

Neutrinoless double beta decay in minimal type-I seesaw mechanism

Jing-Yu Zhu (朱景宇)

Institute of Modern Physics, Chinese Academy of Sciences Based on the work with Fang, Li and Zhang, arXiv: 2404.12316

18 May 2024, vSTEP2024

Outline

2

Brief background

> Theoretical framework

 $0v2\beta$ process in minimal Type-I seesaw mechanism

Numerical results

Constraints (sensitivities) of minimal Type-I seesaw from current (future) 0v2β experiments

Conclusions

About neutrinos

Precise measurement era

		I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, et al.,							
相对精度		NuFIT 5.2	正质量顺序 ?) 倒质量顺序 ($\Delta \chi^2 = 6.4$)				
(1 <i>σ</i> /bf)			最佳拟合 $\pm 1\sigma$	3σ 范围	最佳拟合 $\pm 1\sigma$	3σ 范围			
2%	\checkmark	$\theta_{12}/^{\circ}$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$			
2%	\checkmark	$\theta_{23}/^{\circ}$	$42.2^{+1.1}_{-0.9}$	39.7 → 51.0	$49.0^{+1.0}_{-1.2}$	39.9 → 51.5	Not sensitive to absolute neutrino		
1%	~	$\theta_{13}/^{\circ}$	$8.58^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.11}_{-0.11}$	8.23 → 8.94	mass		
13%	?	δľ	232^{+36}_{-26}	$144 \rightarrow 350$	276^{+22}_{-29}	$194 \rightarrow 344$			
3%	\checkmark	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$	V		
1%	~	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.507^{+0.026}_{-0.027}$	+2.427 → +2.590	$-2.486^{+0.025}_{-0.028}$	$-2.570 \rightarrow -2.406$			

Precise measurement era

Formulas (minimal type-I seesaw)

NME of light neutrinos

	g_A	src		dQRPA 74	sQRPA-Tu [75]	sQRPA-Jy [77]	IBM-2 87	CDFT 80	ISM [81]
	1.27	w/o		3.27	-	-	-	7.61	-
		Argonne		3.12	5.157	-	5.98	7.48	2.89
		CD-Bonn		3.40	5.571	6.54	6.16	7.84	3.07
$^{76}\mathrm{Ge}$		Miller-Spence	er	-	-	-	5.42	6.36	-
	1.00	w/o		2.64	-	-	-	-	-
		Argonne		2.48	3.886	-	-	-	1.77
		CD-Bonn		2.72	4.221	5.26	-	-2	1.88
82 Se	1.27	w/o		3.01	-	-	-	7.60	-
		Argonne		2.86	4.642	-	4.84	7.48	2.73
		CD-Bonn		3.13	5.018	4.69	4.99	7.83	2.90
		Miller-Spence	er	-	-	-	4.37	6.48	-
	1.00	w/o		2.41	-	-	-		-
		Argonne		2.26	3.460	-	-		2.41
		CD-Bonn		2.49	3.746	3.73	-		2.56
$^{130}\mathrm{Te}$	1.27	w/o		3.10				9.55	
		Argonne		2.90	3.888		4.47	9.38	2.76
		CD-Bonn		3.22	4.373	5.27	4.61	9.82	2.96
		Miller-Spence	\mathbf{er}	-	-	-	4.03	8.03	
	1.00	w/o		2.29					
		Argonne		2.13	2.945	-	-	-	1.72
		CD-Bonn		2.37	3.297	4.00	-	-	1.84
136 Xe	1.27	w/o		1.12	-	-	-	6.62	
		Argonne		1.11	2.177		3.67	6.51	2.28
		CD-Bonn		1.18	2.460	3.50	3.79	6.80	2.45
		Miller-Spence	er	-	-	-	3.33	5.58	
	1.00	w/o		0.85					
		Argonne		0.86	1.643	»-	-	-2	1.42
		CD-Bonn		0.89	1.847	2.91	-	-2	1.53

- CDFT biggest
- ISM/dQRPA smallest
- different NME
 ratios between
 different isotopes

NME of heavy neutrinos

	g_A	src	dQRPA [74]	sQRPA-Tu [75]	sQRPA-Jy [77]	IBM-2 87	CDFT 80	ISM [81]
	1.27	w/o	385.4				466.8	
		Argonne	187.3	316		107	267	130
		CD-Bonn	293.7	433	401.3	163	378.1	188
$^{76}\mathrm{Ge}$		Miller-Spencer				48.1	135.7	
	1.00	w/o	275.9					
		Argonne	129.7	204				86
		CD-Bonn	207.2	287	298.3			122
82 Se	1.27	w/o	358.7				454	
		Argonne	175.9	287		84.4	261.4	121
		CD-Bonn	273.6	394	287.1	132	369	175
		Miller-Spencer				35.6	132.7	
	1.00	w/o	257.4					
		Argonne	122.1	186	-	-	-	80
		CD-Bonn	193.4	262	214.3	-	-	113
$^{130}\mathrm{Te}$	1.27	w/o	401.1				573	
		Argonne	191.4	292		92	339.2	146
		CD-Bonn	303.5	400	338.3	138	472.8	210
		Miller-Spencer				44	168.5	
	1.00	w/o	281.2					
		Argonne	130.2	189	-	-	-2	97
		CD-Bonn	209.5	264	255.7	-	_2	136
$^{136}\mathrm{Xe}$	1.27	w/o	117.1				394.5	
		Argonne	66.9	166		72.8	234.3	116
		CD-Bonn	90.5	228	186.3	109	326.2	167
		Miller-Spencer	-	-	-	35.1	116.3	
	1.00	w/o	82.7					
		Argonne	46.3	108	-	-	-	77
		CD-Bonn	62.8	152	137.3	-	-	108

CDFT/sQRPA-Tu biggest

➢ IBM-2 smallest

Mass-dependent NME

- dQRPA: Numerical calculation
- Others: interpolation with two extreme values
 Me (m) = ^{m_pm_e} Me

$$M_{0
u}(m_j) = rac{m_p m_e}{\langle p^2
angle + m_j^2} M_{
m H}$$

- dQRPA: agrees with ISM for light neutrinos and tends to be consistent with CDFT for heavy neutrinos
- In light neutrino mass the NME from dQRPA model is smaller than that of the IBM-2 model, and in heavy neutrino mass the reverse applies.

Parameter space of m_{eff}

- \succ g_A=1, Argonne src
- Some parameter space can be very easily/hardly excluded by current/future 0v2β experiments
- The NMO/IMO can be very different and δ₁₄ matters

See also Fang, Li, Zhang, PLB2022

Parameter space of m_{eff}

$\Delta \chi^2$ functions of inverse half–life

$\Delta \chi^2$ functions of m_{eff}

The upper limit of m_{eff}

Half-life relations of different isotopes

g_A =1.27, CD-bonn src

0v2β half life

- m_{eff} value
- NME value

Current limits $(M_1 \& |R_{e1}|^2)$

> 3σ C.L

- Gray regions: excluded regions in the case of CDFT model
- Different choices of parameters and models are scanned (not as Gaussian)
- Both the 0v2βdecay and oscillation data are used
- The IMO case is similar
- The peak shape

Current limits (M₁ & M₂)

- The IMO case is similar
- The NME hierarchy changes with neutrino mass

Constraints from other probes

Future sensitivities

$$\Delta \chi_{ij}^2(m_{\rm eff}, (M_{0\nu})_{\alpha j}; m_{\rm eff}^{\rm True}, (M_{0\nu})_{\alpha i}^{\rm True}) = 2\sum_{\alpha} (N_{\alpha j} - N_{\alpha i}^{\rm True} + N_{\alpha i}^{\rm True} \ln \frac{N_{\alpha i}^{\rm True}}{N_{\alpha j}})$$

Assumed number events
$$\begin{aligned} N_{\alpha i}^{\text{True}} &= B_{\alpha i} + S_{\alpha i}(m_{\text{eff}}^{\text{True}}, (M_{0\nu})_{\alpha i}^{\text{True}}) \\ N_{\alpha j} &= B_{\alpha j} + S_{\alpha j}(m_{\text{eff}}, M_{\alpha j}) \end{aligned}$$

Assuming no positive 0v2β signal is observed, Leading to sensitivities independent of true NME model

$$S_{\alpha i}(m_{\text{eff}}, M_{\alpha i}) = \text{In} 2 \cdot N_A \cdot \varepsilon_\alpha \cdot (T_{1/2}^{0\nu})_{\alpha i}^{-1} \cdot T/(1 \text{ yr})$$

 $B_{\alpha} = b_{\alpha} \cdot \varepsilon_{\alpha} \cdot T/(1 \text{ yr})$ T=10 yr

Experiment	Isotope	$\varepsilon \; [{ m mol} \cdot \; { m yr}]$	$b \; [events/(mol \cdot yr)]$
LEGEND-1000	⁷⁶ Ge	8736	$4.9 \cdot 10^{-6}$
SuperNEMO	82 Se	185	$5.4 \cdot 10^{-3}$
SNO+II	$^{130}\mathrm{Te}$	8521	$5.7 \cdot 10^{-3}$
nEXO	$^{136}\mathrm{Xe}$	13700	$4.0 \cdot 10^{-5}$

Future sensitivities $(M_1 \& |R_{e1}|^2)$

Future sensitivities $(M_1 \& |R_{e1}|^2)$

Future sensitivities ($M_1 \& M_2$)

The NMO case

Future sensitivities ($M_1 \& M_2$)

➤ The IMO case

The wide pink region in the upper left panel: mainly different δ₁₄ values

- Comparison of mass dependent NMEs in different nuclear models
- Derivation of limits and sensitivities on the parameter space of minimal type-I seesaw from current and future 0v2β experiments
- Highlight of the entanglements between new physics exploration and NME calculation
- Possible discrimination of different NME calculations in this framework is on-going.

Thank you for your attention!

Known basics

NME of light neutrinos

- CDFT biggest
- ISM/dQRPA smallest
- different NME
 ratios between
 different isotopes

NME of heavy neutrinos

