{B}, B = \Xi^{0}, \Xi^{-} \\ & \frac{d\sigma}{d\Omega_{k}d\Omega_{\Lambda}d\Omega_{\bar{\Lambda}}d\Omega_{p}d\Omega_{\bar{p}}} = N \sum_{[\lambda]} R(\lambda_{1}, \lambda_{2}; \lambda_{1}', \lambda_{2}') D_{\lambda_{1},\lambda_{\Lambda}}^{*j=1/2}(\theta_{1}, \phi_{1}) D_{\lambda_{1}',\lambda_{\Lambda}'}^{j=1/2}(\theta_{1}, \phi_{1}) \mathcal{H}_{\lambda_{\Lambda}} \mathcal{H}_{\lambda_{\Lambda}'}^{*} D_{\lambda_{2},\lambda_{\bar{\Lambda}}}^{*j=1/2}(\theta_{2}, \phi_{2}) \\ & D_{\lambda_{2}',\lambda_{\Lambda}'\bar{A}}^{j=1/2}(\theta_{2}, \phi_{2}) \mathcal{H}_{\lambda_{\bar{\Lambda}}} \mathcal{H}_{\lambda_{\bar{\Lambda}}}^{*} D_{\lambda_{\Lambda,\lambda_{p}}}^{*j=1/2}(\theta_{3}, \phi_{3}) D_{\lambda_{\Lambda}'\lambda_{\bar{\Lambda}}}^{*j=1/2}(\theta_{3}, \phi_{3}) \left| h_{\lambda_{p}} \right|^{2} D_{\lambda_{\bar{\Lambda}},\lambda_{\bar{p}}}^{*j=1/2}(\theta_{4}, \phi_{4}) D_{\lambda_{\Lambda}'\bar{\Lambda},\lambda_{\bar{p}}}^{j=1/2}(\theta_{4}, \phi_{4}) \left| h_{\lambda_{\bar{p}}} \right|^{2} \end{split}$$

2024/07/01

强子物理论坛100期特别活动

#### **Sensitivity of hyperon EDM measurements**

SM: 
$$\sim 10^{-26} \, e \, \text{cm}$$

BESIII: milestone for hyperon EDM measurement  $\Lambda 10^{-19}$ e cm (FermiLab  $10^{-16}$  e cm)

> first achievement for  $\Sigma^+, \Xi^$ and  $\Xi^0$  at level of  $10^{-19}e$  cm

> a litmus test for new physics

STCF: improved by 2 order of magnitude

### Sensitivity of CP violation in hyperon decay

reminder:  

$$A_{CP}^{B} = (\alpha_{B} + \bar{\alpha}_{B})/(\alpha_{B} - \bar{\alpha}_{B})$$

$$\Delta \phi_{CP}^{B} = (\phi_{B} + \bar{\phi}_{B})/2$$



(b) Sensitivity of  $A^B_{CP}$  and  $\Delta \phi^B_{CP}$  N.G.Deshpande et al, PLB326(1994)307 J.Tandean et al, PRD67(2003)056001 J.F.Donoghue et al, PRD34(1986)833

SM: 
$$10^{-4} \sim 10^{-5}$$

STCF:

SM prediction can be reached and further improved with a longitudinally polarized electron beam

### **Sensitivity of** $F_A$ and $\sin^2 \theta_w^{eff}$ measurements

![](_page_36_Figure_1.jpeg)

<sup>(</sup>c)Sensitivity of  $|F_A|$  and  $\sin^2 \theta_W^{\text{eff}}$ 

SM: 
$$F_A \sim 10^{-6}$$
  
 $\sin^2 \theta_W^{\text{eff}} \sim 0.235$ 

#### STCF:

Weak mixing angle at  $Q = M_{J/\psi}$ can be determined at the level of  $8 \times 10^{-3}$ 

### **Sensitivity of** $P_L$ and $\sin^2 \theta_w^{eff}$ measurements

reminder: 
$$P_L = \mathcal{A}_{LR}^0 = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{-\sin^2 \theta_W^{\text{eff}} + 3/8}{2\sin^2 \theta_W^{\text{eff}} \cos^2 \theta_W^{\text{eff}}} \frac{M_{J/\psi}^2}{m_Z^2}$$

![](_page_37_Figure_2.jpeg)

![](_page_37_Figure_3.jpeg)

SM: 
$$P_L \sim 10^{-4}$$
  
 $\sin^2 \theta_W^{\text{eff}} \sim 0.235$ 

STCF:

Weak mixing angle at  $Q = M_{J/\psi}$ can be determined at the level of  $2 \times 10^{-2}$ 

### Sensitivity of $\sin^2 \theta_w^{eff}$ by simultaneous fit

![](_page_38_Figure_1.jpeg)

Weak mixing angle shared by  $F_A$  and  $P_L$ 

Sensitivity improved at the level  $5 \times 10^{-3}$ 

#### Figure 1

(a)  $\sin^2 \theta_W(\mu)_{\overline{\text{MS}}}$  (29) with an updated atomic parity violation (APV) result. (b)  $\sin^2 \theta_W(Q^2)$ , a one-loop calculation dominated by  $\gamma - Z^0$  mixing (52). The red and green curves represent the boson and fermion contributions, respectively.

#### K.S.Kumar et al, Ann.Rev.Nucl.Part.Sci. 63 (2013) 237-267

#### **Sensitivity of beam polarization measurements**

![](_page_39_Figure_1.jpeg)

Precisely measured beam polarization (10<sup>-5</sup>) as input value for  $\sin^2 \theta_W^{\text{eff}}$  measurement

A. Bondar et al, JHEP 03 (2020) 076

$$\mathcal{A}_{\mathrm{LR}} \equiv rac{\sigma_{\mathcal{P}_e} - \sigma_{-\mathcal{P}_e}}{\sigma_{\mathcal{P}_e} + \sigma_{-\mathcal{P}_e}} = \mathcal{A}_{\mathrm{LR}}^0 \mathcal{P}_e$$

![](_page_39_Figure_5.jpeg)

$$\mathcal{A}_{LR}^{0} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{-\sin^2 \theta_W^{\text{eff}} + 3/8}{2\sin^2 \theta_W^{\text{eff}} \cos^2 \theta_W^{\text{eff}}} \frac{M_{J/\psi}^2}{m_Z^2}$$

强子物理论坛100期特别活动

# **Summary and Outlooks**

- Highlights of hyperon physics at BESIII:
  - Precision measurements of hyperon decay parameters, polarization and *CP* asymmetry:
    - complementary to CPV studies with Kaons
    - BESIII has already rewritten the PDG book for  $\Lambda$  and  $\Xi$  decays
    - results of  $\Sigma^{\pm}$ ,  $\Xi$  with 10 billion  $J/\psi$  will be coming soon
  - Hyperon electric dipole moments measurements
    - First measurements of  $\Sigma^{+,0}$ ,  $\Xi^{-}$ ,  $\Xi^{0}$ ,  $\Omega$  hyperons EDM
    - The sensitivity of the hyperon EDM can be reached at the order of  $10^{-19}$

# www.thank you.com

10 C

18.

虽子物理论坛100期特别活动

![](_page_42_Picture_0.jpeg)

![](_page_42_Picture_1.jpeg)

![](_page_43_Figure_0.jpeg)

2024/07/01

强子物理论坛100期特别活动

### EM form-factors and Helicity Amplitudes

Phys.Rev.D99,056008

$$h_{2} \equiv A_{1/2,-1/2} = A_{-1/2,1/2} = \sqrt{1 + \alpha_{\psi}} e^{-i\Delta\Phi}$$

$$h_{1} \equiv A_{1/2,1/2} = A_{-1/2,-1/2} = \sqrt{1 - \alpha_{\psi}} / \sqrt{2}$$

$$h_{2} = \frac{\sqrt{2s}}{\sqrt{s|G_{M}|^{2} + 4M^{2}|G_{E}|^{2}}} G_{M}$$

$$h_{1} = \frac{2M}{\sqrt{s|G_{M}|^{2} + 4M^{2}|G_{E}|^{2}}} G_{E}$$

$$\frac{G_{E}}{G_{M}} = e^{i\Delta\Phi} \left| \frac{G_{E}}{G_{M}} \right|$$

where s is the square of  $p_B + p_{\bar{B}}$  and M is the mass of  $B(\bar{B})$ .

# CPV observables in $\Xi^- \rightarrow \Lambda \pi$ decay

![](_page_45_Figure_1.jpeg)

强子物理论坛100期特别活动

![](_page_46_Figure_0.jpeg)

# **Constraints from Kaon decays**

He & Valencia PRD 52, 5257

![](_page_47_Figure_2.jpeg)

CPV measurement in Kaon system strongly constrains NP in S-waves, but no Pwaves. Thus, searches of CPV in hyperon are complementary to those with Kaons.