第一届中微子散射:理论、实验、唯象研讨会 (vSTEP 2024) 2024年5月17日-20日,国科大杭州高等研究院

Charged current of neutrino in hadronic τ decays

Zhi-Hui Guo (郭志辉)

Hebei Normal University (河北师范大学)

Mini-overview of hadronic tau decays and

Resonance Chiral Theory

y exchange dominates at tau-charm factory.

Z exchange dominates at CEPC.

Number of taus produced a	t e ⁺ e ⁻ colliders:
ALEPH: $\sim 3 \times 10^5$	BaBar /Belle: ~1 ×10 ⁹
Belle-II: $\sim 5 \times 10^{10}$	CEPC (Tera-Z factory): ~ 3×10^{10}
STCF: $\sim 4 \times 10^{10}$ (around	10% at threshold)

Tau provides broad interests for particle physics:

- ✓ Precision tests for electroweak sector: V_{CKM} , lepton universality, g-2,
- \checkmark Stong interactions: α_s , hadron resonances, chiral symmetry,
- ✓ Discoveries for new physics: cLFV, CPV,
- ✓ Possible way to study massive neutrinos: $\tau \rightarrow \pi \pi \pi v_4$,

Sketch for hadronic tau decays (similar for leptonic decays by dropping QCD part)

Theoretical tools: SM EFT + Chiral EFT

• SM EFT \rightarrow LEFT [Cirigliano et al, '10] [Y.Liao et al., '21] [J.H.Yu et al., '21][F.Z.Chen et al, '22] ...

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= -\frac{G_{\mu}V_{uD}}{\sqrt{2}} \bigg[\Big(1 + \epsilon_L^{D\ell}\Big) \bar{\ell}\gamma_{\mu} (1 - \gamma_5)\nu_{\ell} \cdot \bar{u}\gamma^{\mu} (1 - \gamma_5)D + \epsilon_R^{D\ell}\bar{\ell}\gamma_{\mu} (1 - \gamma_5)\nu_{\ell} \cdot \bar{u}\gamma^{\mu} (1 + \gamma_5)D \\ &+ \bar{\ell}(1 - \gamma_5)\nu_{\ell} \cdot \bar{u} \Big[\epsilon_S^{D\ell} - \epsilon_P^{D\ell}\gamma_5 \Big] D + \frac{1}{4} \hat{\epsilon}_T^{D\ell}\bar{\ell}\sigma_{\mu\nu} (1 - \gamma_5)\nu_{\ell} \cdot \bar{u}\sigma^{\mu\nu} (1 - \gamma_5)D \bigg] + \text{h.c.}, \end{aligned}$$

 $\varepsilon_{\rm X}$ parameterize various new physics at high energy scale

• Chiral EFT

 $\mathcal{O}(p^4)$:

[Gasser, Leutwyler, '83 '84]

$$\mathcal{L}_{2} = \frac{F^{2}}{4} \langle u_{\mu} u^{\mu} + \chi_{+} \rangle \qquad \qquad \mathcal{L}_{4}^{\chi^{PT}} = L_{1} \langle u_{\mu} u^{\mu} \rangle^{2} + L_{2} \langle u_{\mu} u^{\nu} \rangle \langle u^{\mu} u_{\nu} \rangle + L_{3} \langle u_{\mu} u^{\mu} u_{\nu} u^{\nu} \rangle + L_{4} \langle u_{\mu} u^{\mu} \rangle \langle \chi_{+} \rangle \\ + L_{5} \langle u_{\mu} u^{\mu} \chi_{+} \rangle + L_{6} \langle \chi_{+} \rangle^{2} + L_{7} \langle \chi_{-} \rangle^{2} + \frac{L_{8}}{2} \langle \chi_{+}^{2} + \chi_{-}^{2} \rangle + \cdots$$

Hadronic decays: a unique feature for tau lepton

Valuable laboratory to study: fundamental parameters & rich hadron phenomenologies

But also challenging in theory: broad energy range 0.14 ~ 1.8 GeV

Strong coupling of QCD: α_s

0.35

Invariant-mass spectra for exclusive decays

> Charged lepton flavor violation in tau decays

90% C.L. upper limits for LFV τ decays

- Not only statistic but also systematic uncertainties are important in $\tau \rightarrow l \gamma$
- Clean backgroud makes τ → l l'l" one of the best channels to search for LFV signals.
- $\tau \rightarrow l + hadrons$ provides a different laboratory to probe different LFV origins, comparing with the pure leptonic processes.

Proposal to search for massive neutrino in tau decay

 $\tau \rightarrow \pi \pi \pi v_4$

[Kobach, Dobbs, PRD'15]

$$\begin{split} \frac{d\Gamma_{\text{tot}}(\tau^- \to \nu h^-)}{dm_h dE_h} &= (1 - |U_{\tau 4}|^2) \frac{d\Gamma(\tau^- \to \nu h^-)}{dm_h dE_h} \Big|_{m_\nu = 0} \\ &+ |U_{\tau 4}|^2 \frac{d\Gamma(\tau^- \to \nu h^-)}{dm_h dE_h} \Big|_{m_\nu = m_4} \end{split}$$

Strong interaction of the $\pi\pi\pi$ [dominated by $a_1(1260)$] system will greatly affect the final results!

Chiral symmetry is RELEVANT to tau decays

Example: $\tau \rightarrow v_{\tau} \pi \pi \pi$ transition amplitudes in the low energy region VMD models do not automatically respect chiral symmetry.

$$J_{\alpha} = -i \frac{2\sqrt{2}}{3f_{\pi}} BW_{a}(Q^{2})(B_{\rho}(s_{2})V_{1\alpha} + B_{\rho}(s_{1})V_{2\alpha})$$
 [Kuhn, Santamaria, ZPC'90]

 $W_{\rm D}$ structure function

 $W_{\rm SA}$ structure function (neutral channel)

Resonance chiral theory implements the constraint of chiral symmetry from the very beginning in the construction of the Lagrangians.

Resonance chiral theory (Rχ**T**)

Chiral group: $G = SU(3)_L \times SU(3)_R$, $H = SU(3)_V$, $u(\phi) = G/H$

Resonances : $R \stackrel{G}{\Longrightarrow} h R h^{\dagger}, h \in H$

pNGB and external sources :

Y			24.	$f^{\mu u}$	h
Λ	<u> </u>	$u_{\mu},$	$\chi_{\pm},$	$'_{\pm}$,	$\mu \nu$

Operators	Р	С	h.c.	chiral order
и	u^{\dagger}	и ^т	u [†]	1
Γ_{μ}	Γ^{μ}	$-\Gamma_{\mu}{}^{T}$	$-\Gamma_{\mu}$	p
u_{μ}	$-u^{\mu}$	u_{μ}^{T}	u_{μ}	p
χ_{\pm}	$\pm\chi_{\pm}$	χ^{T}_{\pm}	$\pm\chi_{\pm}$	p^2
$f_{\mu u\pm}$	$\pm f_{\pm}^{\mu u}$	$\mp f_{\mu\nu\ \pm}^T$	$f_{\mu u\pm}$	p^2
$h_{\mu u}$	$-h^{\mu u}$	$h_{\mu u}^{T}$	$h_{\mu u}$	p^2

Minimal $R\chi T$ Lagrangian [Ecker, et al., '89]

$$\begin{aligned} \mathcal{L}_{2V} &= \frac{F_{V}}{2\sqrt{2}} \langle V_{\mu\nu} f_{+}^{\mu\nu} \rangle + \frac{iG_{V}}{2\sqrt{2}} \langle V_{\mu\nu} [u^{\mu}, u^{\nu}] \\ \mathcal{L}_{2A} &= \frac{F_{A}}{2\sqrt{2}} \langle A_{\mu\nu} f_{-}^{\mu\nu} \rangle , \\ \mathcal{L}_{2S} &= c_{d} \langle Su_{\mu} u^{\mu} \rangle + c_{m} \langle S\chi_{+} \rangle , \\ \mathcal{L}_{2P} &= id_{m} \langle P\chi_{-} \rangle . \end{aligned}$$

Operators	Р	С	h.c.
$V_{\mu u}$	$V^{\mu u}$	$-V_{\mu u}^{T}$	$V_{\mu u}$
$A_{\mu u}$	$-{\cal A}^{\mu u}$	$A_{\mu u}^{ au}$	${\cal A}_{\mu u}$
S	S	S^{T}	S
Р	-P	P^{T}	Р

Operators beyond minimal [Cirigliano, et al., '04]:

$$\mathcal{L}_{V\!AP} = \lambda_1^{V\!A} \langle [V^{\mu\nu}, A_{\mu\nu}] \chi_- \rangle + \dots,$$

[Ruiz-Femenia, Pich and Portolés, '03]

$$\begin{split} \mathcal{L}_{VVP} &= d_1 \varepsilon_{\mu\nu\rho\sigma} \langle \{V^{\mu\nu}, V^{\rho\alpha}\} \nabla_{\alpha} u^{\sigma} \rangle + \dots, \\ \mathcal{L}_{VJP} &= \frac{c_1}{M_V} \varepsilon_{\mu\nu\rho\sigma} \langle \{V^{\mu\nu}, f_+^{\rho\alpha}\} \nabla_{\alpha} u^{\sigma} \rangle + \dots, \end{split}$$

 $d_4 \varepsilon_{\mu\nu\rho\sigma} \langle \{\nabla^{\sigma} V^{\mu\nu}, V^{\rho\alpha}\} u_{\alpha} \rangle$

QCD dynamics in R_{\u03c0}T

- Low energy QCD: implemented from the construction of $R\chi T$
- Intermediate energy: explicit resonance states
- High energy information: to match the same physical objects in R χ T and QCD, $\langle J(x_n) \cdot J(0) \rangle^{R\chi T} = \langle J(x_n) \cdot J(0) \rangle^{QCD}$.

For example: $\pi\pi$ vector form factor

$$egin{array}{rll} \left[\mathcal{F}^{\mathbf{v}}_{\pi\pi}(q^2)
ight]^{\mathrm{R}\chi\mathrm{T}} &=& 1 + rac{F_V G_V}{F^2} rac{q^2}{M_V^2 - q^2} \,, \ \left[\mathcal{F}^{\mathbf{v}}_{\pi\pi}(q^2)
ight]^{\mathrm{QCD}} & o & 0, \qquad \mathrm{for} \; q^2 o \infty \end{array}$$

This leads to

$$[\mathcal{F}^{v}_{\pi\pi}(q^2)]^{\mathrm{R}\chi\mathrm{T}} = [\mathcal{F}^{v}_{\pi\pi}(q^2)]^{\mathrm{QCD}} \implies F_V G_V = F^2$$

Phenomenologies in $\tau \rightarrow \pi \pi \gamma v_{\tau}$

Why to focus on $\tau \rightarrow \pi \pi \gamma v_{\tau}$

> Relevance to precise determination of a_{μ}

SM uncertainty dominated by

Dominated by $\pi\pi$ (> ~75%)

 $a_{\mu}^{\text{HVP,LO}}$ [Masjuan e

* Key problem in the matching: isospin breaking (IB) effects IB corrections to a_{μ} [Cirigliano et al., JHEP'02]

TABLE IV. Contributions to $\Delta a_{\mu}^{\text{HVP,LO}}$ in units of 10^{-11} using the dispersive representation of the form factor. From the two evaluations labeled $\mathcal{O}(p^4)$, the left (right) one corresponds to $F_V = \sqrt{2}F$ ($F_V = \sqrt{3}F$).

$[s_1, s_2]$	$\Delta a^{ m HVP,LO}_{\mu,{ m G}^{(0)}_{ m EM}}$	$\Delta a_{\mu,{ m SI}}^{ m HVP,LO}$	$\Delta a^{ ext{HVP,LO}}_{\mu,[\mathcal{O}(p^4)]}$	$\Delta a^{ ext{HVP,LO}}_{\mu,[\mathcal{O}(p^4)]}$	$\Delta a^{ m HVP,LO}_{\mu,[SD]}$	$\Delta a^{ m HVP,LO}_{\mu,[\mathcal{O}(p^6)]}$
$[4m_{\pi}^2, 1 \text{ GeV}^2]$	+17.8	-11.0	-11.3	-17.0	-32.4	-74.8 ± 44.0
$[4m_{\pi}^2, 2 \text{ GeV}^2]$	+18.3	-10.1	-10.3	-16.0	-31.9	-75.9 ± 45.5
$[4m_{\pi}^2, 3 \text{ GeV}^2]$	+18.4	-10.0	-10.2	-15.9	-31.9	-75.9 ± 45.6
$[4m_{\pi}^2, m_{\tau}^2]$	+18.4	-10.0	-10.2	-15.9	-31.9	-75.9 ± 45.6

Referenced value using the tau data to calculate a_{μ}

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{\th} = (12.5 \pm 6.0) \times 10^{-10}$$

> CP violation in tau decays

$$A_{CP} = \frac{\Gamma(\tau^- \to \nu_\tau H) - \Gamma(\tau^+ \to \nu_\tau \bar{H})}{\Gamma(\tau^- \to \nu_\tau H) + \Gamma(\tau^+ \to \nu_\tau \bar{H})}$$

Intensive discussions on tau \rightarrow K_s pi nu

$$A_{\varrho} = \frac{\Gamma\left(\tau^{+} \to \pi^{+}K_{S}^{0}\overline{\nu}_{\tau}\right) - \Gamma\left(\tau^{-} \to \pi^{-}K_{S}^{0}\nu_{\tau}\right)}{\Gamma\left(\tau^{+} \to \pi^{+}K_{S}^{0}\overline{\nu}_{\tau}\right) + \Gamma\left(\tau^{-} \to \pi^{-}K_{S}^{0}\nu_{\tau}\right)}$$

 $\approx (0.36 \pm 0.01)\%$

$$(-0.36 \pm 0.23_{stat} \pm 0.11_{syst})\%$$

SM prediction

BaBar

[Bigi et al., PLB'05] [Grossman et al., JHEP'12] [Lees et al., PRD'12]
[Cirigliano et al., PRL'18] [Rendo et al., PRD'19] [Chen et al., PRD'19 JHEP'20]

Other types of CPV observables: T-odd triple-product asymmety

A typical T-odd kinematical variable:

$$\xi \equiv \varepsilon_{\mu\nu\rho\sigma} a^{\mu} b^{\nu} c^{\rho} d^{\sigma} \xrightarrow{\text{rest frame}}_{\text{of particle } a} \vec{b} \cdot (\vec{c} \times \vec{d}) \, m_a / s_a$$

a, b, c, d: either momentum or spin

T transformation $(t \to -t, \vec{p} \to -\vec{p}, \cdots): \bar{\xi} \to -\xi$

- When spin is involved, measurement of polarization is needed.
 [Nelson, et al., PRD'94] [Tsai, PRD'95] [Datta, PRD'07] ...
- ***** When focusing on the situation with four momenta, *i.e.*

$$\xi = \varepsilon_{\mu\nu\rho\sigma} p_1^{\mu} p_2^{\nu} p_3^{\rho} p_4^{\sigma} \quad \underbrace{\frac{\text{rest frame}}{\text{of particle 1}}}_{\text{of particle 1}} \vec{p_2} \cdot (\vec{p_3} \times \vec{p_4}) m_1$$

In this case, there should be at least four particles in the final state!

> Pro: Strong phase is not necessary for a CPV phenomenon using TPA.

Con: TPA could also be caused by the final-state interactions!

$$\tau \rightarrow \pi \pi \gamma v_{\tau}$$
: good place to probe T-odd triple-product asymmety

Minimal RChT contributions to $\tau \rightarrow \pi \pi \gamma v_{\tau}$

Contributions from VVP and VJP operators in RChT [Chen, Duan, ZHG, JHEP'22]

High energy contraints to the resonance couplings

$$\int d^4x \int d^4y e^{i(p\cdot x + q\cdot y)} \langle 0|T[V^a_{\mu}(x)V^b_{\nu}(y)P^c(0)]|0\rangle$$

= $d^{abc} \epsilon_{\mu\nu\alpha\beta} p^{\alpha} q^{\beta} \Pi_{\text{VVP}}(p^2, q^2, r^2),$

$$\lim_{\lambda \to \infty} \Pi^{(8)}_{\text{VVP}} [(\lambda p)^2, (\lambda q)^2, (\lambda p + \lambda q)^2]$$

=
$$\lim_{\lambda \to \infty} \Pi^{(0)}_{\text{VVP}} [(\lambda p)^2, (\lambda q)^2, (\lambda p + \lambda q)^2]$$

=
$$-\frac{\langle \bar{\psi} \psi \rangle_0}{2\lambda^4} \frac{p^2 + q^2 + r^2}{p^2 q^2 r^2} [1 + \mathcal{O}(\alpha_S)] + \mathcal{O}\left(\frac{1}{\lambda^6}\right)$$

$$c_1 + 4c_3 = 0$$
 $c_1 - c_2 + c_5 = 0$ $c_5 - c_6 = \frac{N_C M_V}{64\sqrt{2}\pi^2 F_V}$

$$d_1 + 8d_2 = -\frac{N_c M_V^2}{(8\pi F_V)^2} + \frac{F^2}{4F_V^2} \qquad \qquad d_3 = -\frac{N_c M_V^2}{(8\pi F_V)^2} + \frac{F^2}{8F_V^2}$$

Other constraints from scattering and form factors $F_A=F_\pi, \quad F_V=\sqrt{2}F_\pi, \quad G_V=F_\pi/\sqrt{2}$.

Or

$$F_A = \sqrt{2}F_\pi, \quad F_V = \sqrt{3}F_\pi, \quad G_V = F_\pi/\sqrt{3}$$

Differential decay widths as a function of photon energies

When the photon energy cutoff is around 300 MeV, the absolute branching ratio is predicted to be around 10⁻⁴ and it has a good chance to be well measured at Belle-II, STCF, CEPC,

Invariant-mass distributions of the $\pi\pi/\pi\gamma$ systems

0.005

0.004

0.003

0.002

0.001

0.000 0.0

0.2

0.3

0.1

 $N_0 d\Gamma_\chi/ds_{14} [GeV^2]$

Predicitons of the T-odd asymmetry distribution in $\tau \rightarrow \pi \pi \gamma v_{\tau}$

• The magnitudes of A_{ξ} for $\tau \to \pi \pi \gamma v_{\tau}$ are around two orders larger than those in $K_{13\gamma}$. It has the good chance to be measured in Belle-II $\$ STCF $\$ CEPC

Prospects of revealing the genuine CPV signals

• CPV signals can be probed by taking the differences of A_{ξ} in $\tau \to \pi - \pi^0 \gamma v_{\tau}$ and $\tau^+ \to \pi^+ \pi^0 \gamma v_{\tau}$

$$A_{\xi} = \frac{\Gamma_{+} - \Gamma_{-}}{\Gamma_{+} + \Gamma_{-}} \qquad \qquad \overline{A}_{\overline{\xi}} = \frac{\overline{\Gamma}_{+} - \overline{\Gamma}_{-}}{\overline{\Gamma}_{+} + \overline{\Gamma}_{-}}$$

$$\overline{\Gamma}_{+} = \frac{(2\pi)^4}{2m_{\tau}} \int_{\overline{\xi}>0} \mathrm{d}\Phi \left(\overline{\hat{M}}_0 + \overline{\xi}\overline{\hat{M}}_1\right), \qquad \overline{\Gamma}_{-} = \frac{(2\pi)^4}{2m_{\tau}} \int_{\overline{\xi}<0} \mathrm{d}\Phi \left(\overline{\hat{M}}_0 + \overline{\xi}\overline{\hat{M}}_1\right)$$

$$\mathcal{M} = e \, G_F \, V_{ud}^* \epsilon^{*\mu}(k) \left\{ \left(1 + \mathbf{g}_{\mathbf{V}} \right) F_{\nu} \bar{u}(q) \gamma^{\nu} (1 - \gamma_5) (m_{\tau} + \not\!\!\!P - \not\!\!\!k) \gamma_{\mu} u(P) \right. \\ \left. + \left[\left(1 + \mathbf{g}_{\mathbf{V}} \right) V_{\mu\nu} - \left(1 - \mathbf{g}_{\mathbf{A}} \right) A_{\mu\nu} \right] \bar{u}(q) \gamma^{\nu} (1 - \gamma_5) u(P) \right\}$$

 $\mathcal{A}_{\xi} = A_{\xi} - \overline{A}_{\bar{\xi}} \supset \operatorname{Im}(\mathbf{g}_{\mathbf{V}}^* \mathbf{g}_{\mathbf{A}}) \operatorname{Re}[F_V(t/u)^* A_i], \ \operatorname{Im}(\mathbf{g}_{\mathbf{V}}^* \mathbf{g}_{\mathbf{A}}) \operatorname{Re}(V_j^* A_i)$

- Generally speaking, sizable hadronic contributions are also expected to enhance the CPV signals in $\tau \rightarrow \pi \pi \gamma v_{\tau}$.
- TPA in other types of τ decays could be also possible.

Other predictions:

- $\tau \rightarrow \pi/K \gamma v_{\tau}$
- polarization effect in $\tau \rightarrow \omega \pi v_{\tau}$ (preliminary)

Predictions to $\tau \rightarrow \pi/K \gamma v_{\tau}$ [ZHG, Roig, PRD'10]

axial-vector currents:

	=====================================	Ξ E _γ =400MeV	
IB	13.09×10^{-3}	1.48×10^{-3}	
IB - V	0.02×10^{-3}	0.04×10^{-3}	в
IB - A	0.34×10^{-3}	0.29×10^{-3}	€ 0.010 INT
VV	0.99×10^{-3}	0.73×10^{-3}	- SD
VA	~0	0.02×10^{-3}	
AA	0.15×10^{-3}	0.14×10^{-3}	
ALL	14.59×10^{-3}	2.70×10^{-3}	0.000
in uni	$t_{\alpha} of P_{\nu}(\Gamma)$. 1107	

in units of Br $(\Gamma_{\tau \to \pi \nu_{\tau}}) \sim 1170$

Exp measurement is still absent.

It has a good chance to be measured at BelleII, STCF, CEPC.

 \sqrt{t} (GeV)

 $\sqrt{1}$ (GeV)

Polarized taus:

polarized beams are planned at furture e⁺e⁻ machines.

 $P_z =$

number with spin up – number with spin down

Summary

Tau offers a laboratory for a broad range of interesting topics:

- > Precision tests of SM: CKM, α_s , m_{τ} , lepton universality,
- Hadron interactions: light-flavor resonances, chiral symmetry, form factors, second-class currents,
- **BSM tests:**

CPV (rate asym., triple-product asym.)

LFV (lepton/radiative decays, hadron decays)

Neutrino properties

••• •••

Resonance chiral theory offers a systematical tool to sudy the tau decays.

Thanks for your patience!