

Dexu Lin

Quark Matter Research Center, Institute of Modern Physics

中国科学院近代物理研究所 Institute of Modern Physics, Chinese Academy of Sciences

Institute of Modern Physics, CAS (Huizhou) Feb. 26 - Feb. 28, 2024

D. X. Lin (IMP)

EMC of EicC

Introduction of EicC

2 Electromagnetic Calorimeter on EicC

3 Progress of Hardware Research and Development

Summary and Outlook

Introduction

• pQCD (perturbative) at high energy scale vs non-pQCD in the low energy regime.

- Total mass of three valence quarks is only ~ 10% of proton mass
 ⇒ origin of proton mass?
- Only ~ 30% of proton spin from quark spin
 ⇒ origin of proton spin?
- ➡ The internal structure of proton (nucleon)?

Introduction – Nucleon Structure Research

Proton has internal structure (not point like particle)

- Elastic scattering of electon-proton at low energy:
 - Electromagnetic form factors of proton,
 - Size of the proton: charge and magnetization distributions,
 - Four-momentum transfer squared: Q^2 ;
- Deep inelastic scattering of electron-nucleon at high energy:
 - Parton distribution (PDF) inside the nucleon,
 - One-dimensional spin structure of nucleons,
 - Three-dimensional tomography of nucleons,
 -
- Electron-Ion Collider (EIC), as a "Super Three Dimention Computed Tomography", can research the clearest structure inside the nucleon.
- EicC (Electron-Ion Collider in China) is considered, based on HIAF at IMP.

Introduction

High Intensity Heavy-Ion Accelerator Facility (HIAF)

Introduction

Location of HIAF

D. X. Lin (IMP)

EMC of EicC

Feb. 26 - Feb. 28, 2024

6/24

Electron-Ion Collider in China

Parameters of EicC

- Luminosity of EicC is up to 2.0×10^{33} cm⁻²·s⁻¹ (for proton),
- Center-of-mass energy (\sqrt{s}) of EicC ranged between 15 and 20 GeV,
- EicC focuses on moderate x and sea-quark regions,
- EicC covers the kinematic region between JLab experiments and us-EIC.

ъ

Spectrometer of EicC

- Baseline design of EicC: 3.5 GeV electron beam and 20 GeV proton beam,
- Mian parts of the spectrometer: Vertex, Tracking, PID, ECal, FWT, ...,

D. X. Lin (IMP)

Physics Requirements of EicC

- Angular coverage: $-3.0 < \eta < 3.0$,
- Momentum coverage for scattering electron: 0.2 (12) GeV/c,
- Good e/π separation power, for precise measurement of scattering electron.

			(T) #	DN I
- 1.2	x	1 n i	$\Gamma I N I$	\mathbf{P}
· • • •		L	(1101	±)

Electromagnetic Calorimeter at EicC

region	type	<i>z/r</i> [m]	L [cm]	coverage [cm]	pseudorapid- ity (η)	tower size [cm×cm]
ef-EMC	CsI	<i>z</i> =-1.5	30.0 (16.1 X ₀)	15.0< <i>r</i> <127.6	(-3.0, -1.0) (174.3 ° , 139.6 °)	4.0×4.0 (front)
br-EMC	Shashlik	r=0.9	48.0	-105.8 <z<187.5< td=""><td>(-1.0, 1.5)</td><td>4.0×4.0</td></z<187.5<>	(-1.0, 1.5)	4.0×4.0
hf-EMC	Shashlik	z=2.4	(16 X ₀)	24.0< <i>r</i> <115.2	(1.5, 3.0)	(front)

- Calorimeter at EicC has the Shashlik and crystal (CsI) designs for different parts,
- Three parts are included: electron-forward endcap, central barrel and hadron-forward endcap,
- The actual coverage of different parts need more details from physics requirements and mechanical design,

Modules of Shashlik and CsI Crystal

- Shashlik module for the central barrel and hadron-forward endcap,
- Each layer contains: 0.35 mm lead, 1.50 mm scintillator and 0.06×2 ESR,
- Wavelength shift fibers (16) to collect scintillation light,
- 240 layers (480 mm) corresponding with $16X_0$ radiation length.

- Pure Cesium Iodide (CsI) module for the electron-forward endcap,
- Homogeneous material is sensitive material as well as absorber,
- Scintillation light collected with UV-sensitive APD at one end,
- Length 30 cm is equivalent to $16X_0$ radiation length.

EMC on EicC

Configurations of Barrel and Hadron-Forward Endcap

Configuration of Electron-Forward Endcap

- Coverage of pseudo-rapidity: $-3.0 < \eta < -1.0$,
- Distance from the front plane to IP: 1.5 m,
- total crystals: 2648 (58 rows by 58 columns)
- Crystal is wrapped with Tyvek.

14/24

EMC on EicC

Energy and Position Resolution from Geant4 Simulations (I)

- Excellent energy resolution from the pCsI crystal, less than 1.5% @1.0 GeV,
- Position resolution is better than 5 mm @1.0 GeV with the logarithm weighted method.
- Only intrinsic and constant parts considered yet.

EMC on EicC

Energy and Position Resolution from Geant4 Simulations (II)

- Excellent energy resolution from the Shashlik module, less than 4.5% @1.0 GeV,
- Position resolution is better than 5 mm @1.0 GeV with the logarithm weighted method.
- Only intrinsic and constant parts considered yet.

e/π Separation Study

- Using the shower dispersion (second moment of position), and energy-momentum ratio,
- Good e/π separation power for particle momentum larger than 1.0 GeV/c,
- Further investigation, multi-variable analysis or machine learning, is ongoing.

Performance of the Whole EMC

D. X. Lin (IMP)

Feb. 26 - Feb. 28, 202

EMC on EicC

Reconstruction of π^0 in EMC

- Reconstruct π^0 by two photons: $m_{\pi^0} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1 - \cos\theta_{\gamma_1\gamma_2})},$
- Better mass resolution of π^0 with higher energy resolution of the crystal endcap,
- Mass resolution of π^0 varies to η ,
- Efficiency of the π⁰ reconstruction decreased for the high momentum.

D. X. Lin (IMP)

EMC of EicC

< D > < A

Modules of Shashlik and CsI Crystal

Shashlik Module

- The Shashlik module is built in our lab.
- CsI crystal module is purchased for test,
- Prototypes with both modules are ongoing.

CsI crystal

< D > < A

EMC of EicC

Test of Shashlik Module with Cosmic Ray

Light yield increased with additional reflective material applying

(1) original measurement

⁽²⁾ measurement by adding mirror at ends of WLS fiber

③ measurement with ESR covered

EMC of EicC

かへで 21/24

Test of CsI Crystal with Radioactive Source

D. X. Lin (IMP)

Summary and Outlook

- Two types of electromagnetic calorimeter are designed for the EicC experiment,
- Sampling EMC with Shashlik design for the central barrel and hadron-forward endcap,
- Homogeneous EMC with pCsI crystal for theelectron-forward endcap,
- Simulation and event reconstruction are available based on current design, more details is considering to meet the EicC physics requirements,
- Hardware research and development is ongoing in the laboratory,
- First goal is to build prototypes for both Shashlik and crystal EMC.

	1 1	1 1
	hanl	251
-		vD •

Welcome to join: dxlin@impcas.ac.cn

EMC of EicC

