Some phenomenological applications of Khuri-Treiman equations

Sergi Gonzàlez-Solís (sergig@icc.ub.edu)

ITP-CAS (Beijing), January 10, 2024

Introduction

- Asymptotic freedom: "like QED", but only at high energies
- Confinement:

at low energies the gluons bind the quarks together to form the hadrons

- Quark models give gross structure of hadron spectrum
- Need non-pertubative **approaches** to describe these hadrons *rigorously*:

Experimental data

Dispersive framework

- Model independent and non-perturbative resummation of final-state interactions (FSI), based on:
 - Unitarity (\sim probability conservation) gives rise to the *optical theorem*:

 Analyticity: Dispersion relations reconstruct the whole amplitude with knowledge about discontinuity

Example: the pion vector form factor

• Full loop calculation

- **Cutkosky** rule: propagators yield Im parts on-shell $\frac{1}{p^2 M^2 + i\varepsilon} \longrightarrow -2\pi i \delta(p^2 M^2)$
- Calculation of the **discontinuity** (unitarity)

- Use the p-w expansion of the $\pi\pi$ amplitude and the orthogonality condition

$$T^{I}_{\pi\pi}(s,z_{l}) = 32\pi \sum_{\ell=0}^{\infty} (2\ell+1)t^{I}_{\ell}(s)P_{\ell}(z_{l}), \quad (2\ell+1)\int_{-1}^{1} dz_{l}P_{\ell}(z_{l})P_{\ell'}(z_{l}) = 2\delta_{\ell\ell'},$$

$$4/27$$

Example: the pion vector form factor

• Unitarity:

(only $\ell = 1$ is projected out)

disc $F_{\pi}(s) = 2i \text{Im} F_{\pi}(s) = 2i \sigma_{\pi}(s) F_{\pi}(s) t_{1}^{1*}(s) = 2i F_{\pi}(s) \sin \delta_{1}^{1}(s) e^{-i\delta_{1}^{1}(s)}$,

• Watson's theorem [Watson, Phys.Rev. 95, 228 (1954)]:

$$\operatorname{Im} F_{\pi}(s) = |F_{\pi}(s)| e^{i\delta_{F_{\pi}}(s)} \sin \delta_{1}^{1}(s) e^{-i\delta_{1}^{1}(s)} \theta(s - 4m_{\pi}^{2}),$$

$$\Rightarrow \quad \delta_{F_{\pi}}(s) = \delta_{1}^{1}(s),$$

Omnès equation

• Invoke Cauchy integral

• Assuming $F_{\pi}(s) \to 0$ when $\Lambda^2 \to \infty$, only the integral over the cut remains

$$F_{\pi}(s) = \frac{1}{2\pi i} \int_{4m_{\pi}^2}^{\infty} \frac{\operatorname{disc} F_{\pi}(s')}{s' - s} ds'$$

• Analytic solution, Omnès equation [Omnès, Nuovo Cimento 8, 316 (1958)]

$$F_{\pi}(s) = P(s)\Omega_{1}^{1}(s), \quad \Omega_{1}^{1}(s) = \frac{f(s)}{f(0)} = \exp\left\{\frac{s}{\pi}\int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\delta_{1}^{1}(s')}{s'(s'-s)}\right\},$$

• Polynomial ambiguity P(s), not fixed by unitarity

— Matched to the results of the effective theory, or by experimental data

Omnès equation

• Diagrammatic interpretation

• Solution: depends solely on the *P*-wave phase shift of $\pi\pi$

Three-particle decay

- In many decay processes one wants to take into account unitarity/FSI in the three possible channels
- Khuri-Treiman equations:
 - Include full rescattering effects

Khuri-Treiman formalism: citation summary

• Developed for $K \to 3\pi$

Pion-Pion Scattering and K + /- --> 3pi Decay

```
N.N. Khuri (Princeton, Inst. Advanced Study), S.B. Treiman (Princeton U.) Aug 1, 1960
```

6 pages Published in: *Phys.Rev.* 119 (1960) 1115-1121 DOI: 10.1103/PhysRev.119.1115

- Most prominent applications:
 - $\eta \to 3\pi$ [Kambor et.al. 1995, Anisovich et.al. 1996, Descotes-Genon et.al. 2014, JPAC 2015&17, Colangelo 2016, Albaladejo et.al. 2017]
 - $\eta' \rightarrow \eta \pi \pi$ [Isken *et.al.* 2017]
 - $\omega/\phi \rightarrow 3\pi, \pi\gamma^*$ [Kubis et.al. 2012, JPAC 2014&20, Dax et.al. 2018]
 - $J/\psi \to 3\pi, \pi\gamma^*$ [JPAC 2023] \to this talk
 - $e^+e^- \rightarrow 3\pi/\pi\gamma$ (a_μ) [Hoferichter *et.al.* 2018&19, Hoid 2020]
 - $D \rightarrow K\pi\pi$ [Niecknig *et.al.* 2015]
 - $J^{PC} \rightarrow 3\pi$ [JPAC 2019, Stamen *et.al.* 2022]

JPAC: Joint Physics Analysis Center

- Work in theoretical/experimental/phenomenological analysis
- Light/heavy meson **spectroscopy**
- Interaction with many **experimental collaborations** (BESIII, CLAS, GlueX, KLOE, LHCb, MAMI,...) and LQCD groups
- Website: https://www.jpac-physics.org

Vincent Mathieu

$J/\psi/\psi(2S) \rightarrow 3\pi$ decay

• BESIII data [Phys.Lett. B710, 594 (2012)] show $\rho\pi$ puzzle — $J/\psi \rightarrow \pi^0\pi^+\pi^-$: 1.9 milion events, $\rho\pi$ dominance

— $\psi(2S) \rightarrow \pi^0 \pi^+ \pi^-$: 7872 events, $\rho \pi$ subleading

Definitions

- Decay amplitude for $V \to \pi^+\pi^-\pi^0~(V=\omega,\phi,J/\psi)$

$$\mathcal{M}(s,t,u) = i\epsilon_{\mu\nu\alpha\beta}\epsilon^{\mu}p_{+}^{\nu}p_{-}^{\alpha}p_{0}^{\beta}\mathcal{F}(s,t,u),$$

- Mandelstam variable, s-channel scattering angle and momenta

$$s = (p_{+} + p_{-})^{2}, \quad t = (p_{0} + p_{+})^{2}, \quad u = (p_{0} + p_{-})^{2},$$

$$\cos \theta_{s}(s, t, u) = \frac{t - u}{4 p(s) q(s)}, \quad \sin \theta_{s}(s, t, u) = \frac{\sqrt{\phi(s, t, u)}}{2\sqrt{s} p(s) q(s)},$$

$$p(s) = \frac{\lambda^{\frac{1}{2}}(s, m_{\pi^{+}}^{2}, m_{\pi^{-}}^{2})}{2\sqrt{s}}, \quad q(s) = \frac{\lambda^{\frac{1}{2}}(s, m_{J/\psi}^{2}, m_{\pi^{0}}^{2})}{2\sqrt{s}},$$

$$|\mathcal{M}(s, t, u)|^{2} = \frac{1}{4} \left(2\sqrt{s} \sin \theta_{s} p(s) q(s)\right)^{2} |\mathcal{F}(s, t, u)|^{2} = \mathcal{P}(s, t, u)|\mathcal{F}(s, t, u)|^{2},$$

- If no dynamics: $|\mathcal{F}(s,t,u)|^2 = 1 \Rightarrow |\mathcal{M}(s,t,u)|^2$ follows *P*-wave distribution
 - In 1961, ω spin and parity from $\omega \to 3\pi$ was consistent with a P-wave
 - Current $\omega \rightarrow 3\pi$ precision Dalitz analyses show deviation from the *P*-wave 12/27

Khuri-Treiman representation of the amplitude

• s-channel partial-wave (pw) expansion of the amplitude

$$F(s,t,u) = \sum_{J=0}^{\infty} (p(s) q(s))^{J-1} P'_J(z_s) f_J(s),$$

• Khuri-Treiman/isobar decomposition of the amplitude

$$F(s,t,u) = \sum_{J=0}^{J_{\max}} (p(s) q(s))^{J-1} P'_J(z_s) F_J(s) + (s \leftrightarrow t) + (s \leftrightarrow u),$$

• Consider only J = 1 isobars

$$F(s,t,u) = F_1(s) + F_1(t) + F_1(u) ,$$

• pw projection of the KT decomposition

$$f_1(s) = F_1(s) + \hat{F}_1(s), \quad \hat{F}_1(s) = 3 \int_{-1}^1 \frac{dz_s}{2} (1 - z_s^2) F_1(t(s, z_s)),$$

— $F_1(s)$: right-hand cut (RHC) — $\hat{F}_1(s)$: left-hand cut (given by the RHC of the crossed channels $F_1(t), F_1(u)$) 13/27

Unitarity and analyticity

• Unitarity relation for the isobar amplitude $F_1(s)$

$$\operatorname{disc} F_1(s) = 2i \left(F_1(s) + \hat{F}_1(s) \right) \sin \delta(s) e^{-i\delta(s)} \theta(s - 4m_\pi^2)$$

- Complications: integration contour for $\hat{F}_1(s)$
- Classic' strategy (Khuri-Treiman, 1960)
 - deform path of angular integral to avoid crossing branch cuts
- Alternative approach (Gasser and Rusetsky, 2018)
 - deform path of dispersion relation

KT equations: DR, solutions, subtractions

• Unsubtracted dispersion relation:

$$F_1(s) = \frac{1}{2\pi i} \int_{4m_\pi^2}^{\infty} ds' \, \frac{\operatorname{disc} F_1(s')}{s' - s} \,, \quad F_1(s) = \Omega_1(s) \left(a + \frac{s}{\pi} \int_{4m_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1(s') \, \hat{F}_1(s')}{|\Omega_1(s')| \, (s' - s)} \right) \,.$$

- $\delta_1(s)$: $\pi\pi$ phase taken as input:
 - Old solution [Garcia-Martin, et.al. Phys. Rev. D83, 074004 (2011)]
 - New solutions [Pelaez, Rodas, Ruiz De Elvira, Eur. Phys. J. C79, 1008 (2019)]
 - Central analysis performed with solution I for $\delta_1(s)$
 - The spread in the other solutions: theoretical uncertainty

KT equations: DR, solutions, subtractions

• Unsubtracted dispersion relation:

$$F_1(s) = \frac{1}{2\pi i} \int_{4m_\pi^2}^{\infty} ds' \, \frac{\operatorname{disc} F_1(s')}{s' - s} \,, \quad F_1(s) = \Omega_1(s) \left(a + \frac{s}{\pi} \int_{4m_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1(s') \, \hat{F}_1(s')}{|\Omega_1(s')| \, (s' - s)} \right)$$

• Solution by numerical iteration

KT equations: DR, solutions, subtractions

• Once-subtracted dispersion relations

$$F_1(s) = \Omega_1(s) \left(a + b' s + \frac{s^2}{\pi} \int_{4m_\pi^2}^{\infty} \frac{ds'}{(s')^2} \frac{\sin \delta_1(s') \hat{F}_1(s')}{|\Omega_1(s')| (s'-s)} \right)$$

• The subtraction constant satisfies a sum rule:

$$b \equiv b'/a = \frac{1}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{(s')^2} \frac{\sin \delta_1(s') \hat{F}_1(s')/a}{|\Omega_1(s')|}$$

• Solution

$$F_1(s) = a [F_a(s) + b F_b(s)] ,$$

$$F_{a}(s) = \Omega_{1}(s) \left[1 + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta_{1}(s') \hat{F}_{a}(s')}{|\Omega_{1}(s')|(s'-s)} \right],$$

$$F_{b}(s) = \Omega_{1}(s) \left[s + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta_{1}(s') \hat{F}_{b}(s')}{|\Omega_{1}(s')|(s'-s)} \right].$$

JPAC $J/\psi \rightarrow 3\pi$ BESIII data analysis

- Dominated by the ρ
- BESIII data [PLB 710 (2012)]
- JPAC analysis:
 - Two-body
 - KT unsub basic features
 - KT 1-sub improves the description

$$b_{\rm fit} = 0.198(35)e^{i2.675(300)} \,\mathrm{GeV}^{-2}$$

 $b_{\rm sr} = 0.141e^{i2.32} \,\mathrm{GeV}^{-2}$

JPAC $J/\psi \rightarrow 3\pi$ BESIII data analysis

- Dominated by the ρ
- BESIII data [PLB 710 (2012)]
- JPAC analysis:
 - Dalitz plot distribution similar to experimental one

Contribution of the *F*-wave

• Isobar decomposition of the amplitude including *F*-wave:

 $F(s, t, u) = F_1(s) + F_1(t) + F_1(u)$

+ $(p(s)q(s))^2 P'_3(z_s)F_3(s) + (p(t)q(t))^2 P'_3(z_t)F_3(t) + (p(u)q(u))^2 P'_3(z_u)F_3(u)$,

- $F_{1,3}(s)$ is the P, F-wave isobar amplitude
- Discontinuity of the *F*-wave:

disc
$$F_3(s) = 2i \left(F_3(s) + \hat{F}_3(s) \right) \sin \delta_3(s) \ e^{-i\delta_3(s)} \ \theta(s - 4m_\pi^2)$$
,

• We neglect $\hat{F}_3(s)$ (for simplicity)

$$F_3(s) = p_3(s)\Omega_3(s), \quad \Omega_3(s) = \exp\left[\frac{s}{\pi}\int_{4m_\pi^2}^{\infty} \frac{ds'}{s'}\frac{\delta_3(s')}{s'-s}\right],$$

Model of the *F*-wave: $\rho_3(1690)$ exchange

• Exchange of a $\rho_3(1690)$ in the s-channel with an energy-dependent width:

$$F_3(s)|_{\rm BW} = \frac{m_{\rho_3}^2}{m_{\rho_3}^2 - s - im_{\rho_3}\Gamma_{\rho_3}^{\ell=3}(s)}, \quad \Gamma_R^\ell(s) = \frac{\Gamma_R m_R}{\sqrt{s}} \left(\frac{p(s)}{p(m_R^2)}\right)^{2\ell+1} \left(F_R^\ell(s)\right)^2,$$

$$p(s) = \frac{\sqrt{s}}{2}\sigma_{\pi}(s), \quad F_{R}^{\ell=3}(s) = \sqrt{\frac{z_{0}(z_{0}-15)^{2}+9(2z_{0}-5)^{2}}{z(z-15)^{2}+9(2z-5)^{2}}}, \quad z = r_{R}^{2}p^{2}(s), \quad z_{0} = r_{R}^{2}p^{2}(m_{\rho_{3}}^{2}),$$

• Extraction of the F-wave phase and Omnès F-wave function:

$$\tan \delta_{3}(s) = \frac{\mathrm{Im}F_{3}(s)|_{\mathrm{BW}}}{\mathrm{Re}F_{3}(s)|_{\mathrm{BW}}},$$

$$\Omega_{3}(s) = \exp\left[\frac{s}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'} \frac{\delta_{3}(s')}{s'-s}\right],$$

$$\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}}{\overset{^{\mathrm{W}}}{\overset{^{\mathrm{W}}}{\overset{$$

JPAC $J/\psi \rightarrow 3\pi$ BESIII data analysis

- Dominated by the ρ
- BESIII data [PLB 710 (2012)]
- JPAC analysis:
 - Two-body
 - KT unsub basic features
 - KT 1-sub improves the description
 - KT 1-sub+F-wave describe better $m_{\pi\pi} \sim 1.5$ GeV.

$$\psi(2S) \to \pi^+ \pi^- \pi^0$$
 decays

- Completely analogous formalism
- Larger phase space, $m_{\psi(2S)} = 3.68610 \text{ GeV}$
- BESIII data [PLB 710 (2012)]
- Why does the $\psi(2S) \to \pi^+\pi^-\pi^0$ Dalitz plot differ so dramatically from $J/\psi \to \pi^+\pi^-\pi^0$?

$J/\psi \rightarrow 3\pi$: future analyses

- In 2022, BESIII collected 10 billion J/ψ events
 - Expect to see roughly 200 million $J/\psi \rightarrow 3\pi$ events (vs ~1.9 million in 2012)
 - High-precision ρ - ω mixing extraction (JPAC, ongoing)

$J/\psi \to \pi^0 \gamma^*$ transition form factor

• Dispersive representation (once-subtracted)

- $|f_{J/\psi\pi^0}(0)|$ from data: $\Gamma(J/\psi \to \pi^0 \gamma) = \frac{e^2 (m_{J/\psi}^2 - m_{\pi^0}^2)^3}{96\pi m_{J/\psi}^3} |f_{J/\psi\pi^0}(0)|^2,$
- $\phi_{\omega\pi^0}(0)$ only free parameter
- No data, $\phi_{\omega\pi^0}(0) = 0$

Combined analysis of $\omega \to 3\pi$ and $\omega \to \pi^0 \gamma^*$

• $\omega \to 3\pi$ Dalitz parameters: $X = \frac{t-u}{\sqrt{3}R_{\omega}} = \sqrt{Z}\cos\phi, Y = \frac{s_c-s}{R_{\omega}} = \sqrt{Z}\sin\phi,$ $|\mathcal{F}(Z,\phi)|^2 = |N|^2 \left[1 + 2\alpha Z + 2\beta Z^{3/2}\sin 3\phi + 2\gamma Z^2 + \mathcal{O}(Z^{5/2})\right],$

Reference	$\alpha \times 10^3$	$\beta imes 10^3$	$\gamma imes 10^3$	JPAC Coll, Eur.Phys.J. C80 (2020) no.12, 1107
BESIII [PRD98, 112007 (2018)]	111(18)	25(10)	22(29)	$= 100 \qquad \qquad$
low	112(15)	23(6)	29(6)	$= \lim_{\leftarrow \\ \bullet \\ $
high	109(14)	26(6)	19(5)	$\left \frac{f_{\omega\pi^0}(s)}{f_{\omega\pi^0}(0)}\right ^2 = \frac{1}{2} \frac{NA60(16)}{NA60(09)}$

• $\omega \to 3\pi$ subtraction constant from Dalitz parameters

$$b_{\rm Fit} \simeq 3.15(22) e^{2.03(14)i} \,{\rm GeV}^{-2}$$

VS

$$b_{\rm sr} = 0.55 e^{0.15i} \,{\rm GeV}^{-2}$$

• Only 1 sub KT describes both Dalitz-parameters and form factor

Outlook

- Khuri-Treiman equations:
 - Dispersive representation for **3-particle Final-State Interactions**
 - Based on fundamental principles: analyticity, unitarity and crossing symmetry
 - Input: $\pi\pi$ scattering **phase shifts**
 - Resonance shape affected by left-hand cuts / 3-body effects
 - **Predictive power** (subtraction constants)
 - Experimental **data** well described

Khuri-Treiman representation JPAC Coll, EPJ C80 (2020) no.12, 1107

•
$$\mathcal{F}(s) = a \left[F_a(s) + b F_b(s) \right]$$

$$\begin{split} F_{a}(s) &= \Omega(s) \left[1 + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta(s') \hat{F}_{a}(s')}{|\Omega(s')|(s'-s)} \right] \,, \\ F_{b}(s) &= \Omega(s) \left[s + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta(s') \hat{F}_{b}(s')}{|\Omega(s')|(s'-s)} \right] \,. \end{split}$$

• Subtraction constant from Dalitz parameters

$$b_{\rm Fit} \simeq 2.9 e^{1.90(1)i} \,{\rm GeV}^{-2}$$
 vs $b_{\rm sr} = 0.55 e^{0.15i} \,{\rm GeV}^{-2}$

$\omega \to \pi^0 \gamma^*$ form factor

