Constraining neutrinophilic interactions at $FASER(\nu)$ experiments

Weidong Bai, Jiajun Liao, Hongkai Liu

Sun Yat-sen University

2024.05.19

Neutrino Scattering: Theory, Experiment, Phenomenology (ν STEP 2024)

Constraining neutrinophilic interactions at $FASER(\nu)$ experiments

< 同 > < 国 > < 国 >

Neutrinophilic mediators

We study the sensitivities of high-energy ν scattering experiments (Faser(ν), Faser(ν)2, FLArE) to neutrinophiclic mediators (predominantly coupled to neutrinos) of the form

$$\mathscr{L} \supset rac{1}{2} \lambda_{lphaeta} ar{
u}_lpha
u_eta \phi + h.c.,$$

or

$$\mathscr{L} \supset \mathbf{g}_{\alpha\beta} \bar{\nu}_{\alpha} \gamma^{\mu} \nu_{\beta} \mathbf{Z}',$$

with $m_{\phi,Z'} \sim \text{GeV}$.

- Theoretical motivation: SM extensions related to the generation of the light neutrino mass and the production of dark matter;
- These interactions can be significantly larger than those provided by SM and have impact on cosmological, astrophysical, and laboratory observables.

Signal process of interest

Laboratory processes:

- produced along with neutrinos;
- or through neutrino beamstrahlung happening along with a CC interaction inside a neutrino detector:
 - missing transverse momentum
 - $\bullet\,$ charged lepton with wrong sign for $\phi\,$

Constraining neutrinophilic interactions at $\mathsf{FASER}(\nu)$ experiments

Far-forward neutrinos at LHC

(slide from Tomoko Ariga)

- 4 同 ト 4 ヨ ト 4 ヨ ト

The energy is high, the flux is large in the forward region.

First direct observation of $u_{\mu}(\bar{\nu}_{\mu})$ interactions with FASER at the LHC

Using FASER electronic detectors (with charge identification):

$$n_{
u} = 153^{+12}_{-13} \text{ of }
u_{\mu} + ar{
u}_{\mu}$$

at 13.6 TeV. (arXiv:2303.14185).

Constraining neutrinophilic interactions at $FASER(\nu)$ experiments

$$dN = \frac{1}{m_A} \frac{d\sigma_{\nu A}}{d^3 \rho} \left(\int_t \int_S \phi_{\nu}(E_{\nu}, 0) dS' dt' \right) e^{-X'/\lambda_{\nu}} dX' dE_{\nu} d^3 \rho,$$

with

•
$$\sigma_{\nu A}(E_{\nu}) = Z \sigma_{\nu p}(E_{\nu}) + (A - Z) \sigma_{\nu n}(E_{\nu});$$

- flux $\phi_{\nu}(E_{\nu}, 0)$ taken from FastNeutrinoFluxSimulation (arXiv:2105.08270);
- differential cross section $d\sigma_{\nu A}/d^3 p$ from MadGraph.

æ

・ロト ・回 ト ・ ヨト ・ ヨト …

Neutrino flux

(arXiv:2105.08270)

∃ ► < ∃ ►</p>

- Muon neutrinos (ν_{μ} and $\bar{\nu}_{\mu}$) are mostly produced: consider $\lambda_{\mu\mu}$ or $g_{\mu\mu}$ at first;
- Neutrino energies are high (10's to 10³ GeV): DIS, cross section computed at parton level.

Neutrino interaction cross section

The presence of ϕ or Z' modifies the cross section of SM CC process, e.g.,

$$\frac{d\sigma_{\nu_{\mu}u \to \phi d\mu^{+}}}{dp_{T\phi}} = \frac{3\lambda^{2}G_{F}^{2}sp_{T\phi}^{3}}{8\pi^{3}m_{\phi}^{4}} \left[\left(1 + \frac{2p_{T\phi}^{2}}{m_{\phi}^{2}} \right) \log \left(1 + \frac{m_{\phi}^{2}}{p_{T\phi}^{2}} \right) - 2 \right], \\ \frac{d\sigma_{\nu_{\mu}d \to Z'u\mu^{-}}}{dp_{TZ'}} = \frac{3g'^{2}G_{F}^{2}s^{3}p_{TZ'}}{\pi^{3}m_{Z'}^{6}} \left[\frac{1}{20} + \frac{3p_{TZ'}^{4}}{m_{Z'}^{4}} \log \left(1 + \frac{m_{Z'}^{2}}{p_{TZ'}^{2}} \right) \right].$$

Cross sections with ϕ or Z',

- decrease with mediator mass, constraints will be weak as mass increases;
- $\sim 10^3$ times lower than those of SM, constraints will be weak unless statistics is large enough.

Comparison to Faser data

- Generate 4-momentum of final state particles (φ, μ, quark) using MadGraph;
- Event selection:
 - Muons traversing the entire length of the FASER detector;
 - Track in fiducial tracking volume with r < 95 mm;
 - Track extrapolation with r < 120 mm in front veto scintillator;
 - Track polar angle $\theta < 25$ mrad;

• Constraints on ϕ : $\lambda_{\mu\mu} = 12.1@m_{\phi} = 1$ GeV.

Constraining neutrinophilic interactions at $FASER(\nu)$ experiments

イロト イボト イヨト イヨト

Faserv2 and FLArE at Forward Physics Facility

⁽arxiv:2203.05090)

(日)

Detector			
Name	Mass	Coverage	Luminosity
$FASER\nu$	1.1 ton	$\eta\gtrsim$ 8.5	$34.5 { ightarrow} 150~{ m fb}^{-1}$
FASER ₂ 2	20 ton	$\eta\gtrsim$ 8.5	3 ab^{-1}
FLArE	10 ton	$\eta\gtrsim7.5$	

æ

- Flux $\phi_{\nu}(E_{\nu}, 0)$ taken from FastNeutrinoFluxSimulation, as before;
- Generate 4-momentum of final state particles (ϕ , μ , quark) using MadGraph;
- Smear final state momenta to approximate the effects of a finite detector resolution:
 - muon energy resolution: 5%;
 - final state quark energy resolution: 15%;
- kinematic observables for signal-background comparison:
 - $p_{T\mu}$: transverse momentum of muon;
 - p_T : missing transverse momentum, $p_T = p_{T\phi} = |\vec{p}_{T\mu} + \vec{p}_{Tq}|$.

Signal-background comparison: 1D distribution and cuts

- Signal is more pronounced for large p_{τ} , but small $p_{T\mu}$;
- Cut could be applied on these distributions, but results are not significant.

Signal-background comparison: 2D distribution and cuts

with *S* the signal and *B* background;

 With cut p_{Tµ} ≤ 4p_T/3 applied, constraints improve significantly.

Constraints on NP parameters

Preliminary results:

Constraining neutrinophilic interactions at $FASER(\nu)$ experiments

Summary

• Present Faser data put very weak constraints on ϕ :

 $\lambda_{\mu\mu} = 12.1$ @ $m_{\phi} = 1$ GeV, more data is needed;

- Appropriate cuts and charge identification is helpful in improving the constraints;
- Faser(u)2 may be able to improve the constraints at around $m_{\phi,Z'}=1$ GeV.

Thanks

(日)

Backup slides

Constraining neutrinophilic interactions at $FASER(\nu)$ experiments

э

日とくほとくほど

Consistency of MadGraph results and analytical formula

$\nu_e, \nu_\mu, \nu_\tau @Faser \nu$

10 / 10

▶ < E >

(日)