

06/30-07/04

中国科学技术大学东区 物质科研楼C楼三层会议室

第二届强子物理新发展研讨会 暨强子物理在线论坛100期特别活动。

Study of doubly heavy hadrons at LHCb

Jibo He (何吉波), UCAS (中国科学院大学) July 1, 2024

Outline

Introduction to LHCb

- B_c^+ physics
- Doubly heavy baryons

XYZ production (41届)

强子物理在线论坛 Hadron Physics Online Forum (HAPOF) https://indico.ihep.ac.cn/event/hapof

第一届论坛: 双粲重子实验和理论研究

主持人:吕才典 研究员

会议地址:https://meeting.tencent.com/p/6733913824 腾讯会议室ID: 6733913824 会议时间: 2020年5月29日 15:00-16:20

题目:LHCb上双粲重子的实验研究

报告人:何吉波研究员(中国科学院大学) 报告时间:2020年05月29日下午15:00-15:40 摘要:在这个报告中,我并介绍LHC为爱社又表重子 的实验研究情况,包括2017年发现的双菜重子Xicc++ 及其性质的测量,以及最近发带的单也带双菜重子 Xicc+的提导结果。

报告人简介:何言成,2002年毕业于北京航空航天大 学,2008年获清华大学理学博士学位。2008-2012在法 国直线加速要实验室(LAL) 从事博士后听究工作, 2013-2015作为CERN Fellow 在欧洲植子研究中心 (CERN) 工作。2015年底回到中国科学院大学工作, 现力物理科学学院研究员。公미不并所抽控任国家重点 研发计划大科学装置清洁研究重点专项:课题"双重味 量子寻找"的责人,在国内理论物理学家们强有力 的支持下,带领LHCb中国组主导了双萘重子的发现, 信息可参见几人主贡:ftmt/people.ucas.cm/~he。 更多

题目: 双粲重子的理论进展

报告**人: 于福升 教授 (兰州大学)** 报告时间: 2020年05月29日下午15: 40-16: 20 摘要: 2017年LHCb求检查次发现双萘重子, 是粒子物 理学近些半約一个重要突成, 粒子的寿命和衰变道的 分支比等衰变性成在LHCb实验寻找双萘重子的过程中 起到重要作用。本报告介绍关于双萘重介的理论研究 证長, 尤其包括尚未发现的三."和Q."以及三。表变过程

开播啦!!!

报告人简介:于福升,2008年本科毕业于上海大学, 2008-2013年就接于中国科学院高能物理研究所并度理 学博士学位,201321年就任学院制教徒,教 2013年至今为兰州大学核科学与基本学院副教徒,教 这,从年轻行物理理论研究工作,尤其是教理中的 CP成标和或基重子衰变的唯象学研究。获中国物理学 会"最有影响论文实"一等奖、英国物理学会高被引 中国作者衰。

顾问委员:(按姓氏拼音排序)

除 莹(中国科学院高能物理研究所), 高原宁(北京大学), 李海波(中国科学院高能物理研究所), 梁作堂(山东大学), 刘川(北京大学), 吕才典(中国科学院高能物理研究所), 马建平(中国科 学院理论物理研究所), 彭海平(中国科学技术大学), 乔从丰(中国科学院高能物理研究所), 武海雁(中国科 学院高能物理研究所), 许怒(中国科学院近代物理所), 苑长征(中国科学院高能物理研究所), 张肇西(中国科学院高能物理研究所), 张宗烨(中国科学院高能物理研究所), 武达(北京大学), 赵强(中国科学院高能物理研究所), 赵政国(中国科学技术大学), 郑汉育(北京大学), 郑阳恒 (中国科学院大学), 朱世琳(北京大学), 邹冰松(中国科学院理论物理研究所))

的研究。

Large Hadron Collider

CMS

Proton energy: up to 7 TeV (10¹² eV) speed: 0.999999991 c

ATLA

ALICE

The LHCb experiment

The LHCb trigger (2018)

- LO, Hardware
 - $-p_{\rm T}(\mu_1) \times p_{\rm T}(\mu_2) > (1.5 \text{ GeV})^2$
 - $-p_{\rm T}(\mu) > 1.8 \,{\rm GeV}$
 - $-E_{\rm T}(e) > 2.4 \, {\rm GeV}$
 - $-E_{\rm T}(\gamma) > 3.0 {
 m GeV}$
 - $-E_{\rm T}(h) > 3.7 \, {\rm GeV}$
 - High Level Trigger
 - Stage1, $p_{\rm T}$, IP
 - Stage2, full selection

The LHCb trigger (Run3)

LHCb luminosity prospects

- Run-3
 - Luminosity: 7 fb⁻¹ (2024) + 7 fb⁻¹ (2025)
 - Yields, compared to Run 1+2
 - Muon modes ~2
 - Hadronic modes ~4 (2 x 2 due to higher trigger eff.)

B_c meson

- b·c
- Formed by two different heavy quarks, unique in the Standard Model. Both *b*- & *c*-quark can decay, or annihilate

$$\begin{split} & -\overline{b} \to \overline{c}W^{+}, 20\%, \text{e.g.}, J/\psi \ell^{+} \nu_{\ell} \\ & -c \to sW^{+}, 70\%, \text{e.g.}, B_{s}^{0}\pi^{+} \\ & -c\overline{b} \to W^{+}, 10\%, \text{e.g.}, \tau^{+}\nu_{\tau} \end{split}$$

B_c production

- Difficult to produce at $e^+e^$ machine. Mainly through $gg \rightarrow B_c + b + \bar{c}$ at LHC
- Production rate
 - Theoretical prediction (in nb)

[C.-H. Chang, et al., PRD 71 (2005) 074012]

-	$ (^1S_0)_1\rangle$	$ (^{3}S_{1})_{1}\rangle$	$ (^1S_0)_{f 8}g angle$	$ (^3S_1)_{f 8}g angle$	$ (^{1}P_{1})_{1}\rangle$	$ (^{3}P_{0})_{1} angle$	$ (^{3}P_{1})_{1}\rangle$	$ (^{3}P_{2})_{1}\rangle$
LHC [†] TEVATRON	71.1 5.50	177. 13.4	(0.357, 3.21) (0.0284, 0.256)	(1.58, 14.2) (0.129, 1.16)	9.12 0.655	3.29 0.256	7.38 0.560	20.4 1.35

Color octet contribution is small

 $-\sigma(2S)/\sigma(1S)$ would be $|R_{2S}(0)/R_{1S}(0)| \approx 0.6$ $-\sigma(B_c^+) \sim 0.9 \ \mu b$ for $\sqrt{s} = 14 \ \text{TeV}$

Before LHC started

CHIN. PHYS. LETT. Vol. 27, No. 6 (2010) 061302

Experimental Prospects of the B_c Studies of the LHCb Experiment *

GAO Yuan-Ning(高原宁)^{1,2,3}, HE Ji-Bo(何吉波)^{1,3,4**}, Patrick Robbe⁴, Marie-Hélène Schune⁴, YANG Zhen-Wei(杨振伟)^{1,2,3}

¹Key Laboratory of Particle and Radiation Imaging (Ministry of Education), Tsinghua University, Beijing 100084 ²Department of Engineering Physics, Tsinghua University, Beijing 100084

³Center for High Energy Physics, Tsinghua University, Beijing 100084

⁴Laboratoire de l'Accélérateur Linéaire, Université Paris-Sud 11, CNRS/IN2P3 (UMR 8607), 91400 Orsay, France

(Received 3 February 2010)

The experimental prospects of the B_c studies of the LHCb experiment are discussed. Production rates of B_c mesons at different center-of-mass energies are estimated with the dedicated generator BCVEGPY. Theoretical estimates and experimental measurements of the B_c^{\pm} inclusive production cross section at $\sqrt{s} = 1.96$ TeV are compared. The possibilities of studying B_c production, B_c spectroscopy, B_c decays and CP violation in B_c decays in the LHCb experiment are evaluated.

identify, as discussed above. A fast simulation shows that the mass of the $B_c(2^3S_1)$ state would be shifted down by the mass difference of $M(B_c^{*+}) - M(B_c^+)$ and the mass resolution is not affected much when the $B_c(2^3S_1)$ state is reconstructed only with $B_c^+\pi^+\pi^$ and the photon is missing. Thus the 2S states will probably be observed at the LHCb experiment, and it will also be possible to distinguish the 2^3S_1 state from the 2^1S_0 state if the mass difference between the B_c^{*+} and B_c^+ mesons is sufficiently larger than that between the 2^3S_1 and 2^1S_0 states. LHCb experiment. Taking the inclusive cross section of the $B_c^+ \to \underline{B}_s^0 \pi^+$) as $0.9\,\mu$ b and the branching ratio $\mathcal{B}(B_c^+ \to \underline{B}_s^0 \pi^+)$ as $16.4\%^{[1]}$ and assuming the efficiency of reconstructing B_c^+ from $B_s^0 \pi^+$ as 30%, we will be able to observe about $\overline{100} \ B_c^+ \to B_s^0 \pi^+$ events with $B_s^{0^-} \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)_{\mathrm{Theory}}$ about 120 $B_c^+ \to B_s^0 \pi^+$ events with $B_s^0 \to D_{\mathrm{BD}}(K^+K_{\mathrm{ref}})\pi^+$ from 1 fb⁻¹ of data, which may be notrivery interesting for the CP violation studies of the B_s^0 meson, but we can at least measure the branching ratios of such decays 'and's test the 'the off the label predictions of the instance branching ratios.

Progress in the past 16 years

B_c^{\pm}	I(J ^P) I, J, P s shown are quark-model	= 0(0 ⁻) ' need confirm predictions.	nation.	
	B_c^{\pm} MASS		2008	
VALUE (GeV)	DOCUMENT ID	TECN COMMEN	т	
6.276 ±0.004 OUR AVER	AGE			
$\begin{array}{ll} 6.2756 \pm 0.0029 \pm 0.0025 \\ 6.4 & \pm 0.39 & \pm 0.13 \\ \bullet \bullet \bullet \mbox{ We do not use the fo} \end{array}$	¹ AALTONEN 08M ² ABE 98M Ilowing data for averages, fi	CDF $p\overline{p}$ at 1. CDF $p\overline{p}$ at 1. its, limits, etc.	96 TeV 8 TeV	
$6.2857 \pm 0.0053 \pm 0.0012$	¹ ABULENCIA 06c	CDF Repl. by	AALTONEN 08M	
6.32 ±0.06	³ ACKERSTAFF 980	OPAL e+e-	$\rightarrow Z$	
 ABE 900 ODServed 20.4 > 4.8 standard deviation 3 ACKERSTAFF 980 obse an estimated background 	s. The mass value is estimated and the $B_c \rightarrow S_c$ and $B_c \rightarrow S_c$ and $S_c \rightarrow S_c$ and S_c and $S_c \rightarrow S_c$	$J/\psi(1S)\ell\nu_{\ell}$ we ated from $m(J/\psi)$ he $B_{\ell} \rightarrow J/\psi(1)$	$f(1S)\ell).$ S) π^+ channel with	
	B_c^{\pm} MEAN LIFE			
VALUE (10-12 s)	DOCUMENT ID	TECN COM	MENT	
0.46 ±0.07 OUR AVERAG	ε			
$0.463 \substack{+0.073 \\ -0.065 \pm 0.036}$	⁴ ABULENCIA 06	o CDF ppa	t 1.96 TeV	
$\substack{0.46 \ -0.18 \ \pm 0.03}$	⁴ ABE 98	IM CDF $p \overline{p} 1$.8 TeV	
⁴ The lifetime is measured	from the $J/\psi(1S)e$ decay	vertices.		
B_c^+	DECAY MODES × B($(\overline{b} \rightarrow B_c)$		
B_c^- modes are characteristic	rge conjugates of the mode	s below.		
Mode	Fra	ction (Γ_i/Γ)	Confidence level	

The following quantities are not pure branching ratios; rather the fraction $\Gamma_i/\Gamma \times B(\overline{b} \to B_{\rm C}).$

Γ1	$J/\psi(1S)\ell^+ u_\ell$ anything	(5.2+2		
Γ2	$J/\psi(1S)\pi^+$	< 8.2	$\times 10^{-5}$	909
Гз	$J/\psi(1S)\pi^{+}\pi^{+}\pi^{-}$	< 5.7	$\times 10^{-4}$	909
Γ4	$J/\psi(1S) a_1(1260)$	< 1.2	$\times 10^{-3}$	909
Γ ₅	$D^*(2010)^+ \overline{D}{}^0$	< 6.2	$\times 10^{-3}$	909

B_c^+ $I(J^P) = 0(0^-)$ /, J, P need confirmation.

Quantum numbers shown are quark-model predictions.

B ⁺ _c MASS			$6274.47 \pm 0.32 \; \text{MeV}$				
$mB_{i}-m$	B_{0}		$907.8\pm0.5~{ m MeV}$				
B_c^+ ME	AN LIFE	FCAV	$(0.510 \pm 0.009) \times 10^{-12}$ s			~	
POLA	RIZATION IN B_c' L	ECAY	0.24 + 0.00			~	
$AP(B_c^+$) $D_c \rightarrow J/\psi D_s$		-0.010 + 0.010			~	
- (6				→ Ex	pand all d	ecavs	
0	004					,-	
2	024	onjugates of the mode	s below.				
	- - ·		Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level	P(MeV/c)		
г1	$J/\psi(1S)\ell^+\nu\ell$ any	thing	seen			~	
Γ_2	$J/\psi(1S)\mu^+\nu\mu$		seen		2372	~	
гз	$J/\psi(1S)\tau^+\nu_{\tau}$		seen		1932	~	
Γ4	$J/\psi(1S)\pi^+$		seen		2370	~	
Γ_5	$J/\psi(1S)K^+$		seen		2341	× .	
Γ_6	$J/\psi(1S)\pi^{+}\pi^{+}\pi^{-}$		seen		2350	~	
Г7	$J/\psi(1S)K^+\pi^-\pi^-$	F			2294	~	
г ₈	$J/\psi(1S)K^+K^-K$	+			2073	~	
г9	$J/\psi(1S)a_{1}(126)$	60)	not seen		2169	~	
г ₁₀	$J/\psi(1S)K^+K^-\pi$	+	seen		2203	~	
Г11	$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}$	π_π_	seen		2309	~	
Γ_{12}	$\psi(2S)\pi^+$		seen		2051	~	
Γ_{13}	$\psi(2S)\pi^+\pi^-\pi^+$				2026	~	
Γ_{14}	$\psi(2S)K^+K^-\pi^+$				1838	~	
Γ_{15}	$J/\psi(1S)D^0K^+$		seen		1539	~	
Γ ₁₆	$J/\psi(1S)D^{*}(2007)$	${}^{0}K^{+}$	seen		1411	×	
г ₁₇	$J/\psi(1S)D^{*}(2010)$	+ <i>K</i> *0	seen		919	~	
г ₁₈	$J/\psi(1S)D^{+}K^{*0}$		seen		1122	~	
Г19	$J/\psi(1S)D_8^+$		seen		1821	~	
Γ ₂₀	$J/\psi(1S)D_{S}^{*+}$		seen		1727	~	
Γ ₂₁	$J/\psi(1S)p\bar{p}\pi^+$		seen		1791	~	
Γ_{22}	$\chi_{c0}\pi^+$		$(2.4^{\pm 0.9}_{-0.8}) \times 10$	0-2	2205	~	
Γ_{23}	$p\bar{p}\pi^+$		not seen		2970	~	
Γ_{24}	$D^{0}K^{+}$		seen		2837	~	
Γ_{25}	$D^{0}\pi^{+}$		not seen		2858	~	
Γ ₂₆	$D^{*0}\pi^{+}$		not seen		2814	~	
Γ27	D*0K+		not seen		2792	~	
Γ ₂₈	$D_s^+ \overline{D}^0$		$< 7.2 \times 10^{-4}$	CL=90'	% 2483	~	
Γ_{29}	$D_{s}^{+}D^{0}$		$< 3.0 \times 10^{-4}$	CL=90'	% 2483	~	
г ₃₀	$D^+\overline{D}^0$		$< 1.9 \times 10^{-4}$	CL=90'	% 2521	~	
Г31	$D^{+}D^{0}$		$< 1.4 \times 10^{-4}$	CL=90'	% 2521	×	
Γ ₃₂	$D_{s}^{*+}\overline{D}^{0}$		$< 5.3 imes 10^{-4}$	CL=90	% 2425	~	
г ₃₃	$D_{*}^{+}\overline{D}^{*}(2007)^{0}$		$< 4.6 \times 10^{-4}$	CL=90	% 2427	~	
Г34	D*+D0		< 9 × 10 ⁻⁴	CL=90'	% 2425	~	
F35	$D^+_{*}D^*(2007)^0$		< 6.6 × 10 ⁻⁴	CL=90	% 2427	~	
- 30 Fae	D*(0010)+=0		< 0.0 × 10	CI-90	\$ 2467	~	
* 30	D (2010) D		< 3.6 × 10	0.270			
1'37	$D^*(2010)^+ D^0$, $D^{*+} \rightarrow D^+ \pi^0 / \gamma$	not seen			~	
Γ ₃₈	$D^+\overline{D}^-(2007)^0$		$< 6.5 \times 10^{-4}$	CL=90'	% 2466	*	
Г39	$D^*(2007)^+D^0$		$< 2.0 \times 10^{-4}$	CL=90'	%	~	
Γ40	$D^{*}(2010)^{+}D^{0}$, $D^{*}(2010)^{+}D^{0}$	$D^{*+} \rightarrow D^+ \pi^0 / \gamma$	not seen		2467	~	

B_c^+ production

- Double-differential production as (p_T, y), w/ 2 fb⁻¹ data at 8 TeV
- $p_{\rm T}$ distribution well described by BcVegPy

PRL 114 (2015) 132001]

Excited B_c^+ states

• B_c has a rich spectrum

GKLRY *

State

Decav

UROP B_c^+ mass measurement Six decay modes, with all Run1+2 data, precision improved by a factor of 2

 $B_c^+ \rightarrow B_s^0 \pi^+$

• Observed w/ Run1 data, production ratio for $\eta \in [2, 5]$ $\frac{\sigma(B_c^+)}{\sigma(B_s^0)} \cdot \mathcal{B}(B_c^+ \to B_s^0 \pi^+) = \left(2.37 \pm 0.31 \pm 0.11 \pm 0$

$\mathcal{B}(B_c^+ \to B_s^0 \pi^+)$

Measured w/ Run2 data, helps constrain $\Gamma(b \rightarrow c\tau\nu)$ $\frac{\mathcal{B}(B_c^+ \to B_s^0 \pi^+)}{\mathcal{B}(B_c^+ \to J/\psi \pi^+)} = 91 \pm 13$ $\implies \mathcal{B}(B_c^+ \rightarrow B_s^0 \pi^+)$ is 8% - 30% depending on $\mathcal{B}(B_c^+ \to J/\psi\pi^+)$

Candidates / (5 MeV/c²

LHCb

5.4 fb⁻¹

6200

6300

- Data

 $B_c^+ \rightarrow B_s^0 (\rightarrow D_s^- \pi^+) \pi^+$

6500

Background

Total fit

6400

Candidates / (5 MeV/ c^2)

150

50

LHCb

5.4 fb⁻¹

6200

6300

- Data

 $B_c^+ \to B_s^0 (\to J/\psi \phi) \pi^+$

6500

 $m(B_{s}^{0}\pi^{+})$ [MeV/c²]

Background

Total fit

6400

UROP

19

Doubly heavy baryons

- Production @ 13 TeV, in LHCb acceptance $-\sigma(\Xi_{cc}^{++}) = \sigma(\Xi_{cc}^{+}) \sim 40 \text{ nb}, \sigma(\Omega_{cc}^{+}) \sim 13 \text{ nb}$ $-\sigma(\Xi_{bc}^{+}) = \sigma(\Xi_{bc}^{0}) \sim 17 \text{ nb}, \sigma(\Omega_{bc}^{0}) \sim 5 \text{ nb}$
 - $-M(\mathcal{Z}_{cc}^{+}) \approx M(\mathcal{Z}_{cc}^{++}): 3.5-3.7 \text{ GeV}, M(\Omega_{cc}^{+}), +0.1-0.2 \text{ GeV}$ $-M(\mathcal{Z}_{bc}^{+}) \approx M(\mathcal{Z}_{bc}^{0}): 6.8-7.1 \text{ GeV}, M(\Omega_{bc}^{0}), +0.05-0.1 \text{ GeV}$
- Lifetime

$$-\tau(\Xi_{cc}^{+}) \approx \tau(\Omega_{cc}^{+}) \approx \frac{1}{3}\tau(\Xi_{cc}^{++}), \ \tau(\Xi_{cc}^{++}): 0.2-1.05 \text{ ps}$$
$$-\Xi_{bc}^{+}, \ \Xi_{bc}^{0}, \ \Omega_{bc}^{0}: 0.1-0.5 \text{ ps}$$

\mathcal{Z}_{cc}^+ @ SELEX

\mathcal{E}_{cc} @ LHCb & others

- SELEX results not confirmed by FOCUS, Babar, Belle & LHCb
- $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ searched by LHCb w/ 2011 data

 However, LHCb already had lots of B⁺_c events, and double-charm events...

Observation of $\mathcal{Z}_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$

- $\Lambda_c^+ K^- \pi^+ \pi^+$ identified as the most promising channel $\underset{PV}{\Leftrightarrow}$
 - **First observation**, in 2016 (>12 σ) & Run-I (>7 σ)

 $K^ \pi^+$

 Ξ_{cc}^{++}

С

 Λ_c^+

 Ξ_{cc}^{++} properties

- Ξ_{cc}^{++} mass measured: 3621.40 ± 0.72(stat.) ± 0.27(syst.) ± 0.14(Λ_c^+) MeV/ c^2
 - SELEX: $M(\Xi_{cc}^+)$ =3519±1 MeV Isospin partner?
 - Decay weakly, mass peak remains after lifetime cut
- \Rightarrow Measurement of $\tau(\Xi_{cc}^{++})$ needed

PRL 119 (2017) 112001]

25

Observation of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$

- $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$ expected Image is a construction of the second constructionImage is a construction of the second constructionImage is a construction of the second c [F.-S. Yu et al., CPC 42 (2018) 051001]

 $\mathcal{B}(\mathcal{Z}_{cc}^{++} \to \mathcal{Z}_{c}^{+}\pi^{+}) \cdot \mathcal{B}(\mathcal{Z}_{c}^{+} \to pK^{-}\pi^{+})$ $\overline{\mathcal{B}(\mathcal{Z}_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+) \cdot \mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)}$ $= 0.035 \pm 0.009 \pm 0.003$

Measurement of \mathcal{Z}_{cc}^{++} production

 \sim

- Measured w/ 2016 data
 - $N = \sigma_{\text{prod}} \cdot \mathcal{L} \cdot \mathcal{B} \cdot \varepsilon, \quad \sigma_{\text{prod}} \cdot \mathcal{B} = \frac{1}{\varepsilon \mathcal{L}}$

Measurement of Ξ_{cc}^{++} production

 $\log_{10}(\chi^2_{\rm IP}(\Lambda^+_c))$

0

2

_2

Chinese Physics C

Precision measurement of $m(\Xi_{cc}^{++})$

 Preparing to search for excited states, event-selection re-optimised

UROP

 $m(\Xi_{cc}^{++}) = 3621.55 \pm 0.23 \pm 0.30 \text{ MeV}/c^2$ c.f., 3620.6 ± 0.65 ± 0.31 MeV/c²

• Branching fraction ratio $\frac{\mathcal{B}(\mathcal{Z}_{cc}^{++} \rightarrow \mathcal{Z}_{c}^{\prime+} \pi^{+})}{\mathcal{B}(\mathcal{Z}_{cc}^{++} \rightarrow \mathcal{Z}_{c}^{+} \pi^{+})} = 1.41 \pm 0.17 \pm 0.10$

some tension with existing predictions

Summary of DHB studies

PRL 119 (2017) 112001, PRL 121 (2018) 052002, PRL 121 (2018) 162002. CPC 44 (2020) 022001, JHEP 02 (2020) 049, JHEP 05 (2022) 038

LHCb

 $\sqrt{s} = 8,13 \text{ TeV}$

3700

 $m(\Lambda_c^+ K^- \pi^{\pm})$ [MeV/ c^2]

3800

Excited \mathcal{Z}_c^0 states

- Lots of singly charmed baryons
- New excited Ξ_c^0 states in $m(\Lambda_c^+K^-)$

(csd)

2350

LHCb

 $m(pK^{-}\pi^{+})$ [MeV]

2300

1000

800

600

400

200

20% Run2

Candidates / (0.5 MeV)

UROP

Two new charmed hadrons

- Five states observed in $m(\Xi_c^+K^-)$ in 2017, two new $\Omega_c(3185)^0, \Omega_c(3327)^0$ in 2023, nature unclear
 - Excited Ω_c^0 (css), molecular, pentaquark (cssq \bar{q})?

Summary

- Great progress on the study of doubly heavy hadrons
- B_c^+ physics
 - Production, mass, lifetime
 - $-B_c^+ \to B_s^0 \pi^+, \ldots$
- Doubly heavy baryons
 - $-\Sigma_{cc}^{++}$, first observation
 - Ξ_{cc}^+ , Ω_{cc}^+ on horizon

Your strong & continued supports always appreciated!