

Study of properties of $\Upsilon(10753)$ on Belle II experiment

殷俊皇 南开大学

Belle II RUN-I (2019-2022)

 \Rightarrow 362 fb⁻¹ at the Y(4S) resonance (rest off resonance, and scan)

luminosity: 4.7×10^{34} /cm²/s! > 2 fb⁻¹ per day!

		06/07	23:59:36 -	06/08 23:	59:3
\mathcal{L}_{peak} 4.653 × 10 ³⁴ cm ⁻² s ⁻¹ @ 22:58:08 06/08	HER Ipeak 1127	mA	n _b 2249	β_x^* / β_y^*	60
int. £/day 1253 / 1681 pb ⁻¹	LER Ipeak 1405	mA	n _b 2249	β_x^* / β_y^*	80

record of KEKB/Belle 2×10^{34} /cm²/s; currents > 1 A record of PEPII/BaBar 1×10^{34} /cm²/s; currents > 2 A

squeezing further β_{v}^{*} (\rightarrow 0.6 mm) doubling (or more) the currents \Rightarrow L > 10³⁵/cm²/s after LS1

Belle II advantages

- Excellent muon and electron identification
- High photon detection efficiency
- Good hermiticity: useful for modes with missing energy
- Good vertex and momentum resolution

Full Event Interpretation (FEI)

- Reconstructs this B_{tag} in roughly 10000 channels
- First reconstructing low-level particles (K, π, \ldots), then intermediate D mesons and finally B mesons.
- Most-likely particle candidates are selected using pre-• trained multivariate classifiers

efficiency

Flavor Tagger

- Identify flavor of a particle, useful in TDCPV
- Inspired by the Flavor Tagging concept developed by Belle and BaBar.
- methods.
- High efficiency: 37% in Belle II, 30% in Belle.

Proceeds in 2 levels: EventLevel and CombinerLevel. Each step relies on pre-trained multivariate

Unique data

- Largest bottomonium data sample \bullet
- - Fill the gaps in Belle Scan data

$\Upsilon(10753)$ — discovery and studies

- A dip in the R_b distribution near 10.75 GeV
- Fit to dressed cross section of $b\bar{b}$ with three BWs.

"The results from these fits may change dramatically by including more information on each exclusive mode."

K-matrix Analysis of e^+e^- Annihilation in the Bottomonium Region

N. Hüsken,^{1,2} R.E. Mitchell,¹ and E.S. Swanson³

Phys.Rev.D 106 (2022) 9, 094013

_																											
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	:	:	:	:	: :	
	-	-		-		-	-	-	-	-				Б	(1	()	(5	5		c))	
r .	1		1)		_																			
_			_			_		_	_	_	_		_			1	l		-	┠							

Bottomonium?

Phys. Rev. D 101, 014020 (2020) Phys. Lett. B 803, 135340 (2020) Eur. Phys. J. C 80, 59 (2020) Phys. Rev. D 102, 014036 (2020) Prog. Part. Nucl. Phys. 117, 103845 (2021) Phys. Rev. D 104, 034036 (2021) Phys. Rev. D 105, 074007 (2022) etc...

Hybrid?

Phys. Rept. 873, 1 (2020) Phys. Rev. D 104, 034019 (2021) etc...

Tetraquark?

Phys. Lett. B 802, 135217 (2020) Chin. Phys. C 43, 123102 (2019) Phys. Rev. D 103, 074507 (2021) Phys. Rev. D 107, 094515 (2023) etc...

Confirmation of $\Upsilon(10753)$ on Belle II

• Full reconstruction of $\pi^+\pi^-\Upsilon(nS)$, n = 1,2,3, where $\Upsilon(nS) \to \mu^+\mu^-$.

 $\Delta M = M(\pi \pi \mu \mu) - M(\mu \mu)$

ISR $\Upsilon(2S, 3S) \rightarrow \Upsilon(1S)\pi^+\pi^-$

Belle-II preliminary, arxiv:2401.12021

Validation by ISR events

$E_{\rm CM}$	N^{fit}	N^{peak}	Lumi (pb^{-1})	ϵ (%)	$\sigma^{ m obs}~(m pb)$	$\sigma^{ m expect}$ (pb)
$10652.7 { m MeV}$	83.7 ± 10.2	9.5	3521	37.0	12.9 ± 1.8	14.9 ± 0.3
$10700.8~{\rm MeV}$	45.0 ± 6.7	3.6	1632	37.7	15.2 ± 2.5	13.8 ± 0.2
$10745.4 { m ~MeV}$	252.0 ± 18.1	28.4	9818	35.3	13.6 ± 1.1	12.9 ± 0.2
$10804.8~{\rm MeV}$	114.5 ± 11.9	12.8	4690	40.9	13.0 ± 1.5	11.9 ± 0.2

-Iterative approach

re-Weight

Until parameters are consistent with previous result

Signal yields

Fit results in the final loop

- Significant signals for $\Upsilon(1S,2S)\pi^+\pi^-$ at $\sqrt{s} = 10.745, 10.806 \text{ GeV}$
- No evident signals for $\Upsilon(3S)\pi^+\pi^-$
- Fit the ΔM distribution with two components:
 - O Signal: MC simulated shapes, re-weighted with crosssection dependence and amplitude fit result
 - Background: 1st-order polynomial
- Significance for $\Upsilon(1S)\pi^+\pi^-$ at $\sqrt{s} = 10.653$ GeV is only $1.7 \sim 2.3\sigma$, depending on different background assumptions.

Fit with three coherent BW, convoluting a Gaussian modeling energy spread:

$$\sigma \propto |\sum_{i}^{3} \frac{\sqrt{12\pi\Gamma_{i}\mathcal{B}_{i}}}{s - M_{i} + iM_{i}\Gamma_{i}} \cdot \sqrt{\frac{f(\sqrt{s})}{f(M_{i})}} e^{i\phi_{i}}|^{2} \otimes G(0,\delta E)$$

All parameters are free, except $\delta E = 0.0056 \text{ GeV}$

Parameters of
$$\Upsilon(10753)$$
:
 $M = 10756.3 \pm 2.7_{(stat.)} \pm 0.6_{(syst.)} \text{ MeV}/c^2$
 $\Gamma = 29.7 \pm 8.5_{(stat.)} \pm 1.1_{(syst.)} \text{ MeV}$

Agree with previous Belle measurement. Improve uncertainties ~2 times smaller

resonance mass (MeV/ c^2) width (MeV) $\Upsilon(5S)$ 10884.7 ± 1.238.7 ± 3.7 $\Upsilon(6S)$ 10995.5 ± 4.234.6 ± 8.6

Relative ratios

Relative ratios of the Born cross section at the resonance peak.

Castella. et. al. Phys. Rev. D 104, 034019 (2021)

Bai. et. al. Phys. Rev. D 105, 074007 (2022)

No significant $\Upsilon(10753) \rightarrow \pi \pi \Upsilon(3S)$

Intermediate state $-M(\pi\pi)$

Dots: events in signal region Green: nearest sidebands, scaled with area Red dashed: signal MC, simulated uniformly

 $\Upsilon(1S)\pi\pi$ Consistent with PHSP $\chi^2 = 0.98, 1.14$

 $\Upsilon(2S)\pi\pi$ Not consistent with PHSP $\chi^2 = 3.45, 2.43$

In the case of $\Upsilon(10753) \rightarrow \pi \pi \Upsilon(1S)$

Intermediate state $-\Upsilon(10753) \rightarrow \pi Z_b$

Belle-II preliminary, arxiv:2401.12021

• No Evidence of $Z_b(10610/10650)$.

Upper limits estimated at 90 % C.L. Ο using Bayesian method.

Mode	$N_{Z_{b1}}$	$N_{Z_{b1}}^{\mathrm{UL}}$	$\sigma_{Z_{b1}}$ (pb)	$\sigma_{Z_{b1}}^{\mathrm{UL}}$ (pb)	$N_{Z_{b2}}^{ m UL}$	$N_{Z_{b2}}$	$\sigma_{Z_{b2}}$ (pb)	$\sigma_{Z_l}^{\mathrm{U}}$
10.745 G	eV							
$\pi \Upsilon(1S)$	$0.0\substack{+1.6 \\ -0.0}$	< 4.9	$0.00\substack{+0.04\\-0.00}$	< 0.13	_	_	_	
$\pi \Upsilon(2S)$	$5.8\substack{+5.9 \\ -4.6}$	< 13.8	$0.06\substack{+0.06\\-0.05}$	< 0.14	—	_	—	
$10.805~\mathrm{G}$	eV							
$\pi \Upsilon(1S)$	$2.5^{+2.4}_{-1.6}$	< 5.2	$0.21\substack{+0.20 \\ -0.13}$	< 0.43	$0.0\substack{+0.7\\-0.0}$	< 5.8	$0.00\substack{+0.03\\-0.00}$	<
$\pi \Upsilon(2S)$	$5.2^{+3.8}_{-3.0}$	< 12.3	$0.15\substack{+0.11 \\ -0.09}$	< 0.35	$0.0\substack{+0.8\\-0.0}$	< 6.0	$0.00\substack{+0.04\\-0.00}$	<

$\Upsilon(10753) \rightarrow \omega \chi_{bJ}?$

 $Y(10750) \rightarrow \omega \chi_b$ in the conventional [Y.S. Li, et al., PRD 104, 034036 (2021)]

$$\begin{split} \mathcal{B}[\Upsilon(10753) &\to \chi_{b0}\omega] &= (0.73-6.94) \times 10^{-3}, \\ \mathcal{B}[\Upsilon(10753) &\to \chi_{b1}\omega] &= (0.25-2.16) \times 10^{-3}, \\ \mathcal{B}[\Upsilon(10753) &\to \chi_{b2}\omega] &= (1.08-11.5) \times 10^{-3}. \end{split}$$

$$R_{12} = \frac{\mathcal{B}[\Upsilon(10753) \to \chi_{b1}\omega]}{\mathcal{B}[\Upsilon(10753) \to \chi_{b2}\omega]} = (0.18-0.22)$$
$$R_{02} = \frac{\mathcal{B}[\Upsilon(10753) \to \chi_{b0}\omega]}{\mathcal{B}[\Upsilon(10753) \to \chi_{b2}\omega]} = (0.55-0.63)$$

Sizable branching fractions

$Y(10750) \rightarrow \omega \chi_{b}$ in the conventional quarkonium model (S-D mixing state)

Observation of $\Upsilon(10753) \rightarrow \omega \chi_{hI}$

[PRL 130, 091902 (2023)]

- Reconstruct $\omega \to \pi^+ \pi^- \pi^0$, $\chi_{hI} \to \gamma \Upsilon(1S)$
- Clear $\omega \chi_{bJ}$ signals at $\sqrt{s} = 10.745$ and 10.805 GeV
- 2D fit to $M(\pi^+\pi^-\pi^0)$ vs. $M(\gamma\Upsilon(1S))$

Channel	√ <i>s</i> (GeV)	Nsig	σ ^(UL) Born (pb)
ωχ _{b1}	10 745	$68.9^{+13.7}_{-13.5}$	$3.6^{+0.7}_{-0.7}\pm0.4$
ωχ _{b2}	10.745	$27.6^{+11.6}_{-10.0}$	$2.8^{+1.2}_{-1.0}\pm0.5$
ωχ _{b1}	10.905	$15.0^{+6.8}_{-6.2}$	1.6 @90% C.L.
ωχ _{b2}	10.805	$3.3^{+5.3}_{-3.8}$	1.5 @90% C.L.

The total χ_{bJ} signal significances are 11.5 σ and 5.2 σ at \sqrt{s} = 10.745 and 10.805 GeV

20

10

[PRL 130, 091902 (2023)]

 $\sigma[ee \rightarrow \omega \chi_{b0}(1P)] < 11.3 \, pb @ 10.750 \, GeV$

- Two solutions (constr. or destr. interferent $\Gamma_{ee} \times B[Y(10750) \rightarrow \omega \chi_{b1}(1P)] = \begin{cases} (0.63 \pm 0.39 \pm 0.20) eV \\ (2.01 \pm 0.38 \pm 0.76) eV \end{cases}$
- $\Gamma_{ee} \times B[Y(10750) \rightarrow \omega \chi_{b2}(1P)] = \frac{(0.53 \pm 0.40 \pm 0.15)e}{(1.32 \pm 0.44 \pm 0.53)eV}$

At
$$\sqrt{s} = 10.867 \text{ GeV}$$
:
 $\sigma_{\text{Born}}(e^+e^- \rightarrow \omega\chi_{b1}) = (0.76 \pm 0.11 \pm 0.11)$
 $\sigma_{\text{Born}}(e^+e^- \rightarrow \omega\chi_{b1}) = (0.29 \pm 0.11 \pm 0.08)$
What we thought was
 $Y(5S) \rightarrow \omega\chi_{bj}(1P)$ is
probably just the tail of
the Y(10750)!
W

Measured ratios:

$$\frac{B[Y(10750) \rightarrow \omega \chi_{b1}(1P)]}{B[Y(10750) \rightarrow \omega \chi_{b2}(1P)]} = 1.3 \pm 0.6$$

 $\frac{B[Y(10750) \rightarrow \omega \chi_{b0}(1P)]}{B[Y(10750) \rightarrow \omega \chi_{b2}(1P)]} < 7 \quad (private \ extrapolation)$

[PRL 130, 091902 (2023)]

Y(4230)

Two close peaks observed in the cross sections for $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ by BESIII and $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS)$ by Belle. May suggest similar nature.

• $Y(4230) \rightarrow \gamma X(3872)$ and $Y(4230) \rightarrow \omega \chi_{c0}$ were observed by BESIII.

- Expect the $\Upsilon(10753)$ state to decay into $X_{h}\gamma$.
- Should be more easily to be found in $\omega \Upsilon(1S)$ than $\pi \pi \Upsilon(1S)$ [Eur.Phys.J.C 74 (2014) 9, 3063]

 $\Upsilon(10753)$

Search for $X_h \to \omega \Upsilon(1S)$ in $e^+e^- \to \gamma \omega \Upsilon(1S)$

[PRL 130, 091902 (2023)]

- No significant X_b signal is observed.
- The peaks are the reflections of $e^+e^- \rightarrow \omega \chi_{bI}$.

Upper limits at	$\sqrt{\mathrm{s}}$ (GeV)	10.653	10. 701	10.745	10.805
90% C.L. on $\sigma_{1}(a^{+}a^{-}a^{-})$	$m(X_b) = 10.6 \text{ GeV/c}^2$	0.45	0.33	0.10	0.14
$\mathcal{B}(e^{-}e^{-} \rightarrow \gamma \Lambda_{b})$ $\mathcal{B}(X_{b} \rightarrow \omega \Upsilon(1S))$ (pb)	m(X _b) = (10.45, 10.65) GeV/c ²	(0.14 <i>,</i> 0.54)	(0.25 <i>,</i> 0.84)	(0.06, 0.14)	(0.08 <i>,</i> 0.36)

From simulated events with $m(X_b) = 10.6 \text{ GeV/c}^2$ The yield is fixed at the upper limit at 90% C.L.

Search for $\Upsilon(10753) \rightarrow \omega \eta_b, \omega \chi_{b0}$

[Wang, Chin. Phys. C 43, 123102 (2019)]

Mode	$\mathcal{B}(4q)~(\%)$	$\mathcal{B}(b\overline{b})$ (%)
$B\overline{B}$	$39.3\substack{+38.7 \\ -22.9}$	21.3
$B\overline{B}^*$	~ 0.2	14.3
$B^*\overline{B}^*$	$52.3\substack{+54.9\\-31.7}$	64.1
$B_s \overline{B}_s$	-	0.3
$\omega \eta_b$	$7.9^{+14.0}_{-5.0}$	-
$f_0(1370)\Upsilon$	$0.2\substack{+0.6 \\ -0.2}$	-
$\omega \Upsilon$	~ 0	-

Strategy:

- \rightarrow Reconstruct ω
- \rightarrow Measure its recoil mass

No convenient reconstruction decay channels for $\eta_b(1S)$

Suppress background with ω -Dalitz plot.

Signal yields: $(1.2 \pm 1.4 \pm 0.9) \times 10^3 = \sigma_{Born} = (2.6 \pm 3.1 \pm 2.0) \text{ pb}$

 $\sigma_{\text{Born}}^{\text{up}}$ < 8.7 pb, comparable to the UL obtained before (11.3 pb)

 $\sigma_{\rm B}(e^+e^- \to \eta_b(1S)\omega) < 2.5\,{\rm pb}$

[arxiv:2312.13043]

Compatible with S-D mixed

Measurement of $e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)}$

- \bullet poles: $\Upsilon(4S)$, $\Upsilon(10753)$, $\Upsilon(5S)$, $\Upsilon(6S)$.
- Need more data to fill the gaps.

Coupled channel analysis of high energy scan data using the K-matrix formalism shows four

Measurement of $e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)}$

Reconstruct $B_{\rm rec}$ with FEI

- 16 channels
- Ignore γ from $B^* \to B$

Yield signals from simultaneous fit to M_{bc} (SR and SB)

lacksquare

Prominent features:

→ Sharp rise in B^*B^* → first point only ~2 MeV above $B^{0^*}B^{0^*}$ threshold → Indication of bound state?

\rightarrow Dip in B^{*}B at the B^{*}B^{*} threshold

To verify the existence of a $B^*\bar{B}^*$ bound state near the threshold, a detailed scan must be performed in this energy region.

Summary

- Unique data in Belle II leads to unique results! 0
- More analyses are ongoing 0
 - $\Upsilon(10753) \rightarrow K^+K^-\Upsilon(nS)$
 - $\Upsilon(10753) \rightarrow \eta(\eta')\Upsilon(nS)$
 - $\Upsilon(10753) \rightarrow \gamma X_h, X_h \rightarrow \pi \pi \chi_{hI}, \pi \pi \Upsilon(nS)$
 - etc...
- Belle II has collected 424/fb data, including ~380/fb $\Upsilon(4S)$ data. Ο
 - More results other than $\Upsilon(10753)$ will come out. 0
- Long shutdown has finished, will accumulate more data. Ο
 - More data, more new results

BACK UP

