

Yuri A. Litvinov

1ST Workshop on Polarized Beam and Target -- Physics and Applications Institute of Modern Physics, Chinese Academy of Sciences Huizhou, China February 26 – 28, 2024

Weak decays

Nuclear weak decay in general form:

$$n +
u_e \leftrightarrow p + e^-$$

i) continuum beta decay:

 $n \rightarrow p + e^- + \bar{\nu}_e$ $p \rightarrow n + e^+ + \nu_e$

$$\beta^- - \text{decay}$$

 $\beta^+ - \text{decay}$

ii) two-body beta decay:

 $\begin{array}{c} p+e_b^- \rightarrow n+\nu_e \\ n \rightarrow p+e_b^- + \bar{\nu}_e \end{array}$

Orbital electron capture (EC)

Bound state beta decay $(\beta_{\rm b}^-)$

 $p + e^-
ightarrow n +
u_e$

HEI MHOLTZ

Two-Body Beta Decay

erc

Secondary Beams of Short-Lived Nuclei

erc

ASTRUm

HELMHOLTZ == 🖬

Production & Separation of Exotic Nuclei

HELMHOLTZ

Primary beams @ 400-1000 MeV/u Highly-Charged Ions (0, 1, 2 ... bound electrons) In-Flight separation within ~ 150 ns Cocktail or mono-isotopic beams

ESR: The experimental Storage Ring

Electron Cooling

momentum exchange with 'cold', collinear e- beam. The ions get the sharp velocity of the electrons, small size and divergence

HELMHOLTZ II II II

Resonant Cavity Pickups

Non-Destructive Particle Detection

Nuclear Decays of Stored Single Ions

Two-Body Beta Decay

erc

Allowed Gamow-Teller Transitions

Ť

Conventional EC-theory:

W.Bambynek et al., Rev. Mod. Phys 49, 1977

S-electron density at the nucleus:

 $|\mathbf{f}_{\mathrm{S}}(\mathbf{0})|^2 \propto 1/n^3$

 P_{EC} (neutral atom) $\propto 2 \sum 1/n^3 = 2.4$

 P_{K} (H-like) $\propto 1 * 1/1^{3} = 1$

Conclusion: H-Like ion should have 41% longer half-life

 $\lambda_{\text{EC}}(\text{H-like})/\lambda_{\text{EC}}(\text{He-like}) \approx 0.5$

ASTRUm

erc

N. Winckler et al., Phys. Lett. B579 (2009) 36

HELMHOLTZ II II II

Allowed Gamow-Teller Transitions

HELMHOLTZ III III

What happens in ¹¹¹Sn ?

HELMHOLTZ =

JE

Yu.A. Litvinov, Int. J. Mod. Phys. E18 (2009) 323

Revolution-frequency difference δf of the recoils just after decay

For a (longitudinally) unpolarized beam the distribution should have a rectangular shape

For a (steadily controlled) polarized beam the distribution would provide the helicity of the neutrino

erc

ASTRUm

From v_r and m_r one gets the momentum of the (monochromatic) neutrino: $(pc)_d = m_d cv_d = (pc)_v$

From m_p and m_d one gets its energy: $E_v = (m_p - m_d) c^2$ and then $\beta_v = E_v /(pc)_v$

HELMHOLTZ 🖬 🖬 🏛

What happens in hydrogen-like ⁵⁵Fe ?

HELMHOLTZ

Electromagnetic Transitions in Highly-Charged Ions

¹⁵O(a,g)¹⁹Ne reaction for the rp-process

Figure 2: taken from Figure 7 resonance at 4.033 MeV exc

Figure 2: taken from Figure 7 in [10] which shows the selective population of the key resonance at 4.033 MeV excitation energy in $^{19}\rm Ne$ using the $^{21}\rm Ne(p,t)$ reaction.

Population of 4.033 MeV level in ¹⁹Ne via (p,t) reaction on ²¹Ne

Measure g and a branching ratio

Figure 1: taken from Figure 9 of [10] showing the events corresponding to α -decaying resonances in ¹⁹Ne. Note the flat background associated with fragmentation reactions on C atoms in the (CH₂)_n target.

HELMHOLTZ

First transfer reaction measurement at the ESR

HELMHOLTZ III III

Summary and Outlook

Electron capture decay can be employed to detection of spin orientation of a stored beam

Polarisation degree of freedom in radioactive decays of highly charged ions is largely unexplored

- ? Conservation of angular momentum / parity
- ? Helicity of electron (anti)neutrino
- ? Selection rules in electromagnetic transitions

Vortex beams: Is there a time-dependent decay-rate?

Nuclear reaction rates: Enchancement/reduction due to the relative spin orientation; Addressing selected reaction channels

