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LR symmetric model

The LR symmetric SM is proposed by Mohapatra and 
Senjanovic 


One introduces the right-handed copies of neutrinos, 
gauge bosons as well as Higgs boson


Besides a triplet Higgs boson has been introduced which 
gives rise of Majorana mass term of neutrino
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Neutrinoless double beta 
decay

Neutrinoless double beta 
decay related terms


Mass terms:


Weak current:
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Figure 2.6: Feynman diagram for 0⌫�� with GUT. In this case of both the left- and right-handed

currents can be involved.

even more). Our universe is a 3 + 1 dimensional ”brane” sticked to the extra dimensions which are
wrapped up. And only gravitons can propagate across the extra dimensions and all SM particles
are restricted to the brane. But there is one exception, the right handed neutrino, since it has no
SM symmetry charges, it is not bounded to the brane and can propagates in the extra dimensions.
The main advantage of extra dimensions is that it can explain the mass scale hierarchy between the
electroweak scale (roughly 1 TeV) and the gravitational scale (Planck scale 1018GeV ). In warped
space, the gravitational scale is expressed as MF ⇡ M

2
2+�

P /R
�

2+� , nearly 1 TeV. This solves the
Puzzle of mass Hierarchy naturally, so it can be the best candidate for new physics beyond SM
without introductions of complicated structures.
If restricted to 1 + (3 + 1) (one extra-dimension) spacetime, the general geometrical setup is the
the orbifold (an orbit space) S1/Z2 in the warped dimension. In geometry this is a circle with a
permutation Z2 being excluded, the SM particles are restricted to the brane[56]:

 L(x) =

 
⌫Lx

eL(x)

!
eR(x)

qL(x) =

 
uLx

dL(x)

!
uR(x) dR(x) (2.51)

And one extra (bulk) neutrino singlet which can be written in the form of two two-component
spinors in the Weyl basis [57]:

N(x, y) =

 
⇠(x, y)
⌘̄(x, y)

!
(2.52)

The orbifold of the fifth dimension requires that N(x, y) = N(x, y+2⇡R), where y is the coordinate
of the fifth dimension and R is the radius of fifth compactified dimension. General assumption is
that ⇠ is symmetric and ⌘ is antisymmetric under y reflection: ⇠(x, y) = ⇠(x,�y) and ⌘(x, y) =
�⌘(x,�y). Next we introduce the � matrices in five dimensions[58]:

�µ =

 
0 �⌫

�̄µ 0

!
�4 =

 
�1 0
0 1

!

(2.53)
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(M1 < M2) as
(

W−
L

W−
R

)
=

(
cos ζ sin ζ

− sin ζ cos ζ

)(
W−

1

W−
2

)
. (19)

Then, the effective current-current interaction which can
trigger the 0νββ decay can be written as [6]

H β = Gβ√
2

[
j

ρ
LJ

†
Lρ + χj

ρ
LJ

†
Rρ + ηj

ρ
RJ

†
Lρ + λj

ρ
RJ

†
Rρ + H.c.

]
.

(20)

Here, Gβ = GF cos θC , where GF and θC are the Fermi con-
stant and Cabbibo angle, respectively. The coupling constants
λ, η, and χ are chosen to be real. We have

η ≃ − tan ζ, χ = η, λ ≃
(
MW1

/
MW2

)2
. (21)

The left- and right-handed leptonic currents are given by

j
ρ
L = ēγρ(1 − γ5)νeL, j

ρ
R = ēγρ(1 + γ5)νeR. (22)

The νeL and νeR are the weak eigenstate electron neutrinos,
which are expressed as superpositions of the light and heavy
mass eigenstate Majorana neutrinos νj and Nj , respectively.
The electron neutrinos eigenstates can be expressed as

νeL =
3∑

j=1

(UejνjL + Sej (NjR)C),

νeR =
3∑

j=1

(T ∗
ej (νjL)C + V ∗

ejNjR).

(23)

The (3 + 3) scenario is assumed. The 3 × 3 block matrices
in flavor space U,S,T ,V , generalizations of the Pontecorvo-
Maki-Nakagawa-Sakata matrix, constitute the 6 × 6 unitary
neutrino mixing matrix [17]

U =
(

U S

T V

)
, (24)

which diagonalizes the general 6 × 6 neutrino mass matrix in
the basis (νL,(NR)C)T :

M =
(

ML MD

MT
D MR

)
(25)

with Majorana and Dirac mass terms, which are proportional to
ML ≈ yMvL, MR ≈ yMvR , and MD ≈ yDv, where yM and yD

are the Yukawa couplings. The full parametrization of matrixU
includes 15 rotational angles and 10 Dirac and 5 Majorana CP
violating phases. It is possible to decomposeU as follows [17]:

U =
(

1 0
0 U0

)(
A R

S B

)(
V0 0
0 1

)
, (26)

where 0 and 1 are the 3 × 3 zero and identity matrices,
respectively. The parametrization of matrices A, B, R, and S
and the corresponding orthogonality relations are given in [17].
In the limit case A = 1, B = 1, R = 0, and S = 0 there would
be a separate mixing of heavy and light neutrinos, which would
participate only in left- and right-handed currents, respectively.
In that case only the neutrino mass mechanism of the 0νββ
decay would be allowed and exchange neutrino momentum

dependent mechanisms associated with the WL-WR exchange
and WL-WR mixing would be forbidden. If masses of heavy
neutrinos are above the TeV scale, the mixing angles respon-
sible for mixing of light and heavy neutrinos are small. By
neglecting the mixing between different generations of light
and heavy neutrinos, the A, B, R, and S matrices can be
approximated as follows:

A ≈ 1, B ≈ 1, R ≈ mD

mLNV
1, S ≈ − mD

mLNV
1. (27)

Here, mD represents the energy scale of charged leptons
and mLNV is the total lepton number violating scale, which
corresponds to masses of heavy neutrinos. For the sake
of simplicity the same mixing angle is assumed for each
generation of mixing of light and heavy neutrinos. We see
that U0 can be identified to a good approximation with the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix and V0 is
its analog for the heavy neutrino sector. Since V0 is unknown,
it is common to assume that the structure of V0 is the same one
as U0.

Assuming the nonrelativistic impulse approximation, the
left and right hadronic currents J

ρ†
L and J

ρ†
R become [6]

J
ρ†
L (x) =

∑

n

τ+
n δ(x − rn)

[
(gV − gACn)gρ0

+ gρk

(
gAσ k

n − gV Dk
n − gP qk

n

σ⃗n · qn

2mN

)]
,

J
ρ†
R (x) =

∑

n

τ+
n δ(x − rn)

[
(g′

V + g′
ACn)gρ0

+ gρk

(
−g′

Aσ k
n − g′

V Dk
n + g′

P qk
n

σ⃗n · qn

2mN

)]
.

(28)

Here, qn = pn − p′
n is the momentum transfer between the

nucleons. The final proton (initial neutron) possesses energy
E′

n (En) and momentum p′
n (pn). σ⃗n, τ+

n , and rn are the Pauli
matrix, the isospin raising operator, and the position operator,
respectively. These operators act on the nth nucleon.

The nucleon recoil operators Cn and Dn are given by

Cn = σ⃗ · (pn + p′
n)

2mN

− gP

gA

(En − E′
n)

σ⃗ · qn

2mN

,

(29)

Dn = (pn + p′
n)

2mN

− i

(
1 + gM

gV

)
σ⃗ × qn

2mN

.

Here, mN is the nucleon mass. qV ≡ qV (q2), qM ≡ qM (q2),
qA ≡ qA(q2), and qP ≡ qP (q2) are, respectively, the vector,
weak-magnetism, axial-vector, and induced pseudoscalar form
factors in the case of left-handed hadronic currents. As the
strong and electromagnetic interactions conserve parity there
are relations among form factors entering the left-handed and
right-handed hadronic currents [6]:

gA

gV

= g′
A

g′
V

,
gM

gV

= g′
M

g′
V

,
gP

gV

= g′
P

g′
V

. (30)
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Doi et al.  PTPS83,1(1985)DUŠAN ŠTEFÁNIK et al. PHYSICAL REVIEW C 92, 055502 (2015)

(M1 < M2) as
(

W−
L

W−
R

)
=

(
cos ζ sin ζ

− sin ζ cos ζ

)(
W−

1

W−
2

)
. (19)

Then, the effective current-current interaction which can
trigger the 0νββ decay can be written as [6]

H β = Gβ√
2

[
j

ρ
LJ

†
Lρ + χj

ρ
LJ

†
Rρ + ηj

ρ
RJ

†
Lρ + λj

ρ
RJ

†
Rρ + H.c.

]
.

(20)

Here, Gβ = GF cos θC , where GF and θC are the Fermi con-
stant and Cabbibo angle, respectively. The coupling constants
λ, η, and χ are chosen to be real. We have

η ≃ − tan ζ, χ = η, λ ≃
(
MW1

/
MW2

)2
. (21)

The left- and right-handed leptonic currents are given by

j
ρ
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respectively. These operators act on the nth nucleon.

The nucleon recoil operators Cn and Dn are given by

Cn = σ⃗ · (pn + p′
n)

2mN

− gP

gA

(En − E′
n)

σ⃗ · qn

2mN

,

(29)

Dn = (pn + p′
n)

2mN

− i

(
1 + gM

gV

)
σ⃗ × qn

2mN

.

Here, mN is the nucleon mass. qV ≡ qV (q2), qM ≡ qM (q2),
qA ≡ qA(q2), and qP ≡ qP (q2) are, respectively, the vector,
weak-magnetism, axial-vector, and induced pseudoscalar form
factors in the case of left-handed hadronic currents. As the
strong and electromagnetic interactions conserve parity there
are relations among form factors entering the left-handed and
right-handed hadronic currents [6]:

gA

gV

= g′
A

g′
V

,
gM

gV

= g′
M

g′
V

,
gP

gV

= g′
P

g′
V

. (30)
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(M1 < M2) as
(

W−
L

W−
R

)
=

(
cos ζ sin ζ

− sin ζ cos ζ

)(
W−

1

W−
2

)
. (19)

Then, the effective current-current interaction which can
trigger the 0νββ decay can be written as [6]

H β = Gβ√
2

[
j

ρ
LJ

†
Lρ + χj

ρ
LJ

†
Rρ + ηj

ρ
RJ

†
Lρ + λj

ρ
RJ

†
Rρ + H.c.

]
.

(20)

Here, Gβ = GF cos θC , where GF and θC are the Fermi con-
stant and Cabbibo angle, respectively. The coupling constants
λ, η, and χ are chosen to be real. We have

η ≃ − tan ζ, χ = η, λ ≃
(
MW1

/
MW2

)2
. (21)

The left- and right-handed leptonic currents are given by

j
ρ
L = ēγρ(1 − γ5)νeL, j

ρ
R = ēγρ(1 + γ5)νeR. (22)

The νeL and νeR are the weak eigenstate electron neutrinos,
which are expressed as superpositions of the light and heavy
mass eigenstate Majorana neutrinos νj and Nj , respectively.
The electron neutrinos eigenstates can be expressed as

νeL =
3∑

j=1

(UejνjL + Sej (NjR)C),

νeR =
3∑

j=1

(T ∗
ej (νjL)C + V ∗

ejNjR).

(23)

The (3 + 3) scenario is assumed. The 3 × 3 block matrices
in flavor space U,S,T ,V , generalizations of the Pontecorvo-
Maki-Nakagawa-Sakata matrix, constitute the 6 × 6 unitary
neutrino mixing matrix [17]

U =
(

U S

T V

)
, (24)

which diagonalizes the general 6 × 6 neutrino mass matrix in
the basis (νL,(NR)C)T :

M =
(

ML MD

MT
D MR

)
(25)

with Majorana and Dirac mass terms, which are proportional to
ML ≈ yMvL, MR ≈ yMvR , and MD ≈ yDv, where yM and yD

are the Yukawa couplings. The full parametrization of matrixU
includes 15 rotational angles and 10 Dirac and 5 Majorana CP
violating phases. It is possible to decomposeU as follows [17]:

U =
(

1 0
0 U0

)(
A R

S B

)(
V0 0
0 1

)
, (26)

where 0 and 1 are the 3 × 3 zero and identity matrices,
respectively. The parametrization of matrices A, B, R, and S
and the corresponding orthogonality relations are given in [17].
In the limit case A = 1, B = 1, R = 0, and S = 0 there would
be a separate mixing of heavy and light neutrinos, which would
participate only in left- and right-handed currents, respectively.
In that case only the neutrino mass mechanism of the 0νββ
decay would be allowed and exchange neutrino momentum

dependent mechanisms associated with the WL-WR exchange
and WL-WR mixing would be forbidden. If masses of heavy
neutrinos are above the TeV scale, the mixing angles respon-
sible for mixing of light and heavy neutrinos are small. By
neglecting the mixing between different generations of light
and heavy neutrinos, the A, B, R, and S matrices can be
approximated as follows:

A ≈ 1, B ≈ 1, R ≈ mD

mLNV
1, S ≈ − mD

mLNV
1. (27)

Here, mD represents the energy scale of charged leptons
and mLNV is the total lepton number violating scale, which
corresponds to masses of heavy neutrinos. For the sake
of simplicity the same mixing angle is assumed for each
generation of mixing of light and heavy neutrinos. We see
that U0 can be identified to a good approximation with the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix and V0 is
its analog for the heavy neutrino sector. Since V0 is unknown,
it is common to assume that the structure of V0 is the same one
as U0.

Assuming the nonrelativistic impulse approximation, the
left and right hadronic currents J

ρ†
L and J

ρ†
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J
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τ+
n δ(x − rn)

[
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(
gAσ k
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n

σ⃗n · qn

2mN

)]
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∑

n
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(g′
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−g′
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n − g′

V Dk
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P qk
n

σ⃗n · qn

2mN

)]
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(28)

Here, qn = pn − p′
n is the momentum transfer between the

nucleons. The final proton (initial neutron) possesses energy
E′

n (En) and momentum p′
n (pn). σ⃗n, τ+

n , and rn are the Pauli
matrix, the isospin raising operator, and the position operator,
respectively. These operators act on the nth nucleon.
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.
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qA ≡ qA(q2), and qP ≡ qP (q2) are, respectively, the vector,
weak-magnetism, axial-vector, and induced pseudoscalar form
factors in the case of left-handed hadronic currents. As the
strong and electromagnetic interactions conserve parity there
are relations among form factors entering the left-handed and
right-handed hadronic currents [6]:
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Figure 1. A schematic overview of the effective field theory approach to evaluating the 0νββ-
decay amplitude starting from high-scale ∆L = 2 dynamics. The different colors represent various
effective field theories at different scales. See the main text for more details.

is that ref. [39] ignores the couplings to ππ — which we now know with a fair amount

of certainty [41–44] — and to πN . The LECs of certain four-nucleon operators are also

underestimated by O(16π2), because non-perturbative renormalization is not considered.

We further discuss these and other differences with ref. [39] in appendix F.

2 Lepton number violation in the SM-EFT

Lepton number is an accidental symmetry of the renormalizable part of the SM, which

is violated by higher-dimensional operators. The ∆L = 2 operators relevant for 0νββ

all have odd dimension [13] and we focus on dimension-five, -seven, and -nine operators

that, respectively, scale as Λ−1, Λ−3, and Λ−5, where Λ is the scale at which lepton num-

ber violation arises. At lower energies, after electroweak symmetry breaking (EWSB) and

integrating out heavy SM fields (top, Higgs-, W-, and Z-bosons) the arising effective oper-

ators can have a different canonical dimension due to positive powers of the Higgs vacuum

expectation value, v ≃ 246GeV (the SM-EFT approach assumes Λ≫ v). In particular, at

energies around a few GeV the most important ∆L = 2 operators have canonical dimension

three, six, seven, and nine. To avoid confusion, when discussing the original gauge-invariant

SM-EFT ∆L = 2 operators, we denote their dimensions by dim-n with n = 5, 7, 9. When

discussing the operators after EWSB, which are only SU(3)c × U(1)em invariant, we refer

to them as dim-n operators (without the overline) where n = 3, 6, 7, 9.
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currents can be involved.

even more). Our universe is a 3 + 1 dimensional ”brane” sticked to the extra dimensions which are
wrapped up. And only gravitons can propagate across the extra dimensions and all SM particles
are restricted to the brane. But there is one exception, the right handed neutrino, since it has no
SM symmetry charges, it is not bounded to the brane and can propagates in the extra dimensions.
The main advantage of extra dimensions is that it can explain the mass scale hierarchy between the
electroweak scale (roughly 1 TeV) and the gravitational scale (Planck scale 1018GeV ). In warped
space, the gravitational scale is expressed as MF ⇡ M

2
2+�

P /R
�

2+� , nearly 1 TeV. This solves the
Puzzle of mass Hierarchy naturally, so it can be the best candidate for new physics beyond SM
without introductions of complicated structures.
If restricted to 1 + (3 + 1) (one extra-dimension) spacetime, the general geometrical setup is the
the orbifold (an orbit space) S1/Z2 in the warped dimension. In geometry this is a circle with a
permutation Z2 being excluded, the SM particles are restricted to the brane[56]:

 L(x) =

 
⌫Lx

eL(x)

!
eR(x)

qL(x) =

 
uLx

dL(x)

!
uR(x) dR(x) (2.51)

And one extra (bulk) neutrino singlet which can be written in the form of two two-component
spinors in the Weyl basis [57]:

N(x, y) =

 
⇠(x, y)
⌘̄(x, y)

!
(2.52)

The orbifold of the fifth dimension requires that N(x, y) = N(x, y+2⇡R), where y is the coordinate
of the fifth dimension and R is the radius of fifth compactified dimension. General assumption is
that ⇠ is symmetric and ⌘ is antisymmetric under y reflection: ⇠(x, y) = ⇠(x,�y) and ⌘(x, y) =
�⌘(x,�y). Next we introduce the � matrices in five dimensions[58]:

�µ =

 
0 �⌫

�̄µ 0

!
�4 =

 
�1 0
0 1

!

(2.53)
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LHDeϵijϵmn(LT
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ϵij(LT
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𝒞(9)
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𝒞(9)
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SM symmetry charges, it is not bounded to the brane and can propagates in the extra dimensions.
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Matching operators after EWSB, we focus on 
long-range mechanism with light neutrinos:
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Chiral EFT

The mesonic chiral Lagrangian at LO


The baryonic chiral Lagrangian at LO


NLO
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Chiral EFT
χEFT Lagrangian for these weak decay vertices is 


the lepton currents are introduced as external fields


And corresponding nuclear current
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In addition, the Lagrangian has operators with pions, nucleons, and two electrons, but

no neutrinos (see figure 2(c)), which give pion-exchange and short-range contact contribu-

tions to 0νββ. In this case new LECs arise from the hadronization of four-quark operators.

In the case of purely mesonic operators, these LECs are well determined [56, 57]. For

pion-nucleon and nucleon-nucleon operators at the moment they can only be estimated

with NDA.

In section 5 we then use the Lagrangian constructed in section 4 to derive the two-

nucleon operators (the so-called “neutrino potentials”) that mediate 0νββ.

4.1 The ∆L = 2 chiral Lagrangian

After evolving the ∆L = 2 operators to low energies, µ ∼ 2GeV, we match them to

χPT. The construction of the chiral Lagrangian closely follows that of the standard χPT

Lagrangians [47]. We describe the pions by

U = u2 = exp

(
iπ · τ
F0

)
, (4.1)

where τi are the Pauli matrices, F0 is the pion decay constant in the chiral limit, and

we use Fπ = 92.2MeV for the physical decay constant. We also introduce the nucleon

doublet N = (p n)T in terms of the proton (p) and neutron (n) fields. The pions transform

as U → LUR† and u → LuK† = KuR† under SU(2)L × SU(2)R transformations, while

the nucleon doublet transforms as N → KN . Additional ingredients are external scalar,

vector, and tensor sources in the quark-level Lagrangian, which, for our purposes, take the

following form

s+ ip = −2GF√
2

[
C(6)
SL (τ+) ēLCν̄

T
L + C(6)∗

SR (τ−) νTLCeL
]
,

s− ip = −2GF√
2

[
C(6)
SR (τ+) ēLCν̄

T
L + C(6)∗

SL (τ−) νTLCeL
]
,

lµ =
2GF√
2v

(τ+)

[
− 2vVudēLγµνL + v C(6)

VL ēRγµCν̄
T
L + C(7)

VL ēLCi
←→
∂ µν̄

T
L

]
+ h.c. ,

rµ =
2GF√
2v

(τ+)

[
v C(6)

VR ēRγµCν̄
T
L + C(7)

VR ēLCi
←→
∂ µν̄

T
L

]
+ h.c. ,

tµνR =
2GF√

2
(τ+)C(6)

T ēLσ
µνCν̄TL , (4.2)

where τ± = (τ1 ± iτ2)/2. The chiral Lagrangian is then given by chiral invariants con-

structed from the meson and baryon fields and the above spurions, which transform as

follows, rµ → RrµR†, lµ → LlµL†, s + ip → R(s + ip)L†, s − ip → L(s − ip)R†, and

tµνR → LtµνR R†. The dimension-9 operators, C(9)
1 and C(9)

4,5 , can not be written in terms of

the above sources and additional chiral constructions are required. The former transforms

as 5L × 1R while C(9)
4,5 transform as 3L × 3R. We will discuss their chiral representations

separately below.
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4.4 One-body currents for β decays

We now summarize the single β decay amplitude, which provides the building blocks nec-

essary to construct the full 0νββ amplitude. The single β decay amplitude involves two

types of diagrams, which either involve a single vertex or a single pion exchange between

the lepton and nucleon line. Using the Lagrangians constructed in the previous sections,

we write the amplitude as

An→pe−ν = N̄τ+
[
lµ + rµ

2
Jµ
V +

lµ − rµ
2

Jµ
A − s JS + ip JP + tRµν J

µν
T

]
N , (4.13)

with the sources given in eq. (4.2). As discussed in section 4.3, for some operators we will

need expressions through NLO in the chiral expansion. Up to NLO, the currents become

Jµ
V = gV (q

2)

(
vµ +

pµ + p′µ

2mN

)
+

igM (q2)

mN
εµναβvαSβqν ,

Jµ
A = −gA(q2)

(
2Sµ − vµ

2mN
2S · (p+ p′)

)
+

gP (q2)

2mN
2qµ S · q ,

JS = gS(q
2) ,

JP = B
gP (q2)

mN
S · q ,

Jµν
T = −2gT (q2)εµναβ

(
vα +

pα + p′α
2mN

)
Sβ − i

g′T (q
2)

2mN
(vµqν − vνqµ) . (4.14)

Here p and p′ stand for the momentum of the incoming neutron and outgoing proton,

respectively, and qµ = (q0, q) = pµ − p′µ. Furthermore, εµναβ is the totally antisymmetric

tensor, with ε0123 = +1. At LO in χPT the form factors are given by

gV (q
2) = gV = 1 , gA(q

2) = gA = 1.27 , gM (q2) = 1 + κ1 ,

gS(q
2) = − 4Bc5 =

(mn −mp)str
md −mu

, gP (q
2) = − gA

2mN

q2 +m2
π
,

gT (q
2) = gdT − guT ≃ 1 , g′T (q

2) ≃ 1 , (4.15)

where we followed the normalization of ref. [66].

Vector current conservation enforces gV (0) = 1, up to small isospin-breaking correc-

tions. For gA and κ1 we used the experimental values [58]. There is some disagreement

in the literature on the value of gM (0), with some authors using gM (0) = κ1 = 3.7, rather

than the correct gM (0) = 1 + κ1 = 4.7. The error appears to stem from one of the first

papers that studied the contribution of weak magnetism [67], which did not account for

the non-anomalous contribution to the isovector nucleon magnetic moment in the non-

relativistic limit. We notice that earlier papers, such as [18, 68], correctly use gM (0) = 4.7.

The isovector scalar charge gS(0) is related to the quark mass contribution to the neutron-

proton mass splitting [69]. Using (mn−mp)|str = 2.32MeV [70] andmd−mu = 2.5MeV [58]

gives gS(0) = 0.93, at the renormalization scale µ = 2GeV, in very good agreement with
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where we followed the normalization of ref. [66].

Vector current conservation enforces gV (0) = 1, up to small isospin-breaking correc-

tions. For gA and κ1 we used the experimental values [58]. There is some disagreement

in the literature on the value of gM (0), with some authors using gM (0) = κ1 = 3.7, rather

than the correct gM (0) = 1 + κ1 = 4.7. The error appears to stem from one of the first

papers that studied the contribution of weak magnetism [67], which did not account for

the non-anomalous contribution to the isovector nucleon magnetic moment in the non-

relativistic limit. We notice that earlier papers, such as [18, 68], correctly use gM (0) = 4.7.

The isovector scalar charge gS(0) is related to the quark mass contribution to the neutron-

proton mass splitting [69]. Using (mn−mp)|str = 2.32MeV [70] andmd−mu = 2.5MeV [58]

gives gS(0) = 0.93, at the renormalization scale µ = 2GeV, in very good agreement with
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In addition, the Lagrangian has operators with pions, nucleons, and two electrons, but

no neutrinos (see figure 2(c)), which give pion-exchange and short-range contact contribu-

tions to 0νββ. In this case new LECs arise from the hadronization of four-quark operators.

In the case of purely mesonic operators, these LECs are well determined [56, 57]. For

pion-nucleon and nucleon-nucleon operators at the moment they can only be estimated

with NDA.

In section 5 we then use the Lagrangian constructed in section 4 to derive the two-

nucleon operators (the so-called “neutrino potentials”) that mediate 0νββ.

4.1 The ∆L = 2 chiral Lagrangian

After evolving the ∆L = 2 operators to low energies, µ ∼ 2GeV, we match them to

χPT. The construction of the chiral Lagrangian closely follows that of the standard χPT

Lagrangians [47]. We describe the pions by

U = u2 = exp

(
iπ · τ
F0

)
, (4.1)

where τi are the Pauli matrices, F0 is the pion decay constant in the chiral limit, and

we use Fπ = 92.2MeV for the physical decay constant. We also introduce the nucleon

doublet N = (p n)T in terms of the proton (p) and neutron (n) fields. The pions transform

as U → LUR† and u → LuK† = KuR† under SU(2)L × SU(2)R transformations, while

the nucleon doublet transforms as N → KN . Additional ingredients are external scalar,

vector, and tensor sources in the quark-level Lagrangian, which, for our purposes, take the

following form

s+ ip = −2GF√
2

[
C(6)
SL (τ+) ēLCν̄

T
L + C(6)∗

SR (τ−) νTLCeL
]
,

s− ip = −2GF√
2

[
C(6)
SR (τ+) ēLCν̄

T
L + C(6)∗

SL (τ−) νTLCeL
]
,

lµ =
2GF√
2v

(τ+)

[
− 2vVudēLγµνL + v C(6)

VL ēRγµCν̄
T
L + C(7)

VL ēLCi
←→
∂ µν̄

T
L

]
+ h.c. ,

rµ =
2GF√
2v

(τ+)

[
v C(6)

VR ēRγµCν̄
T
L + C(7)

VR ēLCi
←→
∂ µν̄

T
L

]
+ h.c. ,

tµνR =
2GF√

2
(τ+)C(6)

T ēLσ
µνCν̄TL , (4.2)

where τ± = (τ1 ± iτ2)/2. The chiral Lagrangian is then given by chiral invariants con-

structed from the meson and baryon fields and the above spurions, which transform as

follows, rµ → RrµR†, lµ → LlµL†, s + ip → R(s + ip)L†, s − ip → L(s − ip)R†, and

tµνR → LtµνR R†. The dimension-9 operators, C(9)
1 and C(9)

4,5 , can not be written in terms of

the above sources and additional chiral constructions are required. The former transforms

as 5L × 1R while C(9)
4,5 transform as 3L × 3R. We will discuss their chiral representations

separately below.
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4.4 One-body currents for β decays

We now summarize the single β decay amplitude, which provides the building blocks nec-

essary to construct the full 0νββ amplitude. The single β decay amplitude involves two

types of diagrams, which either involve a single vertex or a single pion exchange between

the lepton and nucleon line. Using the Lagrangians constructed in the previous sections,

we write the amplitude as

An→pe−ν = N̄τ+
[
lµ + rµ

2
Jµ
V +

lµ − rµ
2

Jµ
A − s JS + ip JP + tRµν J

µν
T

]
N , (4.13)

with the sources given in eq. (4.2). As discussed in section 4.3, for some operators we will

need expressions through NLO in the chiral expansion. Up to NLO, the currents become

Jµ
V = gV (q

2)

(
vµ +

pµ + p′µ

2mN

)
+

igM (q2)

mN
εµναβvαSβqν ,

Jµ
A = −gA(q2)

(
2Sµ − vµ

2mN
2S · (p+ p′)

)
+

gP (q2)

2mN
2qµ S · q ,

JS = gS(q
2) ,

JP = B
gP (q2)

mN
S · q ,

Jµν
T = −2gT (q2)εµναβ

(
vα +

pα + p′α
2mN

)
Sβ − i

g′T (q
2)

2mN
(vµqν − vνqµ) . (4.14)

Here p and p′ stand for the momentum of the incoming neutron and outgoing proton,

respectively, and qµ = (q0, q) = pµ − p′µ. Furthermore, εµναβ is the totally antisymmetric

tensor, with ε0123 = +1. At LO in χPT the form factors are given by

gV (q
2) = gV = 1 , gA(q

2) = gA = 1.27 , gM (q2) = 1 + κ1 ,

gS(q
2) = − 4Bc5 =

(mn −mp)str
md −mu

, gP (q
2) = − gA

2mN

q2 +m2
π
,

gT (q
2) = gdT − guT ≃ 1 , g′T (q

2) ≃ 1 , (4.15)

where we followed the normalization of ref. [66].

Vector current conservation enforces gV (0) = 1, up to small isospin-breaking correc-

tions. For gA and κ1 we used the experimental values [58]. There is some disagreement

in the literature on the value of gM (0), with some authors using gM (0) = κ1 = 3.7, rather

than the correct gM (0) = 1 + κ1 = 4.7. The error appears to stem from one of the first

papers that studied the contribution of weak magnetism [67], which did not account for

the non-anomalous contribution to the isovector nucleon magnetic moment in the non-

relativistic limit. We notice that earlier papers, such as [18, 68], correctly use gM (0) = 4.7.

The isovector scalar charge gS(0) is related to the quark mass contribution to the neutron-

proton mass splitting [69]. Using (mn−mp)|str = 2.32MeV [70] andmd−mu = 2.5MeV [58]

gives gS(0) = 0.93, at the renormalization scale µ = 2GeV, in very good agreement with
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In addition, the Lagrangian has operators with pions, nucleons, and two electrons, but

no neutrinos (see figure 2(c)), which give pion-exchange and short-range contact contribu-

tions to 0νββ. In this case new LECs arise from the hadronization of four-quark operators.

In the case of purely mesonic operators, these LECs are well determined [56, 57]. For

pion-nucleon and nucleon-nucleon operators at the moment they can only be estimated

with NDA.
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nucleon operators (the so-called “neutrino potentials”) that mediate 0νββ.
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VR ēRγµCν̄
T
L + C(7)

VR ēLCi
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where τ± = (τ1 ± iτ2)/2. The chiral Lagrangian is then given by chiral invariants con-

structed from the meson and baryon fields and the above spurions, which transform as

follows, rµ → RrµR†, lµ → LlµL†, s + ip → R(s + ip)L†, s − ip → L(s − ip)R†, and

tµνR → LtµνR R†. The dimension-9 operators, C(9)
1 and C(9)

4,5 , can not be written in terms of

the above sources and additional chiral constructions are required. The former transforms

as 5L × 1R while C(9)
4,5 transform as 3L × 3R. We will discuss their chiral representations

separately below.
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In addition, the Lagrangian has operators with pions, nucleons, and two electrons, but

no neutrinos (see figure 2(c)), which give pion-exchange and short-range contact contribu-

tions to 0νββ. In this case new LECs arise from the hadronization of four-quark operators.

In the case of purely mesonic operators, these LECs are well determined [56, 57]. For

pion-nucleon and nucleon-nucleon operators at the moment they can only be estimated

with NDA.

In section 5 we then use the Lagrangian constructed in section 4 to derive the two-

nucleon operators (the so-called “neutrino potentials”) that mediate 0νββ.
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U = u2 = exp

(
iπ · τ
F0

)
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where τi are the Pauli matrices, F0 is the pion decay constant in the chiral limit, and

we use Fπ = 92.2MeV for the physical decay constant. We also introduce the nucleon

doublet N = (p n)T in terms of the proton (p) and neutron (n) fields. The pions transform

as U → LUR† and u → LuK† = KuR† under SU(2)L × SU(2)R transformations, while
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with NDA.
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T
L + C(6)∗

SR (τ−) νTLCeL
]
,

s− ip = −2GF√
2

[
C(6)
SR (τ+) ēLCν̄
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4.4 One-body currents for β decays

We now summarize the single β decay amplitude, which provides the building blocks nec-

essary to construct the full 0νββ amplitude. The single β decay amplitude involves two

types of diagrams, which either involve a single vertex or a single pion exchange between

the lepton and nucleon line. Using the Lagrangians constructed in the previous sections,

we write the amplitude as

An→pe−ν = N̄τ+
[
lµ + rµ

2
Jµ
V +

lµ − rµ
2

Jµ
A − s JS + ip JP + tRµν J

µν
T

]
N , (4.13)

with the sources given in eq. (4.2). As discussed in section 4.3, for some operators we will

need expressions through NLO in the chiral expansion. Up to NLO, the currents become

Jµ
V = gV (q

2)

(
vµ +

pµ + p′µ

2mN

)
+

igM (q2)

mN
εµναβvαSβqν ,

Jµ
A = −gA(q2)

(
2Sµ − vµ

2mN
2S · (p+ p′)

)
+

gP (q2)

2mN
2qµ S · q ,

JS = gS(q
2) ,

JP = B
gP (q2)

mN
S · q ,

Jµν
T = −2gT (q2)εµναβ

(
vα +

pα + p′α
2mN

)
Sβ − i

g′T (q
2)

2mN
(vµqν − vνqµ) . (4.14)

Here p and p′ stand for the momentum of the incoming neutron and outgoing proton,

respectively, and qµ = (q0, q) = pµ − p′µ. Furthermore, εµναβ is the totally antisymmetric

tensor, with ε0123 = +1. At LO in χPT the form factors are given by

gV (q
2) = gV = 1 , gA(q

2) = gA = 1.27 , gM (q2) = 1 + κ1 ,

gS(q
2) = − 4Bc5 =

(mn −mp)str
md −mu

, gP (q
2) = − gA

2mN

q2 +m2
π
,

gT (q
2) = gdT − guT ≃ 1 , g′T (q

2) ≃ 1 , (4.15)

where we followed the normalization of ref. [66].

Vector current conservation enforces gV (0) = 1, up to small isospin-breaking correc-

tions. For gA and κ1 we used the experimental values [58]. There is some disagreement

in the literature on the value of gM (0), with some authors using gM (0) = κ1 = 3.7, rather

than the correct gM (0) = 1 + κ1 = 4.7. The error appears to stem from one of the first

papers that studied the contribution of weak magnetism [67], which did not account for

the non-anomalous contribution to the isovector nucleon magnetic moment in the non-

relativistic limit. We notice that earlier papers, such as [18, 68], correctly use gM (0) = 4.7.

The isovector scalar charge gS(0) is related to the quark mass contribution to the neutron-

proton mass splitting [69]. Using (mn−mp)|str = 2.32MeV [70] andmd−mu = 2.5MeV [58]

gives gS(0) = 0.93, at the renormalization scale µ = 2GeV, in very good agreement with
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In addition, the Lagrangian has operators with pions, nucleons, and two electrons, but

no neutrinos (see figure 2(c)), which give pion-exchange and short-range contact contribu-

tions to 0νββ. In this case new LECs arise from the hadronization of four-quark operators.

In the case of purely mesonic operators, these LECs are well determined [56, 57]. For

pion-nucleon and nucleon-nucleon operators at the moment they can only be estimated

with NDA.

In section 5 we then use the Lagrangian constructed in section 4 to derive the two-

nucleon operators (the so-called “neutrino potentials”) that mediate 0νββ.

4.1 The ∆L = 2 chiral Lagrangian

After evolving the ∆L = 2 operators to low energies, µ ∼ 2GeV, we match them to

χPT. The construction of the chiral Lagrangian closely follows that of the standard χPT

Lagrangians [47]. We describe the pions by

U = u2 = exp

(
iπ · τ
F0

)
, (4.1)

where τi are the Pauli matrices, F0 is the pion decay constant in the chiral limit, and

we use Fπ = 92.2MeV for the physical decay constant. We also introduce the nucleon

doublet N = (p n)T in terms of the proton (p) and neutron (n) fields. The pions transform

as U → LUR† and u → LuK† = KuR† under SU(2)L × SU(2)R transformations, while

the nucleon doublet transforms as N → KN . Additional ingredients are external scalar,

vector, and tensor sources in the quark-level Lagrangian, which, for our purposes, take the

following form

s+ ip = −2GF√
2

[
C(6)
SL (τ+) ēLCν̄

T
L + C(6)∗

SR (τ−) νTLCeL
]
,

s− ip = −2GF√
2

[
C(6)
SR (τ+) ēLCν̄

T
L + C(6)∗

SL (τ−) νTLCeL
]
,

lµ =
2GF√
2v

(τ+)

[
− 2vVudēLγµνL + v C(6)

VL ēRγµCν̄
T
L + C(7)

VL ēLCi
←→
∂ µν̄

T
L

]
+ h.c. ,

rµ =
2GF√
2v

(τ+)

[
v C(6)

VR ēRγµCν̄
T
L + C(7)

VR ēLCi
←→
∂ µν̄

T
L

]
+ h.c. ,

tµνR =
2GF√

2
(τ+)C(6)

T ēLσ
µνCν̄TL , (4.2)

where τ± = (τ1 ± iτ2)/2. The chiral Lagrangian is then given by chiral invariants con-

structed from the meson and baryon fields and the above spurions, which transform as

follows, rµ → RrµR†, lµ → LlµL†, s + ip → R(s + ip)L†, s − ip → L(s − ip)R†, and

tµνR → LtµνR R†. The dimension-9 operators, C(9)
1 and C(9)

4,5 , can not be written in terms of

the above sources and additional chiral constructions are required. The former transforms

as 5L × 1R while C(9)
4,5 transform as 3L × 3R. We will discuss their chiral representations

separately below.
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VL ēRγµCν̄
T
L + C(7)

VL ēLCi
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where τ± = (τ1 ± iτ2)/2. The chiral Lagrangian is then given by chiral invariants con-

structed from the meson and baryon fields and the above spurions, which transform as

follows, rµ → RrµR†, lµ → LlµL†, s + ip → R(s + ip)L†, s − ip → L(s − ip)R†, and

tµνR → LtµνR R†. The dimension-9 operators, C(9)
1 and C(9)

4,5 , can not be written in terms of

the above sources and additional chiral constructions are required. The former transforms

as 5L × 1R while C(9)
4,5 transform as 3L × 3R. We will discuss their chiral representations

separately below.
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In addition, the Lagrangian has operators with pions, nucleons, and two electrons, but

no neutrinos (see figure 2(c)), which give pion-exchange and short-range contact contribu-

tions to 0νββ. In this case new LECs arise from the hadronization of four-quark operators.

In the case of purely mesonic operators, these LECs are well determined [56, 57]. For

pion-nucleon and nucleon-nucleon operators at the moment they can only be estimated

with NDA.

In section 5 we then use the Lagrangian constructed in section 4 to derive the two-

nucleon operators (the so-called “neutrino potentials”) that mediate 0νββ.

4.1 The ∆L = 2 chiral Lagrangian

After evolving the ∆L = 2 operators to low energies, µ ∼ 2GeV, we match them to

χPT. The construction of the chiral Lagrangian closely follows that of the standard χPT

Lagrangians [47]. We describe the pions by

U = u2 = exp

(
iπ · τ
F0

)
, (4.1)

where τi are the Pauli matrices, F0 is the pion decay constant in the chiral limit, and

we use Fπ = 92.2MeV for the physical decay constant. We also introduce the nucleon

doublet N = (p n)T in terms of the proton (p) and neutron (n) fields. The pions transform

as U → LUR† and u → LuK† = KuR† under SU(2)L × SU(2)R transformations, while

the nucleon doublet transforms as N → KN . Additional ingredients are external scalar,

vector, and tensor sources in the quark-level Lagrangian, which, for our purposes, take the

following form
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tµνR → LtµνR R†. The dimension-9 operators, C(9)
1 and C(9)

4,5 , can not be written in terms of

the above sources and additional chiral constructions are required. The former transforms

as 5L × 1R while C(9)
4,5 transform as 3L × 3R. We will discuss their chiral representations

separately below.

– 11 –

J
H
E
P
1
2
(
2
0
1
7
)
0
8
2

In addition, the Lagrangian has operators with pions, nucleons, and two electrons, but

no neutrinos (see figure 2(c)), which give pion-exchange and short-range contact contribu-

tions to 0νββ. In this case new LECs arise from the hadronization of four-quark operators.

In the case of purely mesonic operators, these LECs are well determined [56, 57]. For

pion-nucleon and nucleon-nucleon operators at the moment they can only be estimated

with NDA.

In section 5 we then use the Lagrangian constructed in section 4 to derive the two-

nucleon operators (the so-called “neutrino potentials”) that mediate 0νββ.

4.1 The ∆L = 2 chiral Lagrangian

After evolving the ∆L = 2 operators to low energies, µ ∼ 2GeV, we match them to

χPT. The construction of the chiral Lagrangian closely follows that of the standard χPT

Lagrangians [47]. We describe the pions by

U = u2 = exp

(
iπ · τ
F0

)
, (4.1)

where τi are the Pauli matrices, F0 is the pion decay constant in the chiral limit, and

we use Fπ = 92.2MeV for the physical decay constant. We also introduce the nucleon

doublet N = (p n)T in terms of the proton (p) and neutron (n) fields. The pions transform

as U → LUR† and u → LuK† = KuR† under SU(2)L × SU(2)R transformations, while

the nucleon doublet transforms as N → KN . Additional ingredients are external scalar,

vector, and tensor sources in the quark-level Lagrangian, which, for our purposes, take the

following form

s+ ip = −2GF√
2

[
C(6)
SL (τ+) ēLCν̄
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4.4 One-body currents for β decays

We now summarize the single β decay amplitude, which provides the building blocks nec-

essary to construct the full 0νββ amplitude. The single β decay amplitude involves two

types of diagrams, which either involve a single vertex or a single pion exchange between

the lepton and nucleon line. Using the Lagrangians constructed in the previous sections,

we write the amplitude as

An→pe−ν = N̄τ+
[
lµ + rµ

2
Jµ
V +

lµ − rµ
2

Jµ
A − s JS + ip JP + tRµν J

µν
T

]
N , (4.13)

with the sources given in eq. (4.2). As discussed in section 4.3, for some operators we will

need expressions through NLO in the chiral expansion. Up to NLO, the currents become

Jµ
V = gV (q

2)

(
vµ +

pµ + p′µ

2mN

)
+

igM (q2)

mN
εµναβvαSβqν ,

Jµ
A = −gA(q2)

(
2Sµ − vµ

2mN
2S · (p+ p′)

)
+

gP (q2)

2mN
2qµ S · q ,

JS = gS(q
2) ,

JP = B
gP (q2)

mN
S · q ,

Jµν
T = −2gT (q2)εµναβ

(
vα +

pα + p′α
2mN

)
Sβ − i

g′T (q
2)

2mN
(vµqν − vνqµ) . (4.14)

Here p and p′ stand for the momentum of the incoming neutron and outgoing proton,

respectively, and qµ = (q0, q) = pµ − p′µ. Furthermore, εµναβ is the totally antisymmetric

tensor, with ε0123 = +1. At LO in χPT the form factors are given by

gV (q
2) = gV = 1 , gA(q

2) = gA = 1.27 , gM (q2) = 1 + κ1 ,

gS(q
2) = − 4Bc5 =

(mn −mp)str
md −mu

, gP (q
2) = − gA

2mN

q2 +m2
π
,

gT (q
2) = gdT − guT ≃ 1 , g′T (q

2) ≃ 1 , (4.15)

where we followed the normalization of ref. [66].

Vector current conservation enforces gV (0) = 1, up to small isospin-breaking correc-

tions. For gA and κ1 we used the experimental values [58]. There is some disagreement

in the literature on the value of gM (0), with some authors using gM (0) = κ1 = 3.7, rather

than the correct gM (0) = 1 + κ1 = 4.7. The error appears to stem from one of the first

papers that studied the contribution of weak magnetism [67], which did not account for

the non-anomalous contribution to the isovector nucleon magnetic moment in the non-

relativistic limit. We notice that earlier papers, such as [18, 68], correctly use gM (0) = 4.7.

The isovector scalar charge gS(0) is related to the quark mass contribution to the neutron-

proton mass splitting [69]. Using (mn−mp)|str = 2.32MeV [70] andmd−mu = 2.5MeV [58]

gives gS(0) = 0.93, at the renormalization scale µ = 2GeV, in very good agreement with
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In addition, the Lagrangian has operators with pions, nucleons, and two electrons, but

no neutrinos (see figure 2(c)), which give pion-exchange and short-range contact contribu-

tions to 0νββ. In this case new LECs arise from the hadronization of four-quark operators.

In the case of purely mesonic operators, these LECs are well determined [56, 57]. For

pion-nucleon and nucleon-nucleon operators at the moment they can only be estimated

with NDA.

In section 5 we then use the Lagrangian constructed in section 4 to derive the two-

nucleon operators (the so-called “neutrino potentials”) that mediate 0νββ.

4.1 The ∆L = 2 chiral Lagrangian

After evolving the ∆L = 2 operators to low energies, µ ∼ 2GeV, we match them to

χPT. The construction of the chiral Lagrangian closely follows that of the standard χPT

Lagrangians [47]. We describe the pions by

U = u2 = exp

(
iπ · τ
F0

)
, (4.1)

where τi are the Pauli matrices, F0 is the pion decay constant in the chiral limit, and

we use Fπ = 92.2MeV for the physical decay constant. We also introduce the nucleon

doublet N = (p n)T in terms of the proton (p) and neutron (n) fields. The pions transform

as U → LUR† and u → LuK† = KuR† under SU(2)L × SU(2)R transformations, while

the nucleon doublet transforms as N → KN . Additional ingredients are external scalar,

vector, and tensor sources in the quark-level Lagrangian, which, for our purposes, take the

following form

s+ ip = −2GF√
2

[
C(6)
SL (τ+) ēLCν̄

T
L + C(6)∗

SR (τ−) νTLCeL
]
,

s− ip = −2GF√
2

[
C(6)
SR (τ+) ēLCν̄

T
L + C(6)∗

SL (τ−) νTLCeL
]
,

lµ =
2GF√
2v

(τ+)

[
− 2vVudēLγµνL + v C(6)

VL ēRγµCν̄
T
L + C(7)

VL ēLCi
←→
∂ µν̄

T
L

]
+ h.c. ,

rµ =
2GF√
2v

(τ+)

[
v C(6)

VR ēRγµCν̄
T
L + C(7)

VR ēLCi
←→
∂ µν̄

T
L

]
+ h.c. ,

tµνR =
2GF√

2
(τ+)C(6)

T ēLσ
µνCν̄TL , (4.2)

where τ± = (τ1 ± iτ2)/2. The chiral Lagrangian is then given by chiral invariants con-

structed from the meson and baryon fields and the above spurions, which transform as

follows, rµ → RrµR†, lµ → LlµL†, s + ip → R(s + ip)L†, s − ip → L(s − ip)R†, and

tµνR → LtµνR R†. The dimension-9 operators, C(9)
1 and C(9)

4,5 , can not be written in terms of

the above sources and additional chiral constructions are required. The former transforms

as 5L × 1R while C(9)
4,5 transform as 3L × 3R. We will discuss their chiral representations

separately below.
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VR ēRγµCν̄
T
L + C(7)

VR ēLCi
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Decay width
The decay width can be obtained from S-matrix 
theory


The reaction matrix element can be expressed as


This is a typical second order process

R0ν =
1

2 ∫ dx∫ dy⟨p1p2; f |T{eiH0(x0−y0)Hint( ⃗x )Hint( ⃗y )} | i⟩

Doi et al.  PTPS83,1(1985)



Decay width
After tedious derivation, we come to


This agrees with earlier calculations based on LR 
symmetric model

Γ0ν =
|mββ |2

m2
e

𝒞mm + |
C(6)

VL

2Vud
|2 𝒞ηη + |

C(6)
VR

2Vud
|2 𝒞λλ

+Re(
mββC(6)

VR

2meVud
)𝒞mλ − Re(

mββC(6)
VL

2meVud
)𝒞mη − Re(

C(6)
VLC(6)

VR

4 |Vud |2 )𝒞λη



Decay width

Here G’s are phase space factors and M’s the 
matrix elements

3

The coe�cients C’s have the forms [41]:

Cmm = G01|M0⌫
m |2

Cm� = �G03M
0⌫
m M0⌫

!� + G04M
0⌫
m M0⌫

q+

Cm⌘ = G03M
0⌫
m M0⌫

!+ � G04M
0⌫
m M0⌫

q� � G05M
0⌫
m M0⌫

P

+ G06M
0⌫
m M0⌫

R

C�� = G02|M0⌫
!�|2 + G011|M0⌫

q+|2
C⌘⌘ = G02|M0⌫

!+|2 + G011|M0⌫
q�|2 + G08|M0⌫

P |2
+ G09|M0⌫

R |2 � G07M
0⌫
P M0⌫

R

C�⌘ = �2G02M
0⌫
!�M

0⌫
!+ � G010(M

0⌫
q+M

0⌫
!+ +M0⌫

q�M
0⌫
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Here we use a di↵erent form of phase space factors from
that of [41] to better separate the e↵ects of the s-wave
and p-wave electrons. They are obtained from the phase
space factors of [41] as:

G01,02,03 = G01,02,03

G04 = (3meR)G04

G05,06 = (meR)G05,06

G07,08,09 = (meR)2G07,08,09

G10 = 3(meR)2G̃010

G11 = (3meR)2G̃011

The NMEs can be written as sums from individual
NMEs:
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We notice that the reaction matrix has the form R ⇠
Mfe(✏1, ✏2) [36], where M contains the information of the
neutrino potential as well as nuclear transition ampli-
tude, while fe is a functional of electron wave functions.
Then, for diagonal terms such as Cmm, R ⇠ R ⌘ M

pG.
This newly defined termR can therefore be used for com-
parison of general magnitude of components for various
mechanisms, as we will show in subsequent sections.

The individual NMEs MI can be written in a general
form [41] :
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In such a treatment, the input from nuclear many-body
approaches are from the so-called two-body transition

densities(TBTD) hf ||[c†p1c†p2]J [c̃n2c̃n1]J ||ii. For our cal-
culations, the TBTDs are obtained from the NuShellX
code [42].
The neutrino expotential hI(r, r+) can be written for
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Here k refers to contributions from di↵erent components
of the weak current. And ~r = ~rm � ~rn and ~r+ = (~rm +
~rn)/2 are the relative distance and the center of mass
coordinate of the two decaying nucleons respectively. The
short range correlations (src’s) between the two nucleon
is taken into account by the radial function fsrc(r). In
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that of [41] to better separate the e↵ects of the s-wave
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We notice that the reaction matrix has the form R ⇠
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neutrino potential as well as nuclear transition ampli-
tude, while fe is a functional of electron wave functions.
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This newly defined termR can therefore be used for com-
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short range correlations (src’s) between the two nucleon
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Detailed expressions for NMEs
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Here we use a di↵erent form of phase space factors from
that of [41] to better separate the e↵ects of the s-wave
and p-wave electrons. They are obtained from the phase
space factors of [41] as:
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Mfe(✏1, ✏2) [36], where M contains the information of the
neutrino potential as well as nuclear transition ampli-
tude, while fe is a functional of electron wave functions.
Then, for diagonal terms such as Cmm, R ⇠ R ⌘ M

pG.
This newly defined termR can therefore be used for com-
parison of general magnitude of components for various
mechanisms, as we will show in subsequent sections.
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of the weak current. And ~r = ~rm � ~rn and ~r+ = (~rm +
~rn)/2 are the relative distance and the center of mass
coordinate of the two decaying nucleons respectively. The
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Nuclear many-body 
methods

For double beta decay calculations, various many-
body approaches have been adopted:


Nuclear Shell Model


Quasi-particle Random phase approximation (QRPA)


Generator coordinator method (GCM)


Interacting Boson model (IBM-2)


……



Results

Mass term and ω term are basically the same

Fang et al. In preparation5

NME 76Ge!76Se 82Se!82Kr 130Te!130Xe 136Xe!136Ba
jun45 jj44b jun45 jj44b jj55a GCN50:82 jj55a GCN50:82

Mm

F -0.665 -0.601 -0.624 -0.523 -0.668 -0.701 -0.574 -0.567

GT

AA 3.584 3.278 3.360 2.860 3.147 3.180 2.648 2.549
AP -1.090 -0.960 -1.021 -0.834 -0.979 -1.034 -0.820 -0.829
PP 0.344 0.300 0.321 0.261 0.313 0.335 0.260 0.268
MM 0.247 0.215 0.229 0.188 0.227 0.244 0.188 0.194
total 3.085 2.833 2.889 2.474 2.708 2.724 2.277 2.183

T

AP -0.013 -0.004 -0.014 -0.012 0.008 0.015 0.002 0.014
PP 0.002 -0.001 0.003 0.003 -0.006 -0.007 -0.003 -0.006
MM -0.001 -0.000 -0.001 -0.002 0.003 0.003 0.001 0.002
total -0.012 -0.004 -0.013 -0.010 0.004 0.010 -0.000 0.010

M!±

F -0.637 -0.575 -0.597 -0.500 -0.637 -0.669 -0.545 -0.540

GT

AA 3.276 2.980 3.073 2.596 2.883 2.931 2.427 2.351
AP -1.044 -0.919 -0.978 -0.798 -0.939 -0.993 -0.786 -0.795
PP 0.333 0.290 0.310 0.252 0.303 0.324 0.252 0.259
MM 0.239 0.208 0.221 0.181 0.220 0.236 0.182 0.188

GT+total 2.803 2.558 2.626 2.231 2.466 2.498 2.075 2.002
GT�total 2.325 2.172 2.184 1.789 2.026 2.026 2.711 2.626

T

AP -0.012 -0.003 -0.013 -0.011 0.009 0.015 0.003 0.014
PP 0.002 -0.001 0.003 0.003 -0.006 -0.007 -0.003 -0.006
MM -0.001 -0.000 -0.001 -0.002 0.003 0.003 0.001 0.002

T+total -0.011 -0.004 -0.012 -0.010 0.005 0.010 0.000 0.010
T�total -0.0013 -0.004 -0.014 -0.014 -0.001 0.004 -0.001 0.006

Mq±

F -0.379 -0.351 -0.359 -0.304 -0.408 -0.417 -0.358 -0.342

GT

AA 3.210 2.981 3.016 2.605 2.781 2.751 2.348 2.209
AP 4.842 4.317 4.571 3.741 4.267 4.425 3.607 3.563
PP -1.943 -1.706 -1.829 -1.479 -1.731 -1.827 -1.454 -1.468
MM -1.874 -1.636 -1.745 -1.426 -1.708 -1.825 -1.419 -1.456

GT+total 7.983 7.228 7.502 6.293 7.026 7.173 5.920 5.760
GT�total 4.235 3.956 4.012 3.441 3.610 3.523 3.082 2.848

T

AA -0.056 -0.033 -0.055 -0.042 -0.031 -0.009 -0.031 0.002
AP 0.004 -0.001 0.006 0.008 -0.018 -0.018 -0.007 -0.015
PP 0.000 0.001 -0.001 -0.003 0.007 0.005 0.002 0.003
MM 0.000 -0.000 -0.000 -0.001 0.001 0.001 0.000 0.001

T+total -0.051 -0.034 -0.050 -0.035 -0.043 -0.023 -0.036 -0.012
T�total -0.051 -0.034 -0.050 -0.037 -0.041 -0.021 -0.036 -0.009

MR
GT 4.256 3.713 4.037 3.314 4.686 5.048 3.948 4.080
T 0.014 0.004 0.018 0.028 -0.056 -0.056 -0.014 -0.042

MP -0.431 -0.279 -0.428 -0.152 -0.498 -0.425 -0.289 -0.255

TABLE I. 0⌫��-decay NMEs for 76Ge, 82Se, 130Te and 136Xe from LSSM calculations. Here, for each term we list all the
components from di↵erent parts as defined in eq.(11). For each nuclei, we present results from two di↵erent Hamiltonians as
indicated in text.

terms. This once again implies the complexity of power-
counting under the nuclear environment. In fact, the PP
and MM components now serve as important cancella-
tions to the AA and AP components. They nearly cancel
contributions of AP, allowing for a similar magnitude of
MqGT and MGT . On the other hand, the Tensor part,
as in mass or ! terms, can be safely neglected. This is
common in LSSM calculations while QRPA suggests that
the magnitude of Tensor part is about 10%. the reason
may stem from the missing orbitals in LSSM compared
to QRPA and still needs investigation.

For the GT part of the so-called relativistic (R-) term
[27], despite the fact that the weak-magnetism current
are supposed to be NLO, its magnitude is of the LO
size irrespective of nucleus or Hamiltonian. For the two
lighter nuclei, MRGT is basically the same as MqGT and

for the two heavier nuclei, it is even larger than any other
NMEs for LR symmetric model. This suggests that al-
though it is counted as NLO because of the factor q/MN ,
it is actually giving LO contributions mainly due to a
large µp � µn [44]. We will give a more detailed analysis
in subsequent sections. Compared to the GT part, the
tensor part is again negligible.

The last term to be discussed is the P term. Com-
pared to other terms, it is somehow heavily suppressed
due to its special operator structure. In previous calcu-
lation [23], the change of NME signs for di↵erent nuclei
is observed, but for our calculation, we find for di↵er-
ent nuclei, it has always the same negative sign for NME
values. While jun45 and jj44b gives quite di↵erent pre-
dictions, the results from jj55a and GCN50:82 are closer,
the di↵erence is about 10%. Meanwhile, our results dif-
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MM becomes LO for q term


Larger R term than expected
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total -0.012 -0.004 -0.013 -0.010 0.004 0.010 -0.000 0.010

M!

F -0.637 -0.575 -0.597 -0.500 -0.637 -0.669 -0.545 -0.540

GT

AA 3.276 2.980 3.073 2.596 2.883 2.931 2.427 2.351
AP -1.044 -0.919 -0.978 -0.798 -0.939 -0.993 -0.786 -0.795
PP 0.333 0.290 0.310 0.252 0.303 0.324 0.252 0.259
MM 0.239 0.208 0.221 0.181 0.220 0.236 0.182 0.188
total 2.803 2.558 2.626 2.231 2.466 2.498 2.075 2.002

T

AP -0.012 -0.003 -0.013 -0.011 0.009 0.015 0.003 0.014
PP 0.002 -0.001 0.003 0.003 -0.006 -0.007 -0.003 -0.006
MM -0.001 -0.000 -0.001 -0.002 0.003 0.003 0.001 0.002
total -0.011 -0.004 -0.012 -0.010 0.005 0.010 0.000 0.010

Mq

F -0.379 -0.351 -0.359 -0.304 -0.408 -0.417 -0.358 -0.342

GT

AA 3.210 2.981 3.016 2.605 2.781 2.751 2.348 2.209
AP 4.842 4.317 4.571 3.741 4.267 4.425 3.607 3.563
PP -1.943 -1.706 -1.829 -1.479 -1.731 -1.827 -1.454 -1.468
MM -1.874 -1.636 -1.745 -1.426 -1.708 -1.825 -1.419 -1.456
total 4.235 3.956 4.012 3.441 3.610 3.523 3.082 2.848

T

AA -0.056 -0.033 -0.055 -0.042 -0.031 -0.009 -0.031 0.002
AP 0.004 -0.001 0.006 0.008 -0.018 -0.018 -0.007 -0.015
PP 0.000 0.001 -0.001 -0.003 0.007 0.005 0.002 0.003
MM 0.000 -0.000 -0.000 -0.001 0.001 0.001 0.000 0.001
total -0.051 -0.034 -0.050 -0.037 -0.041 -0.021 -0.036 -0.009

MR
GT 4.235 3.713 4.037 3.314 4.686 5.048 3.948 4.080
T 0.014 0.004 0.018 0.028 -0.056 -0.056 -0.014 -0.042

MP -0.431 -0.279 -0.428 -0.152 -0.498 -0.425 -0.289 -0.255

TABLE I. 0⌫��-decay NMEs for 76Ge, 82Se, 130Te and 136Xe from LSSM calculations. Here, for each term we list all the
components from di↵erent parts as defined in eq.(11). For each nuclei, we present results from two di↵erent Hamiltonians as
indicated in text.

size irrespective of nucleus or Hamiltonian. For the two
lighter nuclei, MRGT is basically the same as MqGT and
for the two heavier nuclei, it is even larger than any other
NMEs for LR symmetric model. This suggests that al-
though it is counted as NLO because of the factor q/MN ,
it is actually giving LO contributions mainly due to a
large µp � µn [44]. We will give a more detailed analysis
in subsequent sections. Compared to the GT part, the
tensor part is again negligible.

The last term to be discussed is the P term. Com-
pared to other terms, it is somehow heavily suppressed
due to its special operator structure. In previous calcu-
lation [23], the change of NME signs for di↵erent nuclei
is observed, but for our calculation, we find for di↵er-
ent nuclei, it has always the same negative sign for NME
values. While jun45 and jj44b gives quite di↵erent pre-
dictions, the results from jj55a and GCN50:82 are closer,
the di↵erence is about 10%. Meanwhile, our results dif-
fers largely from that of LSSM calculation in [52] by more
than a factor of two, but close to QRPA calculation in

[24].

B. Enhancement of MM and PP components for
the q term

The weak magnetic current comes out to be a NLO
contribution [44]. The argument of power-counting is
valid if the exchange momentum is smaller or around
m⇡. Then for the NME, the MM part is a scalar product
of two weak magnetic currents, it is supposed to be sup-
pressed. For the light neutrino mass mechanism, this is
the case as MM contributes only several percent in [40]
and for our calculation. However, for the q term, dif-
ferent behavior is observed. Although the magnitude of
MM component is still smaller than AA or AP as well
as PP, its relative ratio to AA is now much larger than
that of mass term. Such behavior has already observed
for the heavy neutrino mass mechanism [40] where the
higher exchange momentum dominates in the momen-
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NME 76Ge!76Se 82Se!82Kr 130Te!130Xe 136Xe!136Ba
jun45 jj44b jun45 jj44b jj55a GCN50:82 jj55a GCN50:82

Mm

F -0.665 -0.601 -0.624 -0.523 -0.668 -0.701 -0.574 -0.567

GT

AA 3.584 3.278 3.360 2.860 3.147 3.180 2.648 2.549
AP -1.090 -0.960 -1.021 -0.834 -0.979 -1.034 -0.820 -0.829
PP 0.344 0.300 0.321 0.261 0.313 0.335 0.260 0.268
MM 0.247 0.215 0.229 0.188 0.227 0.244 0.188 0.194
total 3.085 2.833 2.889 2.474 2.708 2.724 2.277 2.183

T

AP -0.013 -0.004 -0.014 -0.012 0.008 0.015 0.002 0.014
PP 0.002 -0.001 0.003 0.003 -0.006 -0.007 -0.003 -0.006
MM -0.001 -0.000 -0.001 -0.002 0.003 0.003 0.001 0.002
total -0.012 -0.004 -0.013 -0.010 0.004 0.010 -0.000 0.010

M!±

F -0.637 -0.575 -0.597 -0.500 -0.637 -0.669 -0.545 -0.540

GT

AA 3.276 2.980 3.073 2.596 2.883 2.931 2.427 2.351
AP -1.044 -0.919 -0.978 -0.798 -0.939 -0.993 -0.786 -0.795
PP 0.333 0.290 0.310 0.252 0.303 0.324 0.252 0.259
MM 0.239 0.208 0.221 0.181 0.220 0.236 0.182 0.188

GT+total 2.803 2.558 2.626 2.231 2.466 2.498 2.075 2.002
GT�total 2.325 2.172 2.184 1.789 2.026 2.026 2.711 2.626

T

AP -0.012 -0.003 -0.013 -0.011 0.009 0.015 0.003 0.014
PP 0.002 -0.001 0.003 0.003 -0.006 -0.007 -0.003 -0.006
MM -0.001 -0.000 -0.001 -0.002 0.003 0.003 0.001 0.002

T+total -0.011 -0.004 -0.012 -0.010 0.005 0.010 0.000 0.010
T�total -0.0013 -0.004 -0.014 -0.014 -0.001 0.004 -0.001 0.006

Mq±

F -0.379 -0.351 -0.359 -0.304 -0.408 -0.417 -0.358 -0.342

GT

AA 3.210 2.981 3.016 2.605 2.781 2.751 2.348 2.209
AP 4.842 4.317 4.571 3.741 4.267 4.425 3.607 3.563
PP -1.943 -1.706 -1.829 -1.479 -1.731 -1.827 -1.454 -1.468
MM -1.874 -1.636 -1.745 -1.426 -1.708 -1.825 -1.419 -1.456

GT+total 7.983 7.228 7.502 6.293 7.026 7.173 5.920 5.760
GT�total 4.235 3.956 4.012 3.441 3.610 3.523 3.082 2.848

T

AA -0.056 -0.033 -0.055 -0.042 -0.031 -0.009 -0.031 0.002
AP 0.004 -0.001 0.006 0.008 -0.018 -0.018 -0.007 -0.015
PP 0.000 0.001 -0.001 -0.003 0.007 0.005 0.002 0.003
MM 0.000 -0.000 -0.000 -0.001 0.001 0.001 0.000 0.001

T+total -0.051 -0.034 -0.050 -0.035 -0.043 -0.023 -0.036 -0.012
T�total -0.051 -0.034 -0.050 -0.037 -0.041 -0.021 -0.036 -0.009

MR
GT 4.256 3.713 4.037 3.314 4.686 5.048 3.948 4.080
T 0.014 0.004 0.018 0.028 -0.056 -0.056 -0.014 -0.042

MP -0.431 -0.279 -0.428 -0.152 -0.498 -0.425 -0.289 -0.255

TABLE I. 0⌫��-decay NMEs for 76Ge, 82Se, 130Te and 136Xe from LSSM calculations. Here, for each term we list all the
components from di↵erent parts as defined in eq.(11). For each nuclei, we present results from two di↵erent Hamiltonians as
indicated in text.

terms. This once again implies the complexity of power-
counting under the nuclear environment. In fact, the PP
and MM components now serve as important cancella-
tions to the AA and AP components. They nearly cancel
contributions of AP, allowing for a similar magnitude of
MqGT and MGT . On the other hand, the Tensor part,
as in mass or ! terms, can be safely neglected. This is
common in LSSM calculations while QRPA suggests that
the magnitude of Tensor part is about 10%. the reason
may stem from the missing orbitals in LSSM compared
to QRPA and still needs investigation.

For the GT part of the so-called relativistic (R-) term
[27], despite the fact that the weak-magnetism current
are supposed to be NLO, its magnitude is of the LO
size irrespective of nucleus or Hamiltonian. For the two
lighter nuclei, MRGT is basically the same as MqGT and

for the two heavier nuclei, it is even larger than any other
NMEs for LR symmetric model. This suggests that al-
though it is counted as NLO because of the factor q/MN ,
it is actually giving LO contributions mainly due to a
large µp � µn [44]. We will give a more detailed analysis
in subsequent sections. Compared to the GT part, the
tensor part is again negligible.

The last term to be discussed is the P term. Com-
pared to other terms, it is somehow heavily suppressed
due to its special operator structure. In previous calcu-
lation [23], the change of NME signs for di↵erent nuclei
is observed, but for our calculation, we find for di↵er-
ent nuclei, it has always the same negative sign for NME
values. While jun45 and jj44b gives quite di↵erent pre-
dictions, the results from jj55a and GCN50:82 are closer,
the di↵erence is about 10%. Meanwhile, our results dif-
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TABLE II. A naive estimation of the magnitudes of di↵erent terms from 0⌫��-decay rates (see text). For each term, we have
two sub rows indicating the results from the two di↵erent Hamiltonians: for 76Ge and 82Se, the first sub rows are results from
jun45 and second sub rows results from jj44b; for 130Te and 136Xe, the first sub rows are results from jj55a and anothers from
GCN50:82. re, rN and rR are the ratios of square-rooted phase space factors, NMEs and reaction matrix elements of each term
to the mass term respectively.

rough estimation 76Ge 82Se 130Te 136Xe
lepton nuclear R G0⌫ M0⌫ G0⌫ M0⌫ G0⌫ M0⌫ G0⌫ M0⌫

µ�� O(1) O(1) O(1)
0.24 5.62 1.02 5.26 1.43 5.04 1.46 4.25

5.16 4.50 5.11 4.10
re rN rR re rN rR re rN rR re rN rR

h�i
M! O(✏12/me) O(1) O(1) 1.25

0.78 0.98
1.85

0.78 1.45
1.61

0.78 1.25
1.57

0.78 1.22
0.78 0.98 0.78 1.44 0.77 1.24 0.77 1.21

Mq O(!R) O(q/me) O(1) 0.010
55.1 0.53

0.012
54.0 0.65

0.013
44.2 0.59

0.013
43.4 0.58

53.6 0.51 52.6 0.63 43.7 0.58 42.5 0.57

h⌘i

M! O(✏12/me) O(1) O(1) 1.25
0.69 0.86

1.85
0.69 1.27

1.61
0.66 1.07

1.57
0.66 1.04

0.69 0.86 0.69 1.27 0.66 1.06 0.66 1.04

Mq O(!R) O(q/me) O(1) 0.010
38.1 0.36

0.012
37.7 0.45

0.013
31.3 0.41

0.013
31.4 0.42

38.1 0.36 37.4 0.45 29.6 0.39 29.0 0.39

MR O(1) O(q2/(MNme)) O("�1) 3.02
64.6 195.3

2.96
63.5 187.8

2.97
65.5 194.7

2.97
67.8 201.6

63.7 192.4 66.4 196.4 71.8 213.4 73.4 218.2

MP O(↵Z) O(q/me) O("�1) 0.34
7.40 2.49

0.33
7.65 2.50

0.27
7.97 2.19

0.25
5.41 1.37

5.21 1.75 3.18 1.04 6.71 1.84 4.94 1.25

For the nuclear part, we use standard mass mechanism
NME as the baseline. The ! term M! can be account
as O(1). The magnitude of the non-helicity-suppressed
NMEs M0⌫

q and M0⌫
P are proportional to q, enhanced

with a factor q/me in our convention. Meanwhile, the
relativistic terms [27]M0⌫

R are suppressed by an extra fac-
tor of q/MN from the weak-magnetism term compared to
M0⌫

q and M0⌫
P , here we neglect the possible contributions

from the so-called recoil term [27, 36] which is estimated
to be small in [27].

For the electron part, the s-wave appears at LO
(j0(kR) ⇠ O(1)), then p-wave function which is con-
nected with ~r operator has a magnitude of O(!R), while
the one which is connected with the ~r+ operator should
have the magnitude ↵Z much larger than that for oper-
ators with ~r, this is the so-called p-wave e↵ect [36].

To quantify these contributions, we could introduce a
parameter ✏ ⇡ 1/10 like the ✏� from �EFT introduced
in [44], then each of above contributions can be assigned
an order. Thus, the q/MN and ↵Z terms appears at the
order O(") while kR and me/q appears at the order of
O("2).

A detailed analysis based on our numerical results for
NME and previous numerical results for PSFs in [41] are
presented in Table II. Starting from the ! term, the
electron part is basically the same as the mass term, and
so does the NME, agree with the assigned order O(1)
in Table. II. Its contribution to the h�i mechanism is
generally larger than that to the h⌘i mechanism due to
opposite contributions from Fermi part. For the q terms,
with assigned order O(1), ratios of about 1/3 to 1/4 to
standard mechanism for h�i mechanism and 1/2 to 1/3
for h⌘i mechanism are observed. This suppression of the
q term comes from both parts, at first small size of these
related p electron wave functions is two orders of magni-

tude smaller as expected, while the nuclear part is sup-
pressed by a factor of 1/3 from the angular momentum
recoupling. The p-wave e↵ects makes the electron part of
P term more than one order of magnitude larger than q
term. Meanwhile, P term’s NME is heavily suppressed,
order of magnitude smaller than expected. This is actu-
ally observed by LSSM calculations earlier [23]. There-
fore, even with the so-called p-wave e↵ect [36], the P term
gives an O(1) contribution instead of expected O("�1) in
Table II. On the other hand, because of the enhanced
NMEs, the R term gives an O("�2) instead of O("�1),
one order of magnitude larger than naively estimated.
This makes R term dominates the h⌘i mechanism, while
other terms two orders of magnitude smaller.

Therefore, if we neglect the new physics parameters at
the moment, we will need to slightly modify the naive es-
timation of orders of contributions. From above results,
we find that R has a much larger size than others, it is
natural to assume R term to be at the leading order O(1),
the P -term which is supposed to be the same size as R
term is now suppressed by the nuclear part and comes
out to be of the similar size as ! term, they all appear at
the order O("2), so does the mass term. Meanwhile the q
term is further suppressed and can be account as O("2).
For LSSM calculations, we find that the ⌘ mechanism is
dominated by R term, while corrections from other terms
are at percent level (O("2)). For the � mechanism, the !
term at O("2) dominates but receives an additive correc-
tion about 20% from q term at the next order. Now, if
we incorporate the new physics parameters, we find that
if these di↵erent mechanisms coexist, then one requires
that h�i ⇠ µ�� ⇠ (me/q2)h⌘i. This analysis helps con-
strain the new physics model and we will proceed to this
topic in next section.

C(6)
VR

C(6)
VL
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FIG. 3: The LO amplitude A⌫ as a function of the cuto↵ value ⇤, in comparison with the results taken from Ref. [37] (green
line) and Ref. [40] (black line), respectively.

FIG. 4: Dependence of the on-shell (top panel) and o↵-shell (bottom panel) amplitudes on momentum for cuto↵ value ⇤ = 6.4
GeV. The black line denotes the results based on the long- and short-range transition operators, in which the LEC is determined
by reproducing the amplitude at |ppp| = 25 MeV and |ppp0| = 30 MeV, i.e., A⌫ = -0.0195 MeV�2 [37].

The primary motivation for employing a non-perturbative approach to treat the finite-size e↵ects of the nucleon
arises from the inadequacy of perturbative expansion of the nucleon FFs caused by virtual neutrinos, rather than
from the behavior of FFs decreasing as O(⇤�4) in the UV region. The numerical results indicate that the approach
to including the suppressed e↵ects of FFs is equivalent to the renormalized scheme of Ref. [37] at LO. Therefore, to
ensure the correctness of the result, we argue that the calculation of the 0⌫�� amplitude should be conducted within
a uniform renormalization scheme.

We note that conventional many-body calculations estimate the contributions of finite nucleon size to NMEs in
the same manner as this work. Based on the above discussions, we conclude that these calculations introducing the
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Figure 2: Radial long- and short-range matrix-element dis-
tributions for 100Mo calculated with the pnQRPA framework
(left), and 48Ca obtained with the NSM (right panel, with
scale at the right y axis). Line and color codes as in Fig. 1.

both NSM and pnQRPA. As expected, the radial
distribution of M0⌫

S

involves shorter internucleon
distances than the one of the long-range M0⌫

L

, and
its momentum distribution reaches larger momen-
tum transfers. Apart from the consistently smaller
NME values obtained with the NSM, the overall be-
havior of the matrix-element distributions is quite
similar in both frameworks.

Figure 1 also shows di↵erences between many-
body methods. In the pnQRPA, the radial distri-
bution of the long-range NME gets a sizeable can-
cellation from distances r & 2.5 fm, which is much
milder in the NSM. This rather well-known feature
of the pnQRPA [20, 56, 57] partly explains the rela-
tively larger size of M0⌫

S

with respect to M0⌫
L

, since
there are no cancellations in the short-range NME
radial distribution. Furthermore, Fig. 1 also high-
lights that the short-range pnQRPA NME extends
to longer distances than the NSM one, whereas the
positive contribution to the pnQRPA long-range
NME is concentrated at shorter distances. This be-
havior also leads to larger pnQRPA M0⌫

S

/M0⌫
L

ra-
tios. In momentum space, the pnQRPA long-range
NME distribution reaches larger momentum trans-
fers, while the NSM one does not vanish at q = 0
because of our closure energy E = 0.

Two transitions stand out with the largest rel-
ative short-range M0⌫

S

values: 100Mo for the pn-
QRPA, and 48Ca for the NSM. Figure 2 shows the
radial short- and long-range NME distributions for
these two cases. Apart from the di↵erent scales,
the 48Ca radial distribution resembles the 76Ge pn-
QRPA long-range one in Fig. 1: there is a sizeable
cancellation in C

L

(r) at distances r ⇡ (2 � 5) fm,
not observed in any other NSM decay. Such cancel-
lation never occurs for the short-range C

S

(r), which
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Figure 3: E↵ective Majorana mass m�� in terms of the light-
est neutrino mass mlightest assuming the normal (pink) or in-
verted (green) ordering of neutrino masses [68, 69], compared
to the exclusion (blue) bands which combine data [70] from
0⌫��-decay experiments [9–11, 14] and pnQRPA or NSM
NMEs. The upper, middle and lower exclusion bands corre-
spond to NME ranges for M0⌫

L �M0⌫
S , M0⌫

L and M0⌫
L +M0⌫

S ,
accordingly. The cyan bands correspond to a “quenching”
scenario, see text for details.

explains the larger relative contribution of M0⌫
S

for
this nucleus. The relative size of our 48Ca short-
range NME is similar to the ab initio result from
Ref. [51], however obtained with a di↵erent cou-
pling and regulator scheme. Figure 2 also shows
a more marked cancellation in the pnQRPA long-
range 100Mo NME than in 76Ge. This exceptionally
large cancellation, not present in any other nucleus,
is explained by a notable negative contribution at
low momenta which reduces the value of M0⌫

L

. This
behavior is driven by the 1+ multipole which dom-
inates at low-q values, as observed in previous pn-
QRPA works [20, 56]. A similar feature appears in
light nuclei studied with quantum Monte Carlo [67]
and the NSM.

The M0⌫
L

matrix elements in Table 2 assume
g
A

= 1.27. Related NSM and pnQRPA � and
two-neutrino �� decay rates obtained this way are
known to be overestimated, calling for corrections
usually known as “gA quenching”. While the impli-
cations to 0⌫��-decay NMEs are not clear [5], they
would only a↵ect the long-range NME, leading to
a larger relative impact of the short-range term.
We consider such “quenching” scenario to provide

5
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GeV. The black line denotes the results based on the long- and short-range transition operators, in which the LEC is determined
by reproducing the amplitude at |ppp| = 25 MeV and |ppp0| = 30 MeV, i.e., A⌫ = -0.0195 MeV�2 [37].

The primary motivation for employing a non-perturbative approach to treat the finite-size e↵ects of the nucleon
arises from the inadequacy of perturbative expansion of the nucleon FFs caused by virtual neutrinos, rather than
from the behavior of FFs decreasing as O(⇤�4) in the UV region. The numerical results indicate that the approach
to including the suppressed e↵ects of FFs is equivalent to the renormalized scheme of Ref. [37] at LO. Therefore, to
ensure the correctness of the result, we argue that the calculation of the 0⌫�� amplitude should be conducted within
a uniform renormalization scheme.

We note that conventional many-body calculations estimate the contributions of finite nucleon size to NMEs in
the same manner as this work. Based on the above discussions, we conclude that these calculations introducing the
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tributions for 100Mo calculated with the pnQRPA framework
(left), and 48Ca obtained with the NSM (right panel, with
scale at the right y axis). Line and color codes as in Fig. 1.

both NSM and pnQRPA. As expected, the radial
distribution of M0⌫

S

involves shorter internucleon
distances than the one of the long-range M0⌫

L

, and
its momentum distribution reaches larger momen-
tum transfers. Apart from the consistently smaller
NME values obtained with the NSM, the overall be-
havior of the matrix-element distributions is quite
similar in both frameworks.

Figure 1 also shows di↵erences between many-
body methods. In the pnQRPA, the radial distri-
bution of the long-range NME gets a sizeable can-
cellation from distances r & 2.5 fm, which is much
milder in the NSM. This rather well-known feature
of the pnQRPA [20, 56, 57] partly explains the rela-
tively larger size of M0⌫

S

with respect to M0⌫
L

, since
there are no cancellations in the short-range NME
radial distribution. Furthermore, Fig. 1 also high-
lights that the short-range pnQRPA NME extends
to longer distances than the NSM one, whereas the
positive contribution to the pnQRPA long-range
NME is concentrated at shorter distances. This be-
havior also leads to larger pnQRPA M0⌫

S

/M0⌫
L

ra-
tios. In momentum space, the pnQRPA long-range
NME distribution reaches larger momentum trans-
fers, while the NSM one does not vanish at q = 0
because of our closure energy E = 0.

Two transitions stand out with the largest rel-
ative short-range M0⌫

S

values: 100Mo for the pn-
QRPA, and 48Ca for the NSM. Figure 2 shows the
radial short- and long-range NME distributions for
these two cases. Apart from the di↵erent scales,
the 48Ca radial distribution resembles the 76Ge pn-
QRPA long-range one in Fig. 1: there is a sizeable
cancellation in C

L

(r) at distances r ⇡ (2 � 5) fm,
not observed in any other NSM decay. Such cancel-
lation never occurs for the short-range C

S

(r), which
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Figure 3: E↵ective Majorana mass m�� in terms of the light-
est neutrino mass mlightest assuming the normal (pink) or in-
verted (green) ordering of neutrino masses [68, 69], compared
to the exclusion (blue) bands which combine data [70] from
0⌫��-decay experiments [9–11, 14] and pnQRPA or NSM
NMEs. The upper, middle and lower exclusion bands corre-
spond to NME ranges for M0⌫

L �M0⌫
S , M0⌫

L and M0⌫
L +M0⌫

S ,
accordingly. The cyan bands correspond to a “quenching”
scenario, see text for details.

explains the larger relative contribution of M0⌫
S

for
this nucleus. The relative size of our 48Ca short-
range NME is similar to the ab initio result from
Ref. [51], however obtained with a di↵erent cou-
pling and regulator scheme. Figure 2 also shows
a more marked cancellation in the pnQRPA long-
range 100Mo NME than in 76Ge. This exceptionally
large cancellation, not present in any other nucleus,
is explained by a notable negative contribution at
low momenta which reduces the value of M0⌫

L

. This
behavior is driven by the 1+ multipole which dom-
inates at low-q values, as observed in previous pn-
QRPA works [20, 56]. A similar feature appears in
light nuclei studied with quantum Monte Carlo [67]
and the NSM.

The M0⌫
L

matrix elements in Table 2 assume
g
A

= 1.27. Related NSM and pnQRPA � and
two-neutrino �� decay rates obtained this way are
known to be overestimated, calling for corrections
usually known as “gA quenching”. While the impli-
cations to 0⌫��-decay NMEs are not clear [5], they
would only a↵ect the long-range NME, leading to
a larger relative impact of the short-range term.
We consider such “quenching” scenario to provide
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FIG. 3: The LO amplitude A⌫ as a function of the cuto↵ value ⇤, in comparison with the results taken from Ref. [37] (green
line) and Ref. [40] (black line), respectively.

FIG. 4: Dependence of the on-shell (top panel) and o↵-shell (bottom panel) amplitudes on momentum for cuto↵ value ⇤ = 6.4
GeV. The black line denotes the results based on the long- and short-range transition operators, in which the LEC is determined
by reproducing the amplitude at |ppp| = 25 MeV and |ppp0| = 30 MeV, i.e., A⌫ = -0.0195 MeV�2 [37].

The primary motivation for employing a non-perturbative approach to treat the finite-size e↵ects of the nucleon
arises from the inadequacy of perturbative expansion of the nucleon FFs caused by virtual neutrinos, rather than
from the behavior of FFs decreasing as O(⇤�4) in the UV region. The numerical results indicate that the approach
to including the suppressed e↵ects of FFs is equivalent to the renormalized scheme of Ref. [37] at LO. Therefore, to
ensure the correctness of the result, we argue that the calculation of the 0⌫�� amplitude should be conducted within
a uniform renormalization scheme.

We note that conventional many-body calculations estimate the contributions of finite nucleon size to NMEs in
the same manner as this work. Based on the above discussions, we conclude that these calculations introducing the
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both NSM and pnQRPA. As expected, the radial
distribution of M0⌫
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involves shorter internucleon
distances than the one of the long-range M0⌫

L

, and
its momentum distribution reaches larger momen-
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NME values obtained with the NSM, the overall be-
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Conclusions
EFT studies of neutrinoless double beta decay agrees well 
with previous model studies


We give related NMEs with shell model calculations and 
compare the relative magnitude of each term


The mater formula offers very good approximations


Two frames are equally efficient for double beta decay 
studies


Constraints on Wilson coefficients by neutrinoless double 
beta decay is on going
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