Neutrino Interactions and Deep Learning

Duyang Hongyue 杜杨洪岳 Shandong University

vSTEP2024 @ Hangzhou

- Limited and biased view based on personal experiences.
- More focusing on the needs for the neutrino-interaction side than deep learning.
- More focusing on the neutrino physics in few-GeV energy region.

Disclaimer

A little bit of History: "Hand Scan"

Question: which is a v_e-CC interaction and which is a NC?

H. Duyang, TIPP 2011: "A Scan Study of ve-CC and NC Event Simulated in the LBNE Water Cherenkov Detector"

A little bit of History: "Hand Scan"

- stage of detector design.
- of FD for the LBNE experiment (now known as DUNE).

H. Duyang, TIPP 2011: "A Scan Study of ve-CC and NC Event Simulated in the LBNE Water Cherenkov Detector"

• Historically, large number of event display pictures are hand-scanned (by innocent students) to search for signal in data or estimate the detector's performance at the early

• I personally scanned tens of thousands of such pictures for the water Cherenkov design

"Neutrino interactions and deep learning" in Inspire

Date of paper

Searching result for "Neutrino interactions and deep learning" in inspire

Explosion of literatures since 2016

DL Applications in Neutrino Experiments: NOvA

Date of paper

Searching result for "Neutrino interactions and deep learning" in inspire

DL Applications in Neutrino Experiments: NOvA

Date of paper

Searching result for "Neutrino interactions and deep learning" in inspire

The selection criteria are chosen to maximize the figure of merit defined as $S/\sqrt{S+B}$, where S and B are the number of signal and background events, respectively. The final ν_e selection criteria select a contained appearance signal with 73.5% efficiency and 75.5% purity, representing a gain in sensitivity of 30% compared to the ν_e classifiers used in the previously reported results [1]. These criteria also reject 97.6% of the NC and 99.0% of the ν_{μ} CC beam backgrounds. The cosmic ray backgrounds are suppressed by 7 orders of magnitude, and only 0.53 \pm 0.14 cosmic events are estimated to be selected in the final ν_e appearance sample based on the performance of ν_e selection criteria on cosmic data. Of the beam backgrounds that pass all ν_e selection, 91% contain some form of

PRL 118, 231801 (2017)

In 2016, NOvA pioneers in the application of convolutional neural networks in event classification in neutrino experiments for its ve-CC appearance analysis.

ML Applications in Neutrino Experiments

- Event/particle identification, rare event search
 - Regression: Energy/momentum, direction reconstruction etc.

ML Applications: JUNO Atmospheric Neutrinos

Reactor neutrinos: Sensitivity to NMO via oscillation in vacuum

- Atmospheric neutrinos provide independent sensitivity to N (directionality and flavor identification are mandatory).
- But LS detectors have never been used for atmospheric neutility
- No direct tracking or directional information.

ברי

0 e.

Scintillation light from a point source is isotropic

- PMTs at different angles wrt the track see distinct shapes of nPE(t)
- Exactly how nPE(t) looks depends on:
- Track direction;
- Track starting and stopping points;
- Track dE/dx...
- Event topology information in the PMT waveform.

Scintillation light photon distribution from a charged particle track in space and time is not isotropic

- PMTs at different angles wrt the track see distinct shapes of nPE(t)
- Exactly how nPE(t) looks depends on:
- Track direction;
- Track starting and stopping points;
- Track dE/dx...
- Event topology information in the PMT waveform.

5

- PMTs at different angles wrt the track see distinct shapes of nPE(t)
- Exactly how nPE(t) looks depends on:
- Track direction;
- Track starting and stopping points;
- Track dE/dx...
- Event topology information in the PMT waveform.

- PMTs at different angles wrt the track see distinct shapes of nPE(t)
- Exactly how nPE(t) looks depends on:
- Track direction;
- Track starting and stopping points;
- Track dE/dx...
- Event topology information in the PMT waveform.

- PMTs at different angles wrt the track see distinct shapes of nPE(t)
- Exactly how nPE(t) looks depends on:
- Track direction;
- Track starting and stopping points;
- Track dE/dx...
- Event topology information in the PMT waveform.

- PMTs at different angles wrt the track see distinct shapes of nPE(t)
- Exactly how nPE(t) looks depends on:
- Track direction;
- Track starting and stopping points;
- Track dE/dx...
- Event topology information in the PMT waveform.

- PMTs at different angles wrt the track see distinct shapes of nPE(t)
- Exactly how nPE(t) looks depends on:
- Track direction;
- Track starting and stopping points;
- Track dE/dx...
- Event topology information in the PMT waveform.

track in space and time is not isotropic

- PMTs at different angles wrt the track see distinct shapes of nPE(t)
- Exactly how nPE(t) looks depends on:
- Track direction;
- Track starting and stopping points;
- Track dE/dx...
- Event topology information in the PMT waveform.

Event Topology in PMT Waveforms

Scintillation light photon distribution from a charged particle track in space and time is not isotropic

- PMTs at different angles wrt the track see distinct shapes of nPE(t)
- Exactly how nPE(t) looks depends on:
- Track direction;
- Track starting and stopping points;
- Track dE/dx...
- Event topology information in the PMT waveform.

Event Topology in PMT Waveforms

PMT Waveforms (After deconvolution and noise-removing)

flavor/vertex etc. from the feature patterns.

PMT Waveforms (After deconvolution and noise-removing)

Pictures of PMT Features

flavor/vertex etc. from the feature patterns.

PMT Waveforms (After deconvolution and noise-removing)

Pictures of PMT Features

flavor/vertex etc. from the feature patterns.

Machine Learning Models (Planer: EfficientNetV2; Spherical: Deepsphere; 3D: PointNet++)

flavor/vertex etc. from the feature patterns.

JUNO Atmospheric v: PID Performance

- Input features from both the prompt trigger and delayed triggers into ML.
- ν and $\bar{\nu}$ can be statistically separated with the help from neutron-capture and Michel electron informations.
- In summary, ML significantly improves JUNO's capability to atmospheric neutrinos.

Deep-learning in the Precision Era of Neutrino Physics: Gains and Questions

- Gains:
 - More effective signal recognition. \bullet
 - More precise measurements.
 - Turn impossible into possible.
- Questions:
 - Can we trust it?
 - A black box trained with MC.
 - Largely depends on our understanding of exactly what happens in the detector
 - Neutrino interactions + detector response.
- Ultimate solution: improving the quality of training datasets.

0.1 0.0

Normalization

0.8

0.7

0.5

0.4

0.3

0.2

0.6

Atmospheric neutrinos' neutron multiplicity predicted by GENIE

NOvA Preliminary

- Unfortunately current neutrino interaction modeling does not \bullet **NOvA** Preliminary describe data well.
- Neutrino scatterind neutring energy mange is complex-
- Most generators are many models glued together lacksquare
 - $\frac{1}{4}$ initial states + (QE + RES + DIS + CQH¹ + $\frac{1}{2}$ p2h...) + FSI
 - Some of the models are pretty old (40 + years)10

NOvA Preliminary

- Unfortunately current neutrino interaction modeling does not describe data well. NovA Preliminary
- Neutrino $s_{\mu}^{\text{Antineutrino Beam}}$ on heavy fargets like argon at the different of the selection of
- Most generators are many models glued together
 - $\operatorname{Hinitial states} + (QE + RES + DIS + COH + 2p2h...) + FSI$
 - Some of the models are pretty old (40 + years)

NOvA Preliminary

lacksquare

- Unfortunately the current tunings are very unlikely to be completely correct.
- Data may not agree with data even with large uncertainties.

A Near Detector for the Solution? $N(E_{rec}) = \int_{E_{\nu}} dE_{\nu} \Phi(E_{\nu}) P_{osc}(E_{\nu}) \sigma(E_{\nu}) R_{det}(E_{\nu}, E_{rec})$ FD: Number of events **Neutrino flux** observed in the FD

 $N(E_{rec}) = \int_{E} dE_{\nu} \Phi(E_{\nu}) P_{osc}(E_{\nu}) \sigma(E_{\nu}) R_{det}(E_{\nu}, E_{rec})$ ND:

Need to reconstruct Ev correctly!

Need ways to disentangle those factors!

Need to reconstruct Ev correctly!

A Near Detector for the Solution?

A Near Detector for the Solution?

How to deal with interaction uncertainties?

for example) to evaluate the uncertainties from v-interactions.

Conventional approach is to vary the models/simulation parameters (GENIE "knobs"

NOVA

- Neutrino interaction models contribute one of the largest systematic sources
- Impossible to be complete cancelled by NDs.
- A too large uncertainty for precision measurement such as DUNE.

NOVA

- Neutrino interaction models contribute one of the largest systematic sources
- Impossible to be complete cancelled by NDs.
- A too large uncertainty for precision measurement such as DUNE.

DUNE CDR [V

Brem shower 3000

Cosmic-muon induced brem showers are identified, muons are then removed to create pure electron-like EM showers from data to check the detector's response to electrons.

- Cosmic-muon induced brem showers are identified, muons are then removed to create pure electron-like EM showers from data to check the detector's response to electrons.
 - v_{μ} -CC events are identified with traditional methods from data, muons are then removed and replaced with a simulated electron to check the detector's response to v_{e} -CC.

- Cosmic-muon induced brem showers are identified, muons are then removed to create pure electron-like EM showers from data to check the detector's
- v_{μ} -CC events are identified with traditional methods from data, muons are then removed and replaced with a simulated electron to check the

Select cosmic muons tagged by the Top Tracker with direction well-measured

Liu, Y., Li, WD., Lin, T. et al. Radiat Detect Technol Methods 5, 364–372 (2021).

Previous/Current/Future v-Int Experiments

Bubble Chambers

MINERvA

- Current data suffer from low-statistics/low-resolution/tensions.
- Future experiments are expect to give much stronger constraints.

MicroBooNE

NOvA

T2K

Previous/Current/Future v-Int Experiments

Bubble Chambers

MiniBooNE

MINERvA

annie

- Current data suffer from low-statistics/low-resolution/tensions. lacksquare
- Future experiments are expect to give much stronger constraints.

MicroBooNE

NOvA

T2K

Next generation of v-interaction measurements

- Multiple nuclear targets in a low-density straw tube tracker.
- CH2 target and pure carbon target enables v-H interaction measurements by statistically subtract carbon backgrounds.
- Precise flux measurements with v-H interactions and low-v method.

Next generation of v-interaction measurements

De-coupling v-int and flux effects by varying the flux by going different off-axis locations

Summary

- - More effective signal recognition. •
 - Higher resolution measurements. \bullet
 - Turn impossible into possible.
- - Data-driven approaches may ease but not completely solve the problem. \bullet
 - Both theoretical and experimental efforts are needed. \bullet

Frankenstein's monster of v-int **Deep-learning**

We are entering a precision era of neutrino physics, theoretically and experimentally. The applications of deep learning techniques greatly enhance detectors' capability

In the same time requires better understanding of neutrino interactions!

