

Experimental advances using highly charged ions at CSR + Future Plans at HIAF

Xinwen Ma

Institute of Modern Physics, Chinese Academy of Sciences

IMPCAS, Huizhou, China, February 26 – 28, 2024

Outline

- DR spectroscopy at CSR:
 F-like Ni, higher order QED test
- 2. Collision dynamics

IM

- Fully differential cross sections
- High resolution, Q-value spectroscopy
- 4. Atomic Physics at HIAF

Upgrade of CSRe experimental setups

Multi-purpose internal target experimental setups

IMF

(1) X-ray Spectroscopy and(2) Nuclear reaction chamber

Upgrade of CSRe experimental setups

IMP

(1) X-ray Spectroscopy and(2) Nuclear reaction chamber

(3) Reaction microscope for relativistic ion-atom collisions

Outline

1. DR spectroscopy at CSR: — F-like Ni, higher order QED test

IMP

IMP

IMI

Progresses of DR spectroscopy at CSR

IMF

HCIs @DR at CSR: ³⁶Ar¹⁵⁺, ⁴⁰Ar^{12+,13+,14+,15+}, ⁴⁰Ca^{14+,16+,17+}, ⁵⁶Fe¹⁷⁺, ⁵⁸Ni¹⁹⁺, ⁸⁶Kr^{25+,30+}, ¹¹²Sn³⁵⁺

DR spectroscopy of F-like ions: high order QED

DR spectrum of Ni¹⁹⁺ in low energy CSRm data 10 fitted curve $\Delta \alpha$ fitted RR DR over RR $2s2p^6[^2S_{1/2}]$ 6s)_{J=1} 86 meV Recombination rate coefficients $(10^{-9} \text{ cm}^3 \text{s}^{-1})$ 10^{-5} 10^{-4} 10^{-2} 10^{-3} 12 CSRm data .6 $(2s2p^{6}[^{2}S_{1/2}]6s)_{J=1}$ isolated DR $\begin{bmatrix} c & b & 9 & 8 \\ Resonance strength (10^{-18} \text{ cm}^2 \text{ eV}) \end{bmatrix}$ fitted curve 86±4 meV .2 0.4 0.0 ∟ 0.0 0.2 0.8 040.6 1 Ŏ Electron-ion collision energy (eV)

IMF

DR spectroscopy of F-like ions: high order QED

Multi-Configurational Dirac-Hartree-Fock (MCDHF)

Stabilization Method (SM).

IMF

$$\Delta E_{core} = \mathbf{E}_{\mathbf{e}} + \left| E_{bind} \right|$$

$$\Delta E_{\text{core}} \text{ of } 2s^2 2p^5 \, {}^2P_{3/2} \to 2s 2p^6 \, {}^2S_{1/2}$$

Individual contributions to transition energy of $2s^22p^{5} {}^2P_{3/2} \rightarrow 2s2p^6 {}^2S_{1/2}$ in Ni¹⁹⁺ ion (in eV). *ab initio* calculations

Contribution	Core-Hartree	Kohn-Sham
Dirac	123.911	128.743
Correlation (1)	27.190	22.723
Correlation (2)	-1.536	-1.972
Correlation (3)	0.032(2)	0.102(2)
QED(1)	-0.506	-0.510
QED(2)	-0.033(6)	-0.028(6)
Recoil	-0.012(3)	-0.012(3)
Total	149.046(7)	149.046(7)
Experiment: 149.032± 0.004 _{exp} ± 0.006 _{theo} eV		

S.X. Wang et al., PRA 106, 042808 (2022)

DR spectroscopy of F-like ions: high order QED

IMP

- ➤ Transition energy of Ni¹⁹⁺ ion determined: 2s²2p⁵[²P_{3/2}]→2s2p⁶[²S_{1/2}]=149.032 (4)_{exp}(6)_{theo} eV
- Experimental precision at the level of test 2nd order QED and e-e correlation; the recoil contribution
- Approaching to test 3rd order QED

Outline

1. DR spectroscopy at CSR: — F-like Ni, higher order QED test

2. Collision dynamics

IMI

- Fully differential cross sections
- High resolution, Q-value spectroscopy

Study of Charge exchange reactions

Experiments have been performed for State resolved charge exchange processes in ion-atom collision

Momentum resolution 0.06a.u.

Benchmark measurements of charge exchange

*n*²-resolved Charge Exchange Cross Sections

19.5, 37.5, 75, 100 keV/u $O^{6+} + He \rightarrow O^{5+}(1s^2nl) + He^+$ $O^{6+} + H_2 \rightarrow O^{5+}(1s^2nl) + H_2^+$

• He: mainly capture to n = 3

IMF

- H₂: mainly capture to n = 4
- with the collision energy increasing, the main capture shifts to channels with larger n and finally to n ≥ 6 for both targets.

T. Cao et al., Astrophys. J. Suppl. Series, 266, 20 (2023)

*n*²-resolved Cross Sections of Single and Double Charge Exchange Processes

IMP

 $p_{r}(a.u.)$

 $p_{m}(a.u.)$

 $p_{-}(a.u.)$

D. L. Guo et al., The Astrophysical Journal, 941, 31 (2022)

17

Breakdown of Spin Statistics in Ion-atom Charge Exchange Collisions

Correlation map of Q-value versus projectile scattering angle for single electron capture in C³⁺ + He at 7 keV/u impact energy.

The ratios R of triplet to singlet states for SEC into *1s²2s2p*^{1,3}P as function of impact energy.

In collaboration with ShanghaiTech University, Dr S. Zhang

Q-value spectroscopy: electron capture + reaction microscope@ storage Ring

Reaction microscope Installed at CSRe internal target, commissioning with Fe²⁶⁺ ions

IM

20

120 MeV/u Fe²⁶⁺ on He, single ionization

FDCS in polar coordinate: $q = 0.75 \pm 0.15 a.u. Ee = 3 \pm 0.5 eV$, Polar presentation

IMF

21

The puzzle: theory @ experiments

Nature 422, 48 (2003).

Q-value spectroscopy: direct measurement of binding energy of H-like ions

Take Fe^{26+} ion as an example, when an electron from helium atom is captured in to its inner orbitals, the corresponding longitudinal momentum can be separated clearly. (*FWHM* = 0.1*a*. *u*.) 1s binding energy @ QED, better than 1% expected.

IM

Outline

1. DR spectroscopy at CSR: — F-like Ni, higher order QED test

2. Collision dynamics

IMI

- Fully differential cross sections
- High resolution, Q-value spectroscopy
- 4. Atomic Physics at HIAF

Atomic Physics of HCIs @HIAF

IMP

High Intensity heavy ion Accelerator Facility (HIAF)

Atomic Physics of HCIs @HIAF

IMP

A closer look at SRing of HIAF

Atomic Physics of HCIs @HIAF, future

Relativistic collisions Precision spectroscopy- QED in strong EM field Application in nuclear UVlaser cooling & spec

IMF

Laser spec of RI HEDM @ intense beams LIBS-ADANES QED beyond Schwinger limit µ-atom spectroscopy physics beyond SM

QED test experiments beyond Schwinger limit

IMP

Conceptual design of detection of e+e- pair creation in critical field produced in bare/H-like heavy ion collisions.

APEX Collaborations

构建基于大科学装置HIRFL和HIAF的 极端条件原子过程研究国际合作组 APEX

Collaborations on Atomic Processes at Extremes at HIRFL & HIAF

Collision dynamics + Spectroscopy+ HEDP + Instrumentation + Theory

Some considerations for polarized beams

D Polarization of ion beams:

- (1) Polarization of nuclear, bare ions
- (2) Polarization of non-bare heavy ions ??

D Experiments employing Polarized beam:

Polarized electron beam

Twisted electron beam: V A Zaytsev, et al. Journal of Physics: Conference Series 1412 (2020) 052013

V A Zaytsev, et al. PHYSICAL REVIEW A 95, 012702 (2017)

DR spectroscopy, APV

Polarized atomic target, e.g. atomic hydrogen beam.

X-ray spectroscopy, charge exchange processes, spin statistics

Polarized ion beam on polarized target ??

A. Surzhykov, et al., Proceedings of Science. PoS(STORI11)012; Th. Stöhlker, et al., Proceedings of Science, PoS(PSTP2022)028

D Double ionization of H_2 molecular target:

Exploring in ultrashort timescale the entanglement between electron and nuclear.

Acknowledgements

Fundings:

IMP,

NSFC (National Natural Science Foundation of China) CAS (Chinese Academy of Sciences) MOST (Ministry of Science and Technology) NDRC (National Development and Reform Commission)

IMPCAS team and Collaborations:

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

CSRe collision experiment

Team for collisions Reaction microscope

Thank you for your attention

CSRe laser cooling

