Overview on Recent Progress of

High-energy Neutrino Astronomy

Donglian Xu (TDLI)

Neutrino Scattering: Theory, Experiment, Phenomenology (vSTEP2024)

2024.05.17-20, Hangzhou

Outline

> Recent results from existing detectors

- IceCube
- KM3NeT / Antares
- Baikal-GVD

> (Next-gen) neutrino telescopes under planning

- IceCube-Gen2 (South Pole)
- KM3NeT (Mediterranean)
- Baikal-GVD (Lake Baikal)
- P-One (East Pacific)
- TRIDENT / HUNT / NEON (South China Sea)

Neutrino: a unique cosmic messenger

ernovae

Century-old puzzle: what's the origin of cosmic rays?

Detection of high-E astrophysical neutrinos would be smoking evidence for the origins of cosmic rays!

Neutrino telescopes

IceCube: world's largest neutrino telescope

PHYSICAL

ETTERS

REVIEW

H Data

Astro. Atmo. Conv.

Atmo. Muons

-0.5

60TeV

 \wedge

Events per 2635 days ($$10^{-1}$$ $$10^{-1}$$ (

10

-1.0

Science

Sig. over bg. $> 7\sigma$

0.5

1.0

- 86 strings, 5160 DOMs
 → a cubic-kilometer array
- Fully operating since 2010

0.0

 $\cos(\theta_z)$

Neutrino telescope events

Tracks: relied primarily on for pointing

IceCube event topologies

A new era of neutrino astronomy

A new era of neutrino astronomy

A new era of neutrino astronomy IceCube Collaboration, Science 378, 538 (2022)

Galactic diffuse neutrinos

Global significance: 4.5σ Data collected (10 yrs): 2011.05 – 2021.05

Consistent with Galactic plane diffuse emission model or a class of unresolved sources.

RESEARCH ARTICLE

NEUTRINO ASTROPHYSICS

Observation of high-energy neutrinos from the Galactic plane

IceCube Collaboration*†

IceCube Collaboration, Science 380, 1338–1343 (2023)

Galactic neutrino sources?

LHAASO detected 12 sources > 100 TeV, highest energy photon detected ~ **1.4 PeV from the Cygnus region** !

IceCube-LHAASO joint analysis (12 sources)

Hadronic component constraints:

- < **59%** of the Crab gamma flux could be of hadronic origin
- < 47% hadronic emission for J2226+6057

IceCube Collaboration, ApJL, 945 (2023) 1, L8

Cao. Z., et al, Nature **594**, 33–36 (2021)

Galactic neutrino sources?

LHAASO detected 8 photons above 1PeV from the massive star-forming Cygnus X region (at least 6° bubble)
→ indicating presence of Super PeVatrons !

IceCube-LHAASO joint analysis (Cygnus bubble)

Template search with 7-year IceCube public tracks, no significant signals found

Neutrino flux limit $< 5.7 \times 10^{-13} \text{ TeV}^{-1} \text{ cm}^{-2} \text{s}^{-1}$ at 5 TeV

LHAASO Collaboration, Sci. Bull. 69 (2024) 4, 449-457

arXiv:2402.17352 (ApJ accepted)

Identifying astrophysical tau neutrinos

IceCube tau neutrino event candidates

- Analyzed 7 yr of collected data
- Most promising tau neutrino candidate identified up to 2022
- Three independent analyses found this same event – one with reconstruction method, two with waveform methods

IceCube Collaboration, *Eur. Phys. J. C* 82, 1031 (2022) M. Meier, J. Soedingrekso, PoS (ICRC2019) 960 L. Wille, D.-L. Xu, PoS (ICRC2019) 1036

IceCube tau neutrino event candidates

A candidate astrophysical tau neutrino detected in September 2015

- Analyzed 9.7 yr of collected data from 2011 to 2020
- Using CNN trained on images derived from simulated events
- 7 candidate tau events over an estimated bg of 0.5 events
- Ruled out no astrophysical tau hypothesis at 5σ level

IceCube Collaboration,

Phys. Rev. Lett. 132, 151001 (2024)

IceCube Glashow resonance events

Glashow resonance events enable the identification of the astrophysical antielectron neutrino flux

IceCube Collaboration, Nature 591, 220–224 (2021)

IceCube neutrino flavor composition

 $\nu_e: \nu_\mu: \nu_\tau \text{ at source} \to \text{ on Earth:}$

- $0:1:0 \rightarrow 0.17: 0.45: 0.37$
- $1:2:0 \to 0.30 : 0.36 : 0.34$
- $1:0:0 \to 0.55 : 0.17 : 0.28$
- $1:1:0 \to 0.36 : 0.31 : 0.33$

IceCube Collaboration, Eur. Phys. J. C 82, 1031 (2022)

(New) physics with IceCube neutrino flavor ratios

Precision test of Lorentz symmetry

Search for quantum gravity

Decoherence from quantum gravity

IceCube Collaboration, Nat. Phys. 14, 961-966 (2018)

IceCube Collaboration, Nat. Phys. 18, 1287-1292 (2022) IceCube Collaboration, Nat. Phys. (2024)

See Aaron Vincent and Carlos Arguelles' talks at this conference

Results from Antares

- First neutrino detection in 2007
- 1.8σ mild excess of astrophysical
 diffuse flux with 9 yr of collected data
- First hint of Galactic neutrino flux
 - ... Lesson learned:
 - ...despite the challenges faced, it
 is possible to reliably operate a
 neutrino telescope in the hostile
 environment of the deep sea. "

POS(TAUP2023)127

Results from KM3NeT

KM3NeT

21 strings (DUs), **378** mDOMs since 2021 (as of ICRC2023)

- *Up-going* events with partial detector collected between 2021 and 2022
- Setting upper limits in unit of 10⁻¹⁸ GeV⁻¹ cm⁻² s⁻¹ sr⁻¹

	ARCA6+8	ARCA19+21	ARCA6+8+19+21	ANTARES	5% quantile	95% quantile
$\gamma = 2.0$	5.11	3.13	2.09	4.0	15.07 TeV	11.71 PeV
$\gamma = 2.37$	6.92	4.68	3.06		5.88 TeV	1.73 PeV
$\gamma = 2.5$	6.76	4.94	3.12	6.8	4.43 TeV	1.03 PeV

Results from Baikal-GVD

Now largest neutrino telescope in the North!

Construction started in 2016 12 clusters, 96 strings, 3456 DOMs $\rightarrow \sim 50\%$ IceCube volume (2023)

- Cascade events with partial detector collected between 2018 and 2022
- 17 events over 4.4 expected atmospheric bg
- Confirm the IceCube diffuse flux at 3σ level

(Next-gen) neutrino telescopes under planning

Interaction medium: Ice vs Water

Glacial ice

Most transparent medium on Earth! Scattering length: ~25m Absorption length: >100m

-2 1

Lake/sea water

Mediterranean Sea

UV Scattering length: >100m UV Absorption length: ~25m

On average, ice is more transparent / less absorbing, while water is less scattering

More "direct" photons in water-based telescopes → intrinsically better pointing can be achieved

(Next-gen) neutrino telescopes under planning

IceCube-Gen2

10 km³ + 500 km² surface array for radio UHE neutrinos
~5 times improvement in point source sensitivity
Timeline: ~2035 / 2038

(Next-gen) neutrino telescopes under planning

KM3NeT-ARCA

Baikal-GVD

P-One

230 strings
Reaching ~1km³
Timeline: 2028

total **16-18 clusters** Reaching ~**1km³** Timeline: ~**2025**/**2026** 70 strings Reaching **km³** volume Timeline: ~2035

Neutrino telescopes under planning in China

1200 strings Reaching ~8 km³ Timeline: ~2030-2035 Nature Astronomy (2023)

HUNT otical Modules (OMs) 20-inch PMT 2,304 strings of OMs 500 - 2,560 m - 6.000 m

> 2304 strings Reaching ~30 km³ Timeline: ???

POS(ICRC2023)108

 $\begin{array}{c} 600 \\ 400 \\ 200 \\ 200 \\ 400 \\ 200 \\ 400 \\ 200 \\ 400 \\ 200 \\ 400 \\ 200 \\ 400 \\ 200 \\ 400 \\ 400 \\ 400 \\ 200 \\ 400 \\$

NEON

800

400 strings Reaching 0.8 km³ Timeline: ??? POS(ICRC2023)1017

TRIDENT Explorer : T-REX

116°E

20°N

-18°N

-16°N

116°E

- Flat seabed
- No nearby high rises or deep trenches
- Depth >3km
- Close proximity to a shore

Measured params

- **Optical properties**
- Current field
- Radioactivity

https://trident.sjtu.edu.cn/en

Optical properties of deep-sea water

Absorption process (λ_{abs}) kill the photons, spacing design Scattering process (λ_{sca})

photon direction, angular resolution

Rayleigh scattering (λ_{Ray}):

$$I=I_0rac{8\pi^4lpha^2}{\lambda^4R^2}(1+\cos^2 heta)$$

Mie scattering (
$$\lambda_{Mie}$$
, $\langle cos \theta_{Mie} \rangle$):
1 1 - g^2 F. I

$$\widetilde{\beta}^{HG}(g,\cos\theta) = \frac{1}{4\pi} \frac{1-g}{(1+g^2 - 2g\cos\theta)^{3/2}}$$

Attenuation length:

$$I(L) = I_0 \cdot e^{-\left(\frac{L}{\lambda_{abs}} + \frac{L}{\lambda_{sca}}\right)} = I_0 \cdot e^{-\frac{L}{\lambda_{att}}}$$

F. Hu et. al., Simulation study on the optical processes at deep-sea neutrino telescope sites, **NIMA** 1054 (2023) 168367

TRIDENT Explorer : T-REX Apparatus

T-REX PMT system

T-REX Camera system

TRIDENT Explorer : Optical Properties

- Dedicated analytical and numerical modeling
- Exp. data: ~ 1TB \iff Simulated data: ~ 100 TB, 10M files

TRIDENT hybrid DOM – hDOM

0 -

0.4

0.0

0.2

0.372

0.380

0.4

i0.446

Angle Error [degree]

0.6

0.8

1.0

• Better than 0.1° @ $E_{\nu} > 100 \text{ TeV}$

0.096

0.1

0.134

0.2

Angle Error [degree]

 >40% improvement (cf mDOM) in angular resolution, assuming PMT TTS ~5ns
 Updated:

0.3

PMT TTS ~3ns + 10cm hDOM position smearing: 40% → 30%

Conceptual design: PoS (ICRC2021) 1043

Development progress: PoS (ICRC2023) 1213

TRIDENT detector geometry

Primary aim of design:

To rapidly resolve point sources out of the diffuse flux

ROV path

Penrose tiling

Uneven inter-string spacing 70m and 110m

Expanded energy window of **sub TeV – EeV**

- **1200** strings
- 20 hDOMs / string
- Volume: $\sim 8 \text{ km}^3$
- Underwater ROV for deployment & maintenance

Nature Astronomy 7, 1497-1505 (2023)

Geometry comparison: PoS (ICRC2023) 1203

TRIDENT Source sensitivity & discovery potentials

Track events only

TRIDENT is expected to detect the IceCube steady source candidate NGC1068 at 5σ level within one year of operation
 Nature Astronomy 7, 1497-1505 (2023)

Cascade reco : PoS (ICRC2023) 1207

Tau double pulse : PoS (ICRC2023) 1092

Brief timeline of TRIDENT

Summary

- IceCube has opened a new era for high-energy neutrino astronomy
- More detectors with improved detection ability to catch PLENTY of neutrinos for further scrutiny
- A viable site was found at a depth of 3.5km in South China Sea for constructing largescale deep-sea neutrino telescopes
- Several new proposals in place to build large-scale neutrino telescopes for further neutrino astrophysics exploration

TRIDENT Explorer : Current Field

Site current field measured on Sep. 6, 2021

Simulation (30-yr): ave. 6 cm/s, max < 26 cm /s

Scaled-down (1:25) experiments in a ship towing tank on SJTU campus

TRIDENT Explorer : Radioactivity

West Pacific

11101 ± 119

TRIDENT

⁴⁰*K* Radioactivity

 $[Bq/m^3]$

Experiments

Simulated hit on each PMT caused by ⁴⁰K

Donglian Xu (Tsung-Dao Lee Institute) | Overview on recent progress of high-E v astronomy @ vSTEP2024 | 2024.05.18, Hangzhou

40