

Extracting hadron potentials from the NBS wave functions: separable representation

Lu Meng (孟 璐)

Ruhr-Universität Bochum

10th Jan, 2024, 中科院理论物理所

Based on papers in preparation Together with Evgeny Epelbaum (RUB)

Hadron-hadron interaction from LQCD

Ishii:2006ec, Aoki:2009ji,Aoki:2012tk

• QCD is the fundamental theory of the strong interaction

$$\mathcal{L}_{QCD} = \sum_{f} \bar{q}_{f} (i D - \mathcal{M} q_{f}) - \frac{1}{4} G^{a}_{\mu
u} G^{\mu
u,a}$$

- How to extract two-hadron interaction or observable from lattice QCD?
- Energy level method: Lüscher's formula Luscher:1990ux $ightarrow E^{FV} \sim \delta(E^{FV})$
- HALQCD method or potential method

- Neither the wave functions in the interacting range nor the potential are the observables
- ► Often criticized for **uncontrolled systematics**

Lu Meng (孟璐) | Extracting potential from wave functions: separable representation

2/36

	With (deeply) bound NN			Without bound NN (or inconclusive)			
1	2006	NPLQCD	First dynamical calculations				
	2011	NPLQCD	$M_{\pi} \approx 390 \text{ MeV}$				
	2012	Yamazaki et al.	$M_{\pi} \approx 510 \text{ MeV}$	2012	HALQCD	$M_{\pi} \approx 710 \text{ MeV}$	
	2015	NPLQCD	$M_{\pi} \approx 800 \text{ MeV}$	2012	HALQCD	$M_{\pi} \approx 469 - 1171 \text{ MeV}$	
	2015	Yamazaki et al.	$M_{\pi} \approx 310 \text{ MeV}$				
2	2015	CalLat	$M_{\pi} \approx 800 \text{ MeV+P,D,F}$ waves				
	2015	NPLQCD	$M_{\pi} \approx 450 \text{ MeV}$				
	2020	NPLQCD	$M_{\pi} \approx 450 \text{ MeV}$				
				2019	"Mainz"	$M_{\pi} \approx 960 \text{ MeV}$	
3				2020	CoSMoN	$M_{\pi} \approx 714 \text{ MeV}$	
				2021	NPLQCD	$M_{\pi} \approx 800 \text{ MeV}$	

□ However, we are observing a preponderance of evidence that the older methods with present statistics, are yielding qualitatively incorrect spectrum —

I believe the old results are wrong (including those I was involved with)

I believe the di-nucleon system unbinds at pion masses heavier than physical

Talk of A.Walker-Loud in lattice2023:https://indico.fnal.gov/event/57249/contributions/271301/

To bind or not to bind

	With (deeply) bound NN			Without bound NN (or inconclusive)			
1	2006	NPLQCD	First dynamical calculations	- 			
	2011	NPLQCD	$M_{\pi} \approx 390 \text{ MeV}$				
	2012	Yamazaki et al.	$M_\pi pprox 510 \; {\sf MeV}$	2012	HALQCD	$M_{\pi} \approx 710 \; { m MeV}$	
	2015	NPLQCD	Uncontrolled	2012	HALQ	469 – 1171 N	leV
	2015	Yamazaki et	$\pi \approx$ systematics			ATC.	
2	2015	CalLat	≈ 800 MeV+P,D,F waves	5			
	2015	NPLQ	7 ≈ 450 MeV				
	2020	NPLOCD	/∰≈ 450 MeV				
				2019	"Mainz"	$M_{\pi} \approx 960 \text{ MeV}$	_
3				2020	CoSMoN	$M_{\pi} \approx 714 \text{ MeV}$	
				2021	NPLQCD	$M_{\pi} pprox 800 \; { m MeV}$	

□ However, we are observing a preponderance of evidence that the older methods with present statistics, are yielding qualitatively incorrect spectrum —

I believe the old results are wrong (including those I was involved with)

I believe the di-nucleon system unbinds at pion masses heavier than physical

Talk of A.Walker-Loud in lattice2023:https://indico.fnal.gov/event/57249/contributions/271301/

	• Wit	h (deeply) bou	Ind NN	• Witho	out bound N	N (or inconclusive)
1	2006	NPLQCD	First dynamical calculations	 		
	2011	NPLQCD	$M_{\pi} \approx 390 \text{ MeV}$			
	2012	Yamazaki et al.	$M_\pi pprox 510 \; {\sf MeV}$	2012	HALQCD	$M_{\pi} \approx 710$ MeV
	2015	NPLQCD	Uncontrolled	2012	HALQ	469 – 1171 MeV
	2015	Yamazaki et 🧲	$\pi \approx$ systematics			ATC.
2	2015	CalLat	≈ 800 MeV+P,D,F waves		and the second	
	2015	NPLQC	$\Lambda \approx 450 \text{ MeV}$			
	2020	NPLOCD	/∰≈ 450 MeV			
				2019	"Mainz"	$M_{\pi} \approx 960 \text{ MeV}$
3				2020	CoSMoN	$M_{\pi} \approx 714 \text{ MeV}$
				2021	NPLQCD	$M_{\pi} pprox 800 \; { m MeV}$

Significance of the HALQCD method

To improve the understanding of the systematics of HALQCD

Talk of A.Walker-Loud in lattice2023:https://indico.fnal.gov/event/57249/contributions/271301/

HALQCD method

Disclaimers:

- I am not the member of the HALQCD group
- I will try my best to be fair

Aoki:2009ji,Aoki:2012tk

HALQCD method

- The raw data of HAL QCD simulations are Nambu-Bethe-Salpeter (NBS) wave functions
- The derivative expansion (DE) method is often questioned by some people
- In this talk, I will first illustrate some concepts and then provide an alternative way of DE method

• The equal-time BS amplitude (BS wave function, BSWF) CP-PACS:2005gzm

$$\psi(\vec{x};\vec{k}) = \langle 0|\pi_1(\vec{x}/2)\pi_2(-\vec{x}/2)|\pi_1(\vec{k}),\pi_2(-\vec{k});in\rangle$$

• Asymptotic behavior of BS wave function

$$\psi(\vec{x};\vec{k}) = e^{i\vec{k}\cdot\vec{x}} + \int \frac{d^3p}{(2\pi)^3} \frac{T(p;k)}{p^2 - k^2 - i\epsilon} e^{i\vec{p}\cdot\vec{x}}$$

 $\blacktriangleright T(p;k)$ is the half-on-shell T-matrix

 $\blacktriangleright \psi(\vec{x}; \vec{k})$ satisfy the Lippmann-Schwinger eq. as the non-relativistic scattering wave function

• The BSWF at different energies $\{k_i\}$ in the lattice are the raw data of t-independent HAL QCD

• The general problem: $\psi_{k_i}(\vec{x}) \Rightarrow V$

• The general problem (set m = 1, 1D case as an example)

$$\int dr' V(r,r')\psi_{k_i}(r') = \left(\frac{d^2}{dr^2} + k_i^2\right)\psi_{k_i}(r) \Rightarrow \int dr' V(r,r')R^{(i)}(r) = K^{(i)}(r)$$

- ► Determined the potential V(r, r') once $\{\Psi_{k_i}(r)\}$ are given
- ► $R^{(i)}(r)$ and $K^{(i)}(r)$ are known
- ► Note: the # of wave functions is small, 2 or 3
- ► In general, the potential is **nonlocal**

• Regions of potential

- ► Inner region (interacting region): $V(r,r') \neq 0$ (r,r' < R)
- ► outer region (asymptotic region): V(r,r') = 0 (r,r' > R)
- ► The raw data is $\psi_{k_i}(\vec{x})$ in the **interacting region +** outer region
- ► In principle, one can get the $\delta(k_i)$ from $\psi_{k_i}(\vec{x})$ Asymptotic properties
- ► The Lüscher's method only concerns on the asymptotic region
- ► Could we get more information than $\delta(k_i)$ from the $\psi_{k_i}(\vec{x})$?

• ψ_{k_i} with fixed energies are projected from the correlation function after ground state saturation

$$R(r,t) = \sum_{n} a_n \psi_{k_n}(r) e^{-(2\sqrt{m_N^2 + k_n^2} - 2m_N)t}$$

• For large box, it is expansive to get the ground state saturation

• Time-dependent Schrödinger-type equation

$$\left(-\frac{\partial}{\partial t} + \frac{1}{4m_N}\frac{\partial^2}{\partial t^2}\right)R(r,t) = \left(\hat{H}_0 + \hat{V}\right)R(r,t)$$

• The general problem

$$\int dr' V(r,r') R(r',t) = K(r,t) \qquad K(r,t) = \left(-\frac{\partial}{\partial t} + \frac{1}{4m_N}\frac{\partial^2}{\partial t^2} - \frac{1}{m_N}\frac{d^2}{dr^2}\right)$$

 Time-dependent strategy without ground state saturation makes simulations with large box and small pion mass available

 $\blacktriangleright m_{\pi} = 146$ MeV, $a \simeq 0.0846$ fm, $L^4 = 96^4$, L = 8.1 fm

Doi:2017zov, Lyu:2022imf,Lyu:2023xro...

Ishii:2012ssm

• Note: the # of wave functions is small, 2 or 3

Modern views of potential

- There is no reason to rule out the nonlocal potential either in principle or phenomenologically
- Potential is not observable
 - Cannot be determined uniquely by scattering experiments
 - Observable-equivalent potentials are related by unitary trans. (UT) or field redefinition
 - ► UT can relate local potentials to nonlocal potentials

• $V_{low,k}$ and Similarity renormalization group (SRG)

Bogner:2009bt

Non-observables

▶ Non-asymptotic behavior of ψ , e.g. the deuteron D-state probability

Amghar:1995av

- Off-shell T-matrix
- ► Potential
- Observables
 - Solution Asymptotic behavior of ψ
 - ► Phase shift
 - ► On-shell T-matrix

• In principle one may choose any composite operators with the same quantum numbers as the

hadron to define the BS wave function

• Different operators give different BS wave functions and different hadron potentials

► They are related by UT

- \blacktriangleright We anticipate they lead to the same observables such as the δ and E_b
- In the HAL QCD simulations: once the setting of interpolating operators are fixed, the "underlying" potential is fixed in principle
- The "underlying" potential cannot be extracted from only a small number of the wave functions

- From a small number of the wave functions, the potential can not be determined uniquely
 - ► Think it in a discrete way

$$\int dr' V(r,r') R^{(i)}(r) = K^{(i)}(r) \Rightarrow \mathbb{V}_{N \times N} R^{(i)}_{N \times 1} = K^{(i)}_{N \times 1}$$

- ► One need N wave functions to fix potential matrix $\mathbb{V}_{N \times N}$
- ► N: several tens, typical order of # quadrature points
- ► In practices, only 2 or 3 wave functions are accessible

- Using two wave functions of $V_{underlying}$ as input { $\psi_{k1}(r), \psi_{k2}(r)$ }
- $\delta_{tar}(k)$ go thorough { $\delta(k_1), \delta(k_2)$ } and the third phase shift $\delta_{by-hand}(k_3)$ assigned by hand
- Find a potential $V_{inverse}$ permit $\delta_{tar}(k)$ Tabakin: 1969mr
- Find a unitary transformation give the correct wave functions { $\psi_{k1}(r), \psi_{k2}(r)$ }
- Conclusion:
 - ► A small number of wave functions cannot fix the potentials and phase shifts

- Using two wave functions of $V_{underlying}$ as input { $\psi_{k1}(r), \psi_{k2}(r)$ }
- $\delta_{tar}(k)$ go thorough { $\delta(k_1), \delta(k_2)$ } and the third phase shift $\delta_{by-hand}(k_3)$ assigned by hand
- Find a potential $V_{inverse}$ permit $\delta_{tar}(k)$ Tabakin: 1969mr
- Find a unitary transformation give the correct wave functions { $\psi_{k1}(r), \psi_{k2}(r)$ }
- Conclusion:
 - ► A small number of wave functions cannot fix the potentials and phase shifts

- Using two wave functions of $V_{underlying}$ as input { $\psi_{k1}(r), \psi_{k2}(r)$ }
- $\delta_{tar}(k)$ go thorough { $\delta(k_1), \delta(k_2)$ } and the third phase shift $\delta_{by-hand}(k_3)$ assigned by hand
- Find a potential $V_{inverse}$ permit $\delta_{tar}(k)$ Tabakin: 1969mr
- Find a unitary transformation give the correct wave functions { $\psi_{k1}(r), \psi_{k2}(r)$ }
- Conclusion:
 - ► A small number of wave functions cannot fix the potentials and phase shifts

Derivative expansion VS EST expansion

• Derivative expansion

$$V(r,r') = V_0(r)\delta(r-r') + V_1(r)\delta(r-r')\frac{d^2}{dr'^2} + V_2(r)\delta(r-r')\frac{d^4}{dr'^4} + \dots$$
• LO

$$V_0(r)R^{(1)}(\vec{r}) = K^{(1)}(\vec{r}) \Rightarrow V_0(r) = \frac{K^{(1)}(\vec{r})}{R^{(1)}(\vec{r})}$$
• NLO

$$\begin{pmatrix} R^{(1)}(r) & \frac{d^2}{dr^2}R^{(1)}(r) \\ R^{(2)}(r) & \frac{d^2}{dr^2}R^{(2)}(r) \end{pmatrix} \begin{pmatrix} V_0(r) \\ V_1(r) \end{pmatrix} = \begin{pmatrix} K^{(1)}(r) \\ K^{(1)}(r) \end{pmatrix}$$

- It is not expansion about some definite small quantities
- Its convergence is tested self-consistently
- Think it in a discrete way,

► The band width become wider

NLO derivative expansion

$$\begin{pmatrix} R^{(1)}(r) & \frac{d^2}{dr^2} R^{(1)}(r) \\ R^{(2)}(r) & \frac{d^2}{dr^2} R^{(2)}(r) \end{pmatrix} \begin{pmatrix} V_0(r) \\ V_1(r) \end{pmatrix} = \begin{pmatrix} K^{(1)}(r) \\ K^{(1)}(r) \end{pmatrix}$$

- The potential become singular at the zero of det of the coefficients matrix
- A example from toy model Aoki:2021ahj
 - ► In simulation, it is challenging to handle the singularity
 - ► Wave functions are obtained at discrete point.

• Self-consistence test: LO NN potentials obtained at different energies ($E \simeq 0$ MeV and 45 MeV)

- ► LO approximation of DE validates to E = 45 MeV.
- ► Other test: optimized operators method Lyu:2022tsd

45[MeV] 0[MeV] 45[MeV] 0[MeV] 45[MeV] 1S0 3S1 central 3S1 tensor 600 0MeV1 600 50 50 50 Vc,s^(LO)(r)[MeV] Vc,t^(LO)(r)[MeV] V_T^(LO)(r)[MeV] 400 400 0 0 200 0 200 -50 -50 2 0 0 -50 2 0 2 2 r[fm] r[fm] r[fm]

Point-sink scheme used by HAL QCD group

Very local "underlying" potential, fast convergence of the DE

By experiences Murano:2011nz,HALQCD:2017xsa, Kurth:2013tua

Murano:2011nz

DE VS EST

0 • In the case of two-particle scattering processes LO smear-sink -2 involving quark annihilation diagrams NLO smear-sink -4 v_0^{-4} [deg.] v_0^{-6} [deg.] v_0^{-10} LO point-sink ▶ smear-sink scheme ► DE method does not converges as fast as point-sink scheme ► The "underlying" potentials of the are more nonlocal than those of point-sink scheme -14 $=2,\pi\pi$ scattering

HALQCD:2017xsa

-16

0.0

 $_{-18}||\ m_{\pi}=870\ {
m MeV}$

0.1

0.3

 k^2 [GeV²]

0.4

0.5

0.6

0.2

- Local potentials do not possess any essential superiority over a non-local potentials.
- Perhaps, turning to another parameterization of the potentials will take less pains.
 - Separable parameterization

- The problem: $V|R^{(i)}\rangle = |K^{(i)}\rangle$
- Separable representation I:

$$V = \sum_{ij} C_{ij} |K^{(i)}\rangle \langle R^{(j)}|, \quad C_{im} \langle R^{(m)} | R^{(j)}\rangle = \delta_{ij}$$

- ► Bad performance
- ► In the outer region: $K^{(i)}(r) = (\frac{d^2}{dr^2} + k_i^2)\psi_{k_i}(r) = 0$, $R^{(i)}(r) = \psi_{k_i}(r) \neq 0$

• Separable representation II, Ernst-Shakin-Thaler (EST) method

$$V = \sum_{mn} |K^{(m)}\rangle \Lambda_{mn} \langle K^{(n)}|, \quad \Lambda_{mn} \langle K^{(n)}|R^{(i)}\rangle = \delta_{mi}$$

► In the outer region: $K^{(i)}(r) = 0$

Ernst:1973zzb,Haidenbauer:1984dz

► Application: on-shell and off-shell equivalent separable potentials of NN Paris potentials

Aoki:2009ji

► Application: on-shell and off-shell equivalent separable potentials of Paris potentials

Ernst:1973zzb,Haidenbauer:1984dz

Numerical comparisons

Two underlying potentials

• Separable potential Aoki:2021ahj

$$V(\boldsymbol{r},\boldsymbol{r}') = \omega rac{e^{-\mu r}}{r} rac{e^{-\mu r'}}{r'}$$

• LO chiral nuclear force Reinert:2017usi

$$V_{ctc}(\boldsymbol{p},\boldsymbol{p}') = Ce^{-\frac{p^2 + p'^2}{\Lambda^2}}, \quad V_{ope}(\boldsymbol{q}) = -\frac{g_A}{4F_\pi^2} \left(\frac{\boldsymbol{\sigma}_1 \cdot \boldsymbol{q} \boldsymbol{\sigma}_2 \cdot \boldsymbol{q}}{\boldsymbol{q}^2 + m_\pi^2} + C_{sub} \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2\right) e^{-\frac{q^2 + m_\pi^2}{\Lambda^2}}$$

Separable contact interaction + local one-pion exchange interaction

• For simplicity: S-wave and ${}^{1}S_{0}$ NN interaction

Solve the Time-(in)dependent Schrodinger equation to get wave functions

- Time-independent method
 - ► Choose $\{\psi_{k_i}\}$ as inputs
- Time-dependent method
 - ► Initial wave functions

$$\tilde{R}(t=0,x) = \frac{\sigma^2 e^{-\sigma x}}{4\pi}$$

► Evaluate t=60

► Two $\sigma = \{0.3, 0.6\}$ as two inputs

Separatable interaction

- The EST methods give the accurate potential in LO
- The DE method is convergent

Separatable interaction

- The EST methods give the accurate potential in LO
- The DE method is convergent

Physical interaction

- Including both separatable part and local part
- The performance of EST method is better
- In t-dependent methods, singular potential

$$V_{ctc}(\boldsymbol{p}, \boldsymbol{p}') = C e^{-\frac{\boldsymbol{p}^2 + \boldsymbol{p}'^2}{\Lambda^2}},$$

$$V_{ope}(\boldsymbol{q}) = -\frac{g_A}{4F_\pi^2} \left(\frac{\boldsymbol{\sigma}_1 \cdot \boldsymbol{q} \boldsymbol{\sigma}_2 \cdot \boldsymbol{q}}{\boldsymbol{q}^2 + m_\pi^2} + C_{sub} \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2\right) e^{-\frac{\boldsymbol{q}^2 + m_\pi^2}{\Lambda^2}}$$

Physical interaction

- Including both separatable part and local part
- The performance of EST method is better
- In t-dependent methods, singular potential

$$V_{ctc}(\boldsymbol{p}, \boldsymbol{p}') = C e^{-\frac{p^2 + p'^2}{\Lambda^2}},$$

$$V_{ope}(\boldsymbol{q}) = -\frac{g_A}{4F_{\pi}^2} \left(\frac{\boldsymbol{\sigma}_1 \cdot \boldsymbol{q} \boldsymbol{\sigma}_2 \cdot \boldsymbol{q}}{\boldsymbol{q}^2 + m_{\pi}^2} + C_{sub} \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \right) e^{-\frac{q^2 + m_{\pi}^2}{\Lambda^2}}$$

Singularity in potential

Bound state

- At LO, both EST and DE method give reasonable binding energy
- The EST method perform better in phase shift
- Singular potential in DE at NLO

Bound state

- At LO, both EST and DE method give reasonable binding energy
- The EST method perform better in phase shift
- Singular potential in DE at NLO

Local interaction

- The DE method gives the accurate results at LO
- Convergent EST results, not bad performance

$$V_{ctc}(\boldsymbol{p}, \boldsymbol{p}') = Ce^{-\frac{p^2 + p'^2}{\Lambda^2}}.$$
$$V_{ope}(\boldsymbol{q}) = -\frac{g_A}{4F_\pi^2} \left(\frac{\boldsymbol{\sigma}_1 \cdot \boldsymbol{q} \boldsymbol{\sigma}_2 \cdot \boldsymbol{q}}{\boldsymbol{q}^2 + m_\pi^2} + C_{sub} \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \right) e^{-\frac{q^2 + m_\pi^2}{\Lambda^2}}.$$

Local interaction

- The DE method gives the accurate results at LO
- Convergent EST results, not bad performance

$$V_{ctc}(\boldsymbol{p}, \boldsymbol{p}') = Ce^{-\frac{p^2 + p'^2}{\Lambda^2}}.$$
$$V_{ope}(\boldsymbol{q}) = -\frac{g_A}{4F_\pi^2} \left(\frac{\boldsymbol{\sigma}_1 \cdot \boldsymbol{q} \boldsymbol{\sigma}_2 \cdot \boldsymbol{q}}{\boldsymbol{q}^2 + m_\pi^2} + C_{sub} \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \right) e^{-\frac{q^2 + m_\pi^2}{\Lambda^2}}.$$

Summary

- Re-emphasize some concepts
 - Potential and non-asymptotic wave function are not observable
 - ► The HALQCD potential is determined by the interpolating operators
 - ► A small number of wave functions can NOT determine the potential definitely
 - One cannot rule out the nonlocal potential either in principle or phenomenologically
- Derivative expansion VS EST expansion
 - ► For local potential, DE performs better, EST is not so bad (converge)
 - ► For separable potential EST perform better
 - ► For LO chiral nuclear force, EST perform better
- EST provide a alternative way to extract potential
 - Changing potential representation takes less pains than changing operators to re-simulate
 - ► A way to estimate the systemic uncertainty
 - ► Combing EST and DE: short-range: EST, long-range: DE

Thanks for your attention!

Backup

Highlight of HALQCD results: NN interaction

- lattice Setting: $m_{\pi} = 146$ MeV, $m_{K} = 525$ MeV, a = 0.0846 fm, L = 8.1 fm, 96^{4}
 - \Rightarrow Almost physical pion mass, very large box size, the finite volume effect is neglected
 - \Rightarrow NN: ${}^{1}S_{0}$ central potential, ${}^{3}S_{1}$ central potential, ${}^{3}S_{1} {}^{3}D_{1}$ tensor potential

Doi:2017zov

D^*D interaction: 2 pion tails

r [fm]

- lattice Setting: $m_{\pi} = 146$ MeV, $m_{K} = 525$ MeV, a = 0.0846 fm, L = 8.1 fm, 96^{4}
- D^*D , ϕN interaction...

Lyu:2022imf,Lyu:2023xro

FIG. 2. The D^*D potential V(r) in the I = 0 and S-wave channel at Euclidean time t/a = 21 (green circles), 22 (red squares), and 23 (blue triangles).

Fitiing the potential with:

$$V_{fit}(r) = \sum_{i=1,2} a_i e^{-r^2/b_i^2} + a_3 \frac{e^{-2mr}}{r^2}$$

once a_3 is determined

define

$$E_{eff}(r) = -\frac{\ln[-V(r)r^2/a_3]}{r}$$

one get a plateau at $E_{eff} = 2m$

• No one-pion exchange interaction: $\frac{1}{n} = 4.1$ fm

(65)

(66)

An example

HALQCD:2017xsa

Fig. 5. The phase shifts of the S-wave $I = 2 \pi \pi$ scattering from the potential in the point-sink scheme (LO: orange) and the smeared-sink scheme (LO: pink, NLO: red) as a function of k^2 .

FIG. 2. The D^*D potential V(r) in the I = 0 and S-wave channel at Euclidean time t/a = 21 (green circles), 22 (red squares), and 23 (blue triangles).

- Extracting potential from NBS is not a expansion of small quantities
- It is more like a interpolating and extrapolating
- Self-consistence test also make sense

- 1. Underlying potential $V_{underlying}$ give its phase shift $\delta(k)$
- 2. Using two wave functions as input { $\psi_{k1}(r)$, $\psi_{k2}(r)$ } with phase shifts { $\delta(k_1)$, $\delta(k_2)$ }
- 3. Find a $\delta_{tar}(k)$ go thorough $\{\delta(k_1), \delta(k_2)\}$ and the third phase shift $\delta_{by-hand}(k_3)$ assigned by hand
- 4. Find a potential $V_{inverse}$ permit $\delta_{tar}(k)$

many choices: i.e. a separable potential

Tabakin:1969mr

6. Construct an unitary trans. (UT): $U |\psi_{k_i}^{inv}\rangle = |\psi_{k_i}\rangle$

Ernst:1973utx

$$|f_i\rangle = |\psi_{k_i}\rangle - |\psi_{k_i}^{inv}\rangle, \quad U-1 \equiv \sum_{mn} |f_m\rangle \Lambda_{mn} \langle f_n|, \quad \Lambda_{mn} \langle f_n|\psi_i\rangle = \delta_{mi}$$

7. V^{inv+UT} permit the { $\psi_{k1}(r), \psi_{k2}(r)$ }

$$V^{inv+UT} = UV^{inv}U^{\dagger} + UH_0U^{\dagger} - H_0$$

- A small number of wave functions cannot fix the potential and phase shift
- Unless, you presume some features of potentials
 - Derivative expansion: the nonlocality of potential is small
 - ► EST: separable

