

Institute of Modern Physics, Chinese Academy of Sciences

Beam Polarimetry for Future Hadron Facilities at IMP

Boxing Gou Institute of Modern Physics, CAS

PBT2024 | Huizhou

Feb. 26-<u>28, 2024</u>

Content

- Future hadron accelerators at IMP
- General consideration & reference reaction selection
- > Polarimeters based on elastic scattering in CNI region
 - Heavily adopted from RHIC experiences
 - pp-CNI absolute polarimeter
 - pC-CNI fast polarimeter
- Polarimeter based on pe elastic scattering
 - new method
- > Possible physics program with polarimetric apparatus
 - Physics program with CNI-pp polarimeter
 - Physics program with pe polarimeter
- Current activities

Future accelerators at IMP

General principle

→ A reference reaction $\vec{p}X \rightarrow Y$ is needed for beam polarimetry

 $\frac{d^2\sigma}{d\theta d\varphi} = \frac{1}{2\pi d\theta} \times [1 + A_N \cdot P \cdot \cos \phi] \qquad \text{(transversely single polarized cross section)}$

- > Analyzing power function of (E, θ) $A_N = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$
 - i.e. physical asymmetry, reflects and determined by the spin structure and dynamics
 - should be a prior known (measured or calculable)/self-calibrated

> Asymmetry
function of
$$(E, \theta, \phi)$$
 $\varepsilon = \frac{n^{\uparrow} - n^{\downarrow}}{n^{\uparrow} + n^{\downarrow}} = PA_N \cos \phi$ n: # of detected particles

Polarization
$$P = \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} = \frac{\varepsilon}{A_N \cos \phi}$$
N: # of beam particles

- $\succ \text{ Figure of merit} \qquad \text{FOM} = \sigma \cdot (A_N)^2$
 - larger FOM \rightarrow higher statistical precision

Reference reaction search

- > pp and pC elastic scatterings have been widely used as polarimetric reactions
 - at almost all proton accelerators (PSI, TRIMUF, LAMPF, COSY, SATURNE, ZGS, KEK-PS, AGS, RHIC ...)
 - in a broad energy range from ~20 MeV to 250 GeV

pp elastic scattering Xsc

pp elastic scattering A_N at large |t|

 A_N gets maximum in the range of $0.15 \leq |t| \leq 0.30 \, (GeV/c)^2$

A_N at CNI region (very-small |t|)

 A_N arises from interference between single-spin flip (ϕ_5) and spin-non flip (ϕ_+) amplitudes

Reference reaction selection

Content

- Future hadron accelerators at IMP
- General consideration & reference reaction selection
- > Polarimeters based on elastic scattering in CNI region
 - Heavily adopted from RHIC experiences
 - pp-CNI absolute polarimeter
 - pC-CNI fast polarimeter
- Polarimeter based on pe elastic scattering
 - new method
- > Possible physics program with polarimetric apparatus
 - Physics program with CNI-pp polarimeter
 - Physics program with pe polarimeter
- Current activities

Pol. H-Jet polarimeter

A_N can be self-calibrated with a pol. H target

	1	2	3	4
Beam	1	\downarrow	1	\downarrow
Target	1	1	\downarrow	\downarrow

• Identical beam & target particles • Identical beam & target particles Same A_N for $\begin{cases} \vec{p}p \rightarrow pp \ 1 + 3 \ p\vec{p} \rightarrow pp \ 1 + 2 \ and \ 3 + 4 \end{cases}$

•
$$P_{\text{beam}} = \frac{\varepsilon_{\text{beam}}}{A_N} = -\frac{\varepsilon_{\text{beam}}}{\varepsilon_{\text{target}}} P_{\text{target}}$$

- P_{target} measured with Breit-Rabi polarimeter
- Left-right asymmetry: $\varepsilon = \frac{N_L N_R}{N_L + N_R}$ measured with **symmetrically placed detectors**

Pol. H-Jet polarimeter in CNI Region

Pol. H-Jet polarimeter in CNI region at RHIC

Pol. H-Jet polarimeter in CNI region at RHIC

The H-Jet polarimeter at RHIC Precision: 5% in 1 hour

Polarization profile

Polarization profile

Polarization profile

p-C polarimeter

Target box

• Radius: 16 cm

Target frame

- ceramic v plate
- metal holders
- 4 holders (3 carbon + 1 empty)
- 1 left empty for background check

The RHIC/AGS p-C polarimeter 2001 design

p-C polarimeter

Target box

• Radius: 16 cm

Target frame

- ceramic v plate
- metal holders
- 4 holders (3 carbon + 1 empty)
- 1 left empty for background check

The RHIC/AGS p-C polarimeter

Polarimetry at RHIC

The RHIC experience will be adopted for EicC

	H-Jet polarimeter	pC polarimeter
Target	Polarized H gas jet	Carbon fiber
Target thickness	$\sim 10^{12} atoms/cm^2$	$\sim 10^{16} atoms/cm^2$
Event rate	~ 60 Hz	~ 2 MHz
Operation	continuously	~ 1 min/h
Analyzing power	self-calibrated	unknown
Role	Absolute, slow Noninvasive	Fast, relative Polarization profile Feedback for machine tuning 20

Content

- Future hadron accelerators at IMP
- General consideration & reference reaction selection
- > Polarimeters based on elastic scattering in CNI region
 - Heavily adopted from RHIC experiences
 - pp-CNI absolute polarimeter
 - pC-CNI fast polarimeter
- Polarimeter based on pe elastic scattering
 - new method
- Possible physics program with polarimetric apparatus
 - Physics program with CNI-pp polarimeter
 - Physics program with pe polarimeter
- Current activities

$\vec{p} \vec{e} \rightarrow pe$ with polarized H target

Polarized hydrogen target is also a polarized electron target !!!

- Very small Q^2 in inverse kinematics
- Proton form factors well measured
- All observables are exactly calculable Phys. Rev. C 84, 015212(2011)

FOM: pe vs pp

more suitable at HIAF energy range

Recoil electron detection – general idea

Recoil electron detection – apparatus

- Toroidal magnet emulated with COMSOL
- Asymmetric racetrack coil
- Coil current increases with beam energy
- Electron focused at HIAF-EicC energy range

- Toroidal magnet emulated with COMSOL
- Asymmetric racetrack coil
- Coil current increases with beam energy

Beam momentum: 5 GeV/c

Electron focused at HIAF-EicC energy range

- Toroidal magnet emulated with COMSOL
- Asymmetric racetrack coil
- Coil current increases with beam energy
- Electron focused at HIAF-EicC energy range

- Toroidal magnet emulated with COMSOL
- Asymmetric racetrack coil
- Coil current increases with beam energy
- Electron focused at HIAF-EicC energy range

- Toroidal magnet emulated with COMSOL
- Asymmetric racetrack coil
- Coil current increases with beam energy
- Electron focused at HIAF-EicC energy range

Content

- Future hadron accelerators at IMP
- General consideration & reference reaction selection
- > Polarimeters based on elastic scattering in CNI region
 - Heavily adopted from RHIC experiences
 - pp-CNI absolute polarimeter
 - pC-CNI fast polarimeter
- Polarimeter based on pe elastic scattering
 - new method
- Possible physics program with polarimetric apparatus
 - Physics program with CNI-pp polarimeter
 - Physics program with pe polarimeter
- Current activities

Physics with pp-CNI polarimeter

Physics with pp-CNI polarimeter

pp polarized observables (A_N , A_{NN})

- Reaction: $p\vec{p} \rightarrow pp$, $\vec{p}\vec{p} \rightarrow pp$
- A_N : single spin-flip amplitude (mechanism)
- A_{NN} : double spin-flip amplitude $\sqrt{\text{gluon search in t channel}}$

- [1] Odderon and spin dependence of high energy proton-proton scattering
 - E. Leader and T. L. Trueman, Phys. Rev. D 61, 077504 (2000)
- [2] Spin-dependent Pomeron and Odderon in elastic proton–proton scattering Yoshikazu Hagiwara, ..., and **Jian Zhou**, Eur. Phys. J. C 80 427 (2020)

Physics with pe polarimeter – proton radius puzzle

- Proton electromatic form factors (G_E, G_M) measured in ep elastic scattering
- Proton charge radius (r_p) extracted from G_E

$$r_p = -6 \frac{dG_E}{dQ^2} \bigg|_{Q^2 \to 0}$$

 r_p (G_E) from PRad is different from previous measurements

Physics with pe polarimeter – pe kinematics

Physics with pe polarimeter – $p\vec{e}$ vs $\vec{e}p$

> Transverse asymmetry $A_{\perp} = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$ in \vec{e} p scattering arises from twophoton exchange (imaginary amplitude: Im $\mathcal{M}_{2\gamma}$)

▶ Unitarity $\rightarrow A_{\perp}$ calculated from intermediate states X

- ≻ In \vec{e} p → ep
 - possible intermediates: X = N, π N ... \rightarrow Non-pQCD uncertainty
 - Lorentz effect with \vec{e} beam $\rightarrow A_{\perp} \propto \frac{m_e}{E} \sim 10^{-6}$ (tiny signal)
- ▶ In $\overrightarrow{pe} \rightarrow pe$ (very-low \mathbf{Q}_2)
 - $X = N \rightarrow A_{\perp}$ calculated with G_E and G_M (no theoretical uncertainty)
 - No Lorentz effect $\rightarrow A_{\perp}$ increases by 3 orders

New approach for r_p study and new physics search

 \succ A_{\perp} only sensitive to $\mathbf{G}_{\mathbf{E}}$ and $\mathbf{G}_{\mathbf{M}} \rightarrow \mathbf{New}$ approach to study proton EM radius

- Possible to distinguished PRad and Mainz measurements
- > New physics if A_{\perp} differs significantly from the SM calculation

Content

- Future hadron accelerators at IMP
- General consideration & reference reaction selection
- > Polarimeters based on elastic scattering in CNI region
 - Heavily adopted from RHIC experiences
 - pp-CNI absolute polarimeter
 - pC-CNI fast polarimeter
- Polarimeter based on pe elastic scattering
 - new method
- Possible physics program with polarimetric apparatus
 - Physics program with CNI-pp polarimeter
 - Physics program with pe polarimeter

Current activities

Current activities

- A joint polarized-physics team established at IMP
 - Polarized ion source
 - Polarized beam acceleration
 - Polarimetry (hydrogen target)
- National Key R&D program fund received from MOST
- > An ion source at IMP is designed, key parts manufactured
- Collaboration with IKP on polarized target

Summary

- Proton beam polarimetry based on pp and pC CNI scatterings
 - Well established method
 - Applicable for deuteron and helion beams
- Proton polarimetry based on pe scattering
- Possible physics program with polarimeters
 - Nuclear spin dynamics/structure
 - NN spin dynamics
 - New approach for proton radius study/new physics search
- Spin physics at IMP launched

