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• Limited and biased view based on personal experiences.


• More focusing on the needs for the neutrino-interaction side than 
deep learning.


• More focusing on the neutrino physics in few-GeV energy region.

Disclaimer



A little bit of History: “Hand Scan”
Example Event Pictures

A νe event with 1 single electron ring A NC event with 2 gamma rings from π0 decay

Example Event Pictures

A νe event with 1 single electron ring A NC event with 2 gamma rings from π0 decay

H. Duyang, TIPP 2011: “A Scan Study of νe-CC and NC Event Simulated in the LBNE Water Cherenkov Detector”

• Question: which is a νe-CC interaction and which is a NC?
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A little bit of History: “Hand Scan”
Example Event Pictures

A νe event with 1 single electron ring A NC event with 2 gamma rings from π0 decay

νe-CC

Example Event Pictures

A νe event with 1 single electron ring A NC event with 2 gamma rings from π0 decay

NC π0=>γγ

• Historically, large number of event display pictures are hand-scanned (by innocent 
students) to search for signal in data or estimate the detector’s performance at the early 
stage of detector design. 


• I personally scanned tens of thousands of such pictures for the water Cherenkov design 
of FD for the LBNE experiment (now known as DUNE). 

H. Duyang, TIPP 2011: “A Scan Study of νe-CC and NC Event Simulated in the LBNE Water Cherenkov Detector”
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“Neutrino interactions and deep learning” in Inspire

Searching result for “Neutrino 
interactions and deep learning” in 
inspire

2016

Explosion of literatures since 2016
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DL Applications in Neutrino Experiments: NOvA

2016
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Searching result for “Neutrino 
interactions and deep learning” in 
inspire



2016

• In 2016, NOvA pioneers in the application of 
convolutional neural networks in event classification 
in neutrino experiments for its νe-CC appearance 
analysis.

PRL 118, 231801 (2017)
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Searching result for “Neutrino 
interactions and deep learning” in 
inspire

DL Applications in Neutrino Experiments: NOvA



ML Applications in Neutrino Experiments

• Event/particle identification, 
rare event search

• Regression: Energy/momentum, 
direction reconstruction etc. 

• clustering/tracking 

• Generative models: simulation

• Analysis 

NMO Analysis with ML

Clustering in BESIII

NOvA event identification

T2K SuperFGD voxel classification

JUNO atmospheric neutrino 
directionality reconstruction
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• Atmospheric neutrinos provide independent sensitivity to NMO via matter effects 
(directionality and flavor identification are mandatory).


• But LS detectors have never been used for atmospheric neutrino oscillations before.

• No direct tracking or directional information.

Atmospheric neutrinos: 
Sensitivity to NMO via 

matter effects 

Reactor neutrinos:  
Sensitivity to NMO via  
oscillation in vacuum  
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The Mixing Matrix

The neutrino mixing (PMNS) matrix can be factorized into 3
experimental regimes:
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Atmospheric (23) Cross-Mixing (13) Solar (12)

13 sector is the least known so far:

I Mixing angle ✓13,
I mass hierarchy:

I �m2
31 > 0 Normal Hierarchy

I �m2
31 < 0 Inverted Hierarachy

I CP-violation: �CP

Figure 7-2: Six relevant oscillograms of oscillation probabilities for atmospheric neutrinos and
antineutrinos in the normal hierarchy hypothesis.
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ML Applications: JUNO Atmospheric Neutrinos



Event Topology in PMT Waveforms
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• PMTs at different angles wrt the track see distinct shapes of nPE(t)

• Exactly how nPE(t) looks depends on: 

• Track direction;

• Track starting and stopping points;

• Track dE/dx…

• Event topology information in the PMT waveform.

P0

Scintillation light from a point source is isotropic



ΔlP0 P1 μ

• PMTs at different angles wrt the track see distinct shapes of nPE(t)

• Exactly how nPE(t) looks depends on: 

• Track direction;

• Track starting and stopping points;

• Track dE/dx…

• Event topology information in the PMT waveform.

Scintillation light photon distribution from a charged particle  
track in space and time is not isotropic

5

Event Topology in PMT Waveforms



ΔlP0 P1 μ

• PMTs at different angles wrt the track see distinct shapes of nPE(t)

• Exactly how nPE(t) looks depends on: 

• Track direction;

• Track starting and stopping points;

• Track dE/dx…

• Event topology information in the PMT waveform.

Scintillation light photon distribution from a charged particle  
track in space and time is not isotropic

5

Event Topology in PMT Waveforms



ΔlP0 P1 μ

• PMTs at different angles wrt the track see distinct shapes of nPE(t)

• Exactly how nPE(t) looks depends on: 

• Track direction;

• Track starting and stopping points;

• Track dE/dx…

• Event topology information in the PMT waveform.

Scintillation light photon distribution from a charged particle  
track in space and time is not isotropic

5

Event Topology in PMT Waveforms



ΔlP0 P1 μ

• PMTs at different angles wrt the track see distinct shapes of nPE(t)

• Exactly how nPE(t) looks depends on: 

• Track direction;

• Track starting and stopping points;

• Track dE/dx…

• Event topology information in the PMT waveform.

Scintillation light photon distribution from a charged particle  
track in space and time is not isotropic

5

Event Topology in PMT Waveforms



ΔlP0 P1 μ

• PMTs at different angles wrt the track see distinct shapes of nPE(t)

• Exactly how nPE(t) looks depends on: 

• Track direction;

• Track starting and stopping points;

• Track dE/dx…

• Event topology information in the PMT waveform.

Scintillation light photon distribution from a charged particle  
track in space and time is not isotropic

5

Event Topology in PMT Waveforms



ΔlP0 P1 μ

• PMTs at different angles wrt the track see distinct shapes of nPE(t)

• Exactly how nPE(t) looks depends on: 

• Track direction;

• Track starting and stopping points;

• Track dE/dx…

• Event topology information in the PMT waveform.

Scintillation light photon distribution from a charged particle  
track in space and time is not isotropic

5

Event Topology in PMT Waveforms



ΔlP0 P1

• PMTs at different angles wrt the track see distinct shapes of nPE(t)

• Exactly how nPE(t) looks depends on: 

• Track direction;

• Track starting and stopping points;

• Track dE/dx…

• Event topology information in the PMT waveform.

μ

• PMTs at different angles wrt the track see distinct shapes of nPE(t)

• Exactly how nPE(t) looks depends on: 

• Track direction;

• Track starting and stopping points;

• Track dE/dx…

• Event topology information in the PMT waveform.

Scintillation light photon distribution from a charged particle  
track in space and time is not isotropic

5

Event Topology in PMT Waveforms



ΔlP0 P1

• PMTs at different angles wrt the track see distinct shapes of nPE(t)

• Exactly how nPE(t) looks depends on: 

• Track direction;

• Track starting and stopping points;

• Track dE/dx…

• Event topology information in the PMT waveform.

Directionality

PID…
Energy

μ

Scintillation light photon distribution from a charged particle  
track in space and time is not isotropic
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A Multipurpose Machine Learning Solution

• Models are trained with large number of PMT feature pictures and learn to find direction/energy/
flavor/vertex etc. from the feature patterns.


FHT

Slope

PMT Waveforms 
(After deconvolution 
and noise-removing)
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A Multipurpose Machine Learning Solution

Pictures of PMT 
Features

• Models are trained with large number of PMT feature pictures and learn to find direction/energy/
flavor/vertex etc. from the feature patterns.


FHT

Slope

And more features… …
PMT Waveforms 

(After deconvolution 
and noise-removing)
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A Multipurpose Machine Learning Solution

Pictures of PMT 
Features

• Models are trained with large number of PMT feature pictures and learn to find direction/energy/
flavor/vertex etc. from the feature patterns.


FHT

Slope

And more features… …
PMT Waveforms 

(After deconvolution 
and noise-removing)

Machine Learning Models 
(Planer: EfficientNetV2; 
Spherical: Deepsphere;


3D: PointNet++)
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A Multipurpose Machine Learning Solution

Pictures of PMT 
Features

• Models are trained with large number of PMT feature pictures and learn to find direction/energy/
flavor/vertex etc. from the feature patterns.


Direction

Energy

Flavor

Track

Vertex

FHT

Slope

And more features… …

OutputsPMT Waveforms 
(After deconvolution 
and noise-removing)

Machine Learning Models 
(Planer: EfficientNetV2; 
Spherical: Deepsphere;


3D: PointNet++)
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JUNO Atmospheric ν: Directionality Reconstruction
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(a) ⌫µ/⌫̄µ-CC ✓⌫ (b) ⌫e/⌫̄e-CC ✓⌫

Figure 10. The ↵ (top) and ✓⌫ (bottom) resolutions are shown as a function of neutrino energy E⌫ for (a) ⌫µ/⌫̄µ-CC (left)
and (b) ⌫e/⌫̄e-CC (right) events in the three models. The resolution improves with increasing E⌫ . The ⌫µ/⌫̄µ-CC events in
general have better resolution than the ⌫e/⌫̄e-CC events at the same energy.

Figure 11. Comparison between two included angles: the one between the true and reconstructed direction from PointNet++
in this study (blue lines), and the one between the incident neutrino and final-state charged lepton directions (red lines) using
the same (a) ⌫µ-CC and (b) ⌫e-CC samples.

7

ν

Hadrons

Charged lepton

Reconstructed  
ν direction

PHYS. REV. D 109, 052005 (2024) 
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(a) ⌫µ/⌫̄µ-CC ✓⌫ (b) ⌫e/⌫̄e-CC ✓⌫

Figure 10. The ↵ (top) and ✓⌫ (bottom) resolutions are shown as a function of neutrino energy E⌫ for (a) ⌫µ/⌫̄µ-CC (left)
and (b) ⌫e/⌫̄e-CC (right) events in the three models. The resolution improves with increasing E⌫ . The ⌫µ/⌫̄µ-CC events in
general have better resolution than the ⌫e/⌫̄e-CC events at the same energy.

Figure 11. Comparison between two included angles: the one between the true and reconstructed direction from PointNet++
in this study (blue lines), and the one between the incident neutrino and final-state charged lepton directions (red lines) using
the same (a) ⌫µ-CC and (b) ⌫e-CC samples.

Directional resolution of atmo ν in JUNO

Reconstructing neutrino direction has better physics 
potential than reconstructing charged leptons



JUNO Atmospheric ν: PID Performance

• Input features from both the prompt trigger and delayed 
triggers into ML.


•  and  can be statistically separated with the help from 
neutron-capture and Michel electron informations.


• In summary, ML significantly improves JUNO’s 
capability to atmospheric neutrinos. 

ν ν̄

8

/  vs /  vs NCνμ ν̄μ νe ν̄e  vs νμ ν̄μ  vs  νe ν̄e



Deep-learning in the Precision Era of Neutrino Physics: 
Gains and Questions

• Gains:

• More effective signal recognition.

• More precise measurements.

• Turn impossible into possible. 

• Questions:

• Can we trust it? 

• A black box trained with MC.

• Largely depends on our understanding of exactly what happens in the detector

• Neutrino interactions + detector response.


• Ultimate solution: improving the quality of training datasets. 
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Atmospheric neutrinos’ neutron multiplicity predicted by GENIE

GENIE, , plot by Cheng Jieν GENIE, , plot by Cheng Jieν̄



Problems with Neutrino Interactions
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Starting Point for the 2020 3-Flavor Analysis
physics!

Strategy and Initial Impressions
Approach is broken into two parts: Central 
Value and Systematics over the initial state, 
final state, and four processes: 


Tuning Philosophy 

• Are there external data or theory explanations 
for our choices?


• How much do the data agree with the model?


• Do our systematics cover differences?
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Initial comparisons show consistent underprediction of data.
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• Unfortunately current neutrino interaction modeling does not 
describe data well. 


• Neutrino scattering on heavy targets like argon at the few-GeV 
neutrino energy range is complex


• Most generators are many models glued together  

• Initial states + (QE + RES + DIS + COH + 2p2h…) + FSI

• Some of the models are pretty old (40+ years)

Final state interactions

MC generators

νN interactions

νA interactions

Final state interactions
FSI
Intranuclear cascade
Cascade algorithm
INC input
FSI in GENIE

Formation time

Summary

Tomasz Golan MC generators @ NuSTEC 25 / 40

FSI describe the propagation of particles created in a primary
neutrino interaction through nucleus

All MC generators (but GIBUU) use intranuclear cascade model

by T. Golan 

n

p

NOvA data comparing 
with GENIE out of box
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Cascade algorithm
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Summary

Tomasz Golan MC generators @ NuSTEC 25 / 40

FSI describe the propagation of particles created in a primary
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Final state interactions

MC generators

νN interactions

νA interactions

Final state interactions
FSI
Intranuclear cascade
Cascade algorithm
INC input
FSI in GENIE

Formation time

Summary

Tomasz Golan MC generators @ NuSTEC 25 / 40

FSI describe the propagation of particles created in a primary
neutrino interaction through nucleus

All MC generators (but GIBUU) use intranuclear cascade model

by T. Golan 

n

p

NOvA data comparing 
with GENIE out of box

NOvA data comparing 
with GENIE reweighed

10

• Unfortunately current neutrino interaction modeling does not 
describe data well. 


• Neutrino scattering on heavy targets like argon at the few-GeV 
neutrino energy range is complex


• Most generators are many models glued together  

• Initial states + (QE + RES + DIS + COH + 2p2h…) + FSI

• Some of the models are pretty old (40+ years)

Too many pieces in the experiments,  
but too limited number of observables. 

(Degeneracy!)



• Unfortunately the current tunings are very unlikely to be completely correct. 

• Data may not agree with data even with large uncertainties.  

Problems with Neutrino Interactions

11



N(Erec) = ∫Eν

dEνΦ(Eν)Posc(Eν)σ(Eν)Rdet(Eν, Erec)
Number of events  
observed in the FD Neutrino flux

Detector response

Oscillation probability Cross section

FD:

A Near Detector for the Solution?
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FD:

N(Erec) = ∫Eν

dEνΦ(Eν)Posc(Eν)σ(Eν)Rdet(Eν, Erec)
Number of events  

observed in the ND Not exactly the same  
neutrino flux

Not the same  
Detector response

Oscillation probability 
(zero in the ND) Cross sections? 

Need Ar target

ND:

Need to reconstruct Eν 
correctly!

Need ways to disentangle those factors!

A Near Detector for the Solution?
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N(Erec) = ∫Eν

dEνΦ(Eν)Posc(Eν)σ(Eν)Rdet(Eν, Erec)
Number of events  

observed in the ND Not exactly the same  
neutrino flux

Not the same  
Detector response

Oscillation probability 
(zero in the ND) Cross sections? 

Need Ar target

ND:

• Question：is this really because of cross sections? nuclear 
effects? flux? detector simulation/calibration? 

• We could tune MC to match data in ND. But is it applicable to FD?

7

Starting Point for the 2020 3-Flavor Analysis
physics!

Strategy and Initial Impressions
Approach is broken into two parts: Central 
Value and Systematics over the initial state, 
final state, and four processes: 


Tuning Philosophy 

• Are there external data or theory explanations 
for our choices?


• How much do the data agree with the model?


• Do our systematics cover differences?
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Initial comparisons show consistent underprediction of data.
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Too many pieces in the experiments,  
but too limited number of observables. 

(Degeneracy!)
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reconstruction method on neutrino interaction models, an
independent sample simulated with an alternative gener-
ator, NuWro, is used. The ML models trained with the GENIE

sample are used to reconstruct the events of the NuWro

sample. The differences between the resolutions obtained
from GENIE and NuWro samples as functions of neutrino
energy are shown in Fig. 12. The results are consistent in
most energy bins for all three models with the maximum
difference around 2°. This additional check shows that the
results are not severely affected by the differences in
interaction models from the two generators.
Another potential systematic uncertainty source that may

affect this method is the simulation of PMT’s electronic
effects. Since the ML models are trained by features
extracted from simulated waveforms, uncertainties in the
simulation can propagate to the uncertainties of the
features, and finally to the uncertainties of the directionality
reconstruction. To estimate this effect, an additional sample

is produced by shifting the TTS values used in the
simulation by !10%, which is about the uncertainty
obtained from the JUNO PMT testing [41]. This sample
is tested by the PointNetþþ model trained by the default
samples, and the differences in σθν from the default results
are shown in Fig. 13. The maximum difference is again
within 2°.
Finally, it is worth pointing out that in addition to

neutrino directionality, the PMT waveform can also be
influenced by other event details, such as the track/shower
starting/stopping points and energy deposition (dE=dx).
Therefore, in principle, the method developed in this work
by utilizing PMT waveform analysis and ML models
can also be applied to the reconstruction of additional
event information such as energy, interaction vertex, track
trajectories, and particle types. These tasks can be accom-
plished simply by adjusting the combination of input
features and the output of the ML models.

VIII. SUMMARY AND OUTLOOK

This is the world’s first attempt to reconstruct atmos-
pheric neutrinos’ directionality in a large homogeneous LS
detector. Despite their wide applications in various neutrino
physics topics, such detectors have never been used for
atmospheric neutrino oscillation measurements before.
In this study, we demonstrate for the first time that an
LS detector can offer good angular resolution for atmos-
pheric neutrino oscillation measurements with waveform
analysis and ML techniques. Different ML models, neu-
trino event generators, and PMT simulation parameters are
tested. The performance differences obtained are small and
can be treated as systematic uncertainties. This method also
has the advantage of reconstructing the neutrino direction
directly rather than the final-state charged lepton direction,
which can potentially further improve the neutrino oscil-
lation sensitivity. Combined with good energy resolution,
this work makes a large LS detector such as JUNO
an excellent candidate for future atmospheric neutrino

(a) (b)

FIG. 12. The difference in the θν resolutions obtained from (a) νμ=ν̄μCC and (b) νe=ν̄eCC samples simulated by NuWro and GENIE

using different ML models as functions of incoming neutrino energy. The ML models are trained on the same GENIE sample and tested
on either an independent GENIE sample or a NuWro sample.

FIG. 13. The difference in θν resolutions (Δσθν ) as functions of
neutrino energy obtained by !10% shifting of the TTS values in
the simulation for the νμ=ν̄μ-CC and νe=ν̄e-CC samples. The
model is trained by the default sample without TTS shifting, and
Δσθν is calculated as the maximum deviation from the default
number in a certain neutrino energy bin.

ZEKUN YANG et al. PHYS. REV. D 109, 052005 (2024)

052005-10

How to deal with interaction uncertainties?

• Conventional approach is to vary the models/simulation parameters (GENIE “knobs” 
for example) to evaluate the uncertainties from ν-interactions.

JUNO directional reconstruction, checked with different generators
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Joint Analysis Results                               Zoya Vallari, Caltech                       Feb 16, 2024

Impact on systematics

§ T2K: Uncertainty on FD 1e-like ring ne event rate goes from ~13% to ~5% 
after applying constraints from ND data fit

§ NOvA: Systematic uncertainties in the FD ne prediction from ~15% to ~4%

28

Eur. Phys. J. C (2023) 83:782 (2023)

• Neutrino interaction models contribute one of the largest systematic sources

• Impossible to be complete cancelled by NDs.

• A too large uncertainty for precision measurement such as DUNE.

Neutrino Interaction Model Uncertainties
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after applying constraints from ND data fit

§ NOvA: Systematic uncertainties in the FD ne prediction from ~15% to ~4%

28

Eur. Phys. J. C (2023) 83:782 (2023)

• Neutrino interaction models contribute one of the largest systematic sources

• Impossible to be complete cancelled by NDs.

• A too large uncertainty for precision measurement such as DUNE.

Neutrino Interaction Model Uncertainties

LIMITATIONS OF ND COMPLEX

✦ Current ND design: LAr TPC followed by high pressure Ar gas TPC & plastic scintillator.

✦ Intrinsic limitations from the use of (single) Ar nuclear target:

● Ar target not good for flux measurements due to substantial nuclear effects (n, FSI, etc.);
● Need to understand the nuclear smearing (unfolding in FD), present even for an ideal Ar detector;
● Need to calibrate the reconstructed neutrino energy scale.

=⇒ We can not rely entirely on MC/model corrections to control related systematics

✦ Need redundancy & in-situ measurements to constrain systematics from Ar target.
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Cost of systematic uncertainties
can be large in DUNE

Roberto Petti USC

DUNE CDR [Vol. 2], arXiv:1512.06148 [physics.ins.det]

2

DUNE
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Data Driven Approaches: “Data-simulator”

• Cosmic-muon induced brem showers are identified, 
muons are then removed to create pure electron-like 
EM showers from data to check the detector’s 
response to electrons. 

16



Data Driven Approaches: “Data-simulator”

• Cosmic-muon induced brem showers are identified, 
muons are then removed to create pure electron-like 
EM showers from data to check the detector’s 
response to electrons. 

• νμ-CC events are identified with traditional 
methods from data, muons are then removed and 
replaced with a simulated electron to check the 
detector’s response to νe-CC. 

16



Data Driven Approaches: “Data-simulator”

• Cosmic-muon induced brem showers are identified, 
muons are then removed to create pure electron-like 
EM showers from data to check the detector’s 
response to electrons. 

• νμ-CC events are identified with traditional 
methods from data, muons are then removed and 
replaced with a simulated electron to check the 
detector’s response to νe-CC. 

• CNN-based PID (trained with MC) is 
applied to the “simulated data” to 
check the selection efficiency.

νe ν̄e
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Data Driven Approaches: “Data-simulator”
Muon reconstruction with a convolutional neural network... 365

Fig. 1 A schematic view of the JUNO detector

provides a spatial resolution of 20 cm and an angular
resolution of 1.6 ◦ over the whole detector.

– Muon tracking with the fastest light [3] which uses the
least squares fit to the PMT first hit time (FHT) measure-
ments. After correction of the FHT for each PMT, the
reconstruction yields spatial resolution less than 3 cm
and angular resolution of less than 0.4 ◦.

This article reports a novel alternative technique for muon
reconstruction that applies deep learning techniques and
benefits from GPU acceleration. This technique has the
advantages of speed and avoids the need to develop detailed
optical models or to interpret calibration data. All studies
have been based on JUNO Monte Carlo simulation data.

Treating the readout of the whole detector as an image
composed of pixel values from PMT charge and time
measurements allows image classification techniques to be
applied to track finding and fitting. For image process-
ing tasks, convolutional neural networks (CNN) have been
widely used in many areas such as image classification [4],
object detection [5] and image segmentation [6].Within high
energy physics, image processing with CNN has been used
in jet classification [7,8] and event classification [9,10]. In
this paper, the CNN is adopted to performmuon track recon-
struction in the CD detector.

This paper is organized into a description of how the train-
ing and testing datasets were prepared in section 2 followed
by an explanation of the chosen deep neural network architec-
ture and training procedure in section 3. Performancemetrics

of the muon reconstruction are presented in section 4, and a
discussion of possible challenges for the application of this
technique to experimental data is given in section 5, followed
by the conclusions of this study summarized in section 6.

Dataset andmuon reconstructionmodel

Simulation of single muon tracks

In this study, all Monte Carlo (MC) simulated muon events
used for network training and testing are produced by the
official JUNO simulation framework [11,12] which is based
on the Geant4 toolkit [13]. The underground muon sample
before input into detector is generated by the muon trans-
portation softwareMUSIC [14] with JUNOmountain profile
and the parameterized Gaisser formula of muon [15] at the
mountain surface.The energy rangeof cosmicmuon reaching
the JUNO detector is from 0.1 GeV to 10 TeV in simulation,
and the average energy is about 207 GeV. The flux is about 4
× 10−3 Hz / m2. There are about 90% of muon events with
single track and about 10% with multiple tracks. Only the
events with 200 GeV muon track are selected for this study,
so that the muons will go through the whole detector and exit
at the bottom.

Along the muon trajectory through the materials of the
detector geometry, the Geant4 toolkit simulates physics pro-
cesses including ionization and nuclear interactions. Muons
passing through the scintillator result in excitations of the
molecules of the scintillating medium which subsequently
de-excite producing photons. In addition, as muons travel
through both the water pool and the scintillator, their charged
nature results in the generation of photons from Cherenkov
radiation. Both scintillation photons and Cherenkov photons
are propagated through the detector taking into account opti-
cal processes such as scattering, absorption and re-emission.
A fraction of the propagated photons reach PMTs and eject a
photo-electron from the photocathode resulting in electronic
signals for the charge and arrival time. PMT characteristics
including the quantum efficiency and collection efficiency
are measured and used as inputs to the simulation.

Figure 2 illustrates amuon track passing through the liquid
scintillator (LS), together with the positions of PMTs that
detect optical photons emitted along the muon trajectory.

Comparisons of simulated and real experimental data
often reveal some differences. This presents a problem as
neural networks trained with simulated samples may learn
from features that differ from those present in the real data
causing the model to be invalid. As real JUNO experimental
data are not yet available, a comparison between indepen-
dent aspects of the simulated data is used as a cross-check.
The muon track parameters obtained from the top tracker
(TT) reconstruction [1] are used as an independent alterna-

123

Select cosmic muons tagged 
by the Top Tracker with 
direction well-measured

Use cosmic muon data to 
train/validate the DL 
models for direction/track 
reconstruction

Liu, Y., Li, WD., Lin, T. et al.  Radiat Detect Technol Methods 5, 364–372 (2021).
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Bubble Chambers MiniBooNE

18

• Current data suffer from low-statistics/low-resolution/tensions.

• Future experiments are expect to give much stronger constraints. 

MINERvA MicroBooNE NOvA T2K
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• Current data suffer from low-statistics/low-resolution/tensions.

• Future experiments are expect to give much stronger constraints. 
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Next generation of ν-interaction measurementsNUCLEAR TARGETS IN FGT
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✦ Multiple nuclear targets in FGT: (C3H6)n radiators, C, Ar gas, Ca, Fe, etc.
=⇒ Separation from excellent vertex (∼ 100µm) and angular (< 2 mrad) resolutions

✦ Subtraction of C TARGET from polypropylene (C3H6)n RADIATORS
provides neutrino AND anti-neutrino interactions on free proton target
=⇒ Absolute ν̄µ flux from QE
=⇒ Model-independent measurement of nuclear effects and FSI from RATIOS A/H

✦ Pressurized Ar GAS target (∼ 140 atm) inside C tubes and solid Ca TARGET
(more compact & effective) provide detailed understanding of the FD A = 40 target
=⇒ Collect more than ×10 unoscillated FD statistics on Ar target
=⇒ Study of flavor dependence & isospin physics

Roberto Petti USC
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x68

• Multiple nuclear targets in a low-density straw tube tracker. 

• CH2 target and pure carbon target enables ν-H interaction measurements by statistically 

subtract carbon backgrounds.

• Precise flux measurements with  ν-H interactions and low-ν method. 

You Inst Logo

Detector geometry

3 18 March 19 Federico Ferraro | Neutron detection in a KLOE-based detector

STT

• The DUNE ND complex. 
• SAND: System for on-axis 

neutrino detection. 

Movable ND system

On-axis ND 
system

• Phys.Lett. B795 (2019) 424-431
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Movable ND system

On-axis ND 
system

Next generation of ν-interaction measurements

De-coupling ν-int and 
flux effects by varying the 
flux by going different 
off-axis locations 
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Summary
• We are entering a precision era of neutrino physics, theoretically and experimentally. 

• The applications of deep learning techniques greatly enhance detectors’ capability

• More effective signal recognition.

• Higher resolution measurements.

• Turn impossible into possible. 


• In the same time requires better understanding of neutrino interactions! 
• Data-driven approaches may ease but not completely solve the problem.

• Both theoretical and experimental efforts are needed.

Deep-learningFrankenstein’s monster of ν-int
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