NEW DEVELOPMENTS FOR LAMB-SHIFT POLARIMETER

26TH FEBRUARY 2024 NICOLAS FAATZ

Member of the Helmholtz Association

Precision physics

Nuclear magnetic resonance (NMR)

Nuclear fusion

Los Alamos

 invention of the first spin filter

J. McKibben et.al., Phys. Rev. Lett. 20, (1968)

A. Solovev et.al., JINST., **15**, (2020)

J. McKibben et.al., Phys. Rev. Lett. 20, (1968)

Moscow State University ->

pulsed polarized proton source

A. Belov et.al., NIM., 255, (1987)

J. McKibben et.al., Phys. Rev. Lett. 20, (1968)

Moscow State University ->

pulsed polarized proton source

A. Belov et.al., NIM., 255, (1987)

- TUNL
 hydrogen and deuterium ion beams
- S. Lemieux et.al., NIM., 333, (1993)

Los Alamos

 invention of the first spin filter

J. McKibben et.al., Phys. Rev. Lett. 20, (1968)

Moscow State University →

pulsed polarized proton source

A. Belov et.al., NIM., 255, (1987)

- TUNL
 Hydrogen and deuterium ion beams
- S. Lemieux et.al., NIM., 333, (1993)
- University of Cologne

R. Engels et.al., Rev. Sci. Instrum., 74, (2003)

polarized atomic and ion beams

Los Alamos

 invention of the first spin filter

J. McKibben et.al., Phys. Rev. Lett. 20, (1968)

Moscow State University →

pulsed polarized proton source

A. Belov et.al., NIM., 255, (1987)

TUNL
 Hydrogen and deuterium ion beams

S. Lemieux et.al., NIM., 333, (1993)

University of Cologne
 R. Engels et.al., Rev. Sci. Instrum., 74, (2003)
 Polarized atomic and ion beams

■ RHIC → optically pumped polarized H⁻ source

A. Zelenski et.al., Pol. At RHIC., **15**, (2013)

Los Alamos \rightarrow invention of the first spin filter

J. McKibben et.al., Phys. Rev. Lett. 20, (1968)

A. Belov et.al., NIM., 255, (1987)

hydrogen and deuterium ion beams TUNL \rightarrow

S. Lemieux et.al., NIM., 333, (1993)

- University of Cologne \rightarrow
- polarized atomic and ion beams

R. Engels et.al., Rev. Sci. Instrum., 74, (2003)

optically pumped polarized H⁻ source RHIC

A. Zelenski et.al., Pol. At RHIC., 15, (2013)

FZ Jülich H and D atomic beam source for ANKE M. Mikirtychyants et.al., NIM., **721**, (2013)

Los Alamos

 invention of the first spin filter

J. McKibben et.al., Phys. Rev. Lett. 20, (1968)

Moscow State University →

pulsed polarized proton source

A. Belov et.al., NIM., 255, (1987)

TUNL
 Hydrogen and deuterium ion beams

S. Lemieux et.al., NIM., 333, (1993)

- University of Cologne → polarized atomic and ion beams R. Engels et.al., Rev. Sci. Instrum., 74, (2003)
- RHIC → optically pumped polarized H⁻ source

■ FZ Jülich → H and D atomic beam source for ANKE M. Mikirtychyants et.al., NIM., 721, (2013)

A. Solovev et.al., JINST., **15,** (2020)

START IN JÜLICH

- Measuring the nuclear polarization created by the ABS
- Simple and cheap detection method
- Working for hydrogen atoms their isotopes molecules and ions

MOTIVATION

- Nuclear polarized sources
- Bound beta decay (BoB) $n \to H^*_{2S_{1/2}} + \bar{\nu}_e$
- Parity violation

$$2S_{1/2} \rightarrow 2P_{1/2}$$
$$P = (-1)^l \colon 0 \rightarrow 1$$

Sona transition unit

HYDROGEN-LIKE WAVEFUNCTIONS

$$\psi_{100} = \sqrt{\frac{4Z^3}{a_0^3}} e^{-\frac{Zr}{a_0}} \frac{1}{\sqrt{4\pi}}$$

$$\psi_{200} = \sqrt{\frac{Z^3}{32\pi a_0^3}} \left(-\frac{Zr}{a_0} + 2\right) e^{-\frac{Zr}{2a_0}}$$

$$\psi_{210} = \sqrt{\frac{Z^3}{32\pi a_0^3}} \left(-\frac{Zr}{a_0}\right) e^{-\frac{Zr}{2a_0}} \cos(\theta)$$

$$\psi_{21\pm 1} = \mp \sqrt{\frac{Z^3}{64\pi a_0^3}} \left(-\frac{Zr}{a_0}\right) e^{-\frac{Zr}{2a_0}} \sin(\theta) e^{\pm i\theta}$$

$$P_{n,l}(r) = r^2 |R_{n,l}(r)|^2$$

$$P_{n,l}(r) = r^2 |R_{n,l}(r)|^2$$

STARK EFFECT

ENERGY SPLITTINGS

 $\vec{J} = \vec{L} \otimes 1 + 1 \otimes \vec{S}$

$$\vec{F} = \vec{J} \otimes 1 + 1 \otimes \vec{I}$$

https://en.wikipedia.org/wiki/Hyperfine_structure

Member of the Helmholtz Association

26th February 2024

BREIT-RABI FORMULAS

$$H = \Delta E_{Lamb} \frac{\vec{L} \cdot \vec{S}}{\hbar^2} + A \frac{\vec{J} \cdot \vec{I}}{\hbar^2} + \left(g_j \mu_B \frac{\vec{J}}{\hbar} - g_I \mu_k \frac{\vec{I}}{\hbar}\right) \cdot \vec{B}$$

BREIT-RABI FORMULAS

$$H = \Delta E_{Lamb} \frac{\vec{L} \cdot \vec{S}}{\hbar^2} + A \frac{\vec{J} \cdot \vec{I}}{\hbar^2} + \left(g_j \mu_B \frac{\vec{J}}{\hbar} - g_I \mu_k \frac{\vec{I}}{\hbar}\right) \cdot \vec{B}$$

Example for $2S_{1/2}$

$$E_{\alpha_1} = \frac{A}{4} + \frac{1}{2} (g_j \mu_B - g_I \mu_k) B \qquad \qquad E_{\alpha_2} = -\frac{A}{4} + \frac{1}{2} \sqrt{A^2 + (g_j \mu_B + g_I \mu_k)^2 B^2}$$

$$E_{\beta_3} = \frac{A}{4} - \frac{1}{2} (g_j \mu_B - g_I \mu_k) B \qquad \qquad E_{\beta_4} = -\frac{A}{4} - \frac{1}{2} \sqrt{A^2 + (g_j \mu_B + g_I \mu_k)^2 B^2}$$

BREIT-RABI DIAGRAM

Page 18

JÜLICH

Forschungszentrum

METASTABLE ATOMS

$$V_{Life} = -i\frac{\hbar}{2\tau}$$

METASTABLE ATOMS

$$V_{Life} = -i\frac{\hbar}{2\tau}$$

$$i\hbar \frac{\partial}{\partial t} |\psi_n(t)\rangle = (H + V_{Life}) |\psi_n(t)\rangle$$

$$E_{n}$$

$$-\frac{E_{R}}{4} - \Delta E_{Lamb}$$

$$-E_{R} + \frac{2S_{1/2}}{2P_{1/2}}$$

$$2P_{1/2}$$

$$C = C = 1$$

Member of the Helmholtz Association

LIFETIME

 Electric and magnetic field perpendicular to beam direction

 $\vec{v} \perp \vec{\varepsilon} \perp \vec{B}$

- Electric and magnetic field perpendicular to beam direction $\vec{v} \perp \vec{\varepsilon} \perp \vec{B}$
- Sharpening the beam velocity

$$\vec{F}_{el.} = q\,\vec{\varepsilon} = q\left(\vec{v} \times \vec{B}\right) = \vec{F}_{Lorentz} \qquad |v| = \frac{|\varepsilon|}{|B|}$$

- Electric and magnetic field perpendicular to beam direction $\vec{v} \perp \vec{\varepsilon} \perp \vec{B}$
- Sharpening the beam velocity

$$\vec{F}_{el.} = q\vec{\varepsilon} = q\left(\vec{v} \times \vec{B}\right) = \vec{F}_{Lorentz} \qquad |v| = \frac{|\varepsilon|}{|B|}$$

 For a fixed beam energy then works as a mass filter

$$m = \frac{2E_{kin}B^2}{\varepsilon^2}$$

Page 25

. .

Spins of the particles interact with the magnetic field

CAESIUM CELL

 Using the properties of alkali metals for charge exchange

CAESIUM CELL

 Using the properties of alkali metals for charge exchange

• Creating metastable hydrogen $H^+ + Cs \rightarrow H^*_{2S} + Cs^+$

CAESIUM CELL

 Using the properties of alkali metals for charge exchange

• Creating metastable hydrogen $H^+ + Cs \rightarrow H^*_{2S} + Cs^+$

Lower temperature (Cs: 160 °C / Na: 350 °C)

SPIN FILTER

- Aim to separate the different Breit-Rabi states
- Contains several coils producing a homogeneous static magnetic field in beam direction
- Embedded sits a cavity in which a radio frequency as well as a static electric field is induced

THEORY FOR THE SPIN FILTER

$$H_{SF} = H_{BR} + V_{Life} + V_{Stark} + V_{RF}(t)$$
$$= V(t)$$

THEORY FOR THE SPIN FILTER

$$H_{SF} = H_{BR} + V_{Life} + V_{Stark} + V_{RF}(t)$$
$$= V(t)$$

$$\vec{B} = Im\left[-\frac{E_0}{c}J_1\left(\frac{2.405\rho}{R}\right)e^{-i\omega_{0,1,0}t}\hat{e}_{\phi}\right]$$

EVOLUTION IN TIME

RAMPED MAGNETIC FIELD

Measurement

Simulation

Forschungszentrum

SECOND GENERATION SPIN FILTER

 Extend the spin filter such that also β states can be selected

• Use the interaction with the $2P_{3/2}$ set

SECOND GENERATION SPIN FILTER

SECOND GENERATION SPIN FILTER

LIFETIMES INCLUDING $2P_{3/2}$

Page 38

GSI

Forschungszentrum

METASTABLE HYDROGEN

METASTABLE HYDROGEN

QUENCHING CHAMBER

 Using Stark effect to quench all metastable into the ground state

 Created Ly-α photons are detected by a photomultiplier

Directly observing the metastable occupation numbers

PULSED H⁻ SOURCE

 Direct nuclear polarization measurement

- Pulsed sources detectable
- Lyman-alpha spectrum 0.06 0.05 Beam Pol: Unpolarized $Chi^2 P1 = 0.18685$ 0.04 $Chi^2 P2 = 1.09977$ Number of sweeps: 4 Polarization: 22 % PMT signal [V] 0.02 0.01 0.00 1.1 1.2 1.3 1.4 1.5 Control voltage SF coil Power supply [V]

Uncertainty in the beam transport and polarization preservation and creation

OUTLOOK AND CONCLUSION

- Lamb-shift is a simple and consistent tool to verify nuclear and electron polarization
- Continuous and pulsed sources detectable

R. Engels et al. , Phys. Rev. Lett. **124**, (2020)

 Usage for hydrogen and its isotopes in atomic, ionic and molecular form

