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Motivation



Pure geometry philosophy for fundamental physics

mathmatic

Geometry is a logic system.



Figure 1: Geometry background of
GR is curved, smooth manifold,
pseudo-Riemannian manifold [M.
Fecko, Differential geometry and Lie
groups for physicists, (2006)] (more
precisely, Lorentzian manifold). The
gravitational field is determined by
the metric of manifold.

Geometry background of General Relativity (GR) and
Standard Model of particle physics (SM)

Figure 2: Geometry background of
SM is very similar with the flat space-
time with G-bundle [D. Husemoller,
Fibre bundles, (1966)]. The electro-
magnetic field, weak bosons fields,
gluon bosons fields are originated
from the principal G-bundle connec-
tions. Leptons, quarks are originated
from the sections of associated bun-
dle.



The curved manifold with G-bundle is a good option for
geometry background of Yang-Mills theory in curved
space-time

Figure 3: It can be found that “square root metric” Lorentz manifold not only
with metric, but also equipped with U(4") x U(4)-bundle at the same time.
This geometry might give intrinsic geometrical interpretation to all the fields
being observed.



Square root something usual leads to unusual

>
v—1=i
>
\/ Klein — Gordon equation = Dirac equation
>

\/Metricg = 7
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Metric

» Riemannian manifold is described by metric

glx) = —gw,(x)dx” ® dx”,gw,(x) = gw(x), det(gw(x)) # 0.
2.1)

» The inverse metric is defined
g (%) = —g" (x)9,0,, (Oy, dxt) = 5. (2.2)
» And it can be described by orthonormal frame formalism as
g () = =" 0a(x)0s (). 2.3)

» Here orthonormal frame 6,(x) = 6/ (x)9,, describes gravitational
field.



Square root metric

P Similar with square root Klein-Gordon equation gives us Dirac
equation, is there any explicit mathematic formulas for square root
inverse metric?

gix) = 7 (2.4)

» Similar ideas have “Kaluze-Klein theory without extra dimensions:
curved Clifford space” [M. Pavsic, Phys. Lett. B 614, 85-95
(2005)], etc.



Square root metric

» Similar with square root Klein-Gordon equation gives us Dirac
equation and Dirac fermions, after ten years researching, we write
an explicit mathematic formula for square root inverse metric

S0 = I, 1) @5)

with
&) = I, 26)

where
Ix) = iy "0a(x), (2.72)

I(x) = iv"%0,(x). (2.7b)



Square root metric

» The definition of Dirac matrices is
,Ya,yb + ’}/b’}/a — 277(/1b[4><47 (28)

where n** = diag(1, -1, -1, —1).

» The Hermiticity conditions for Dirac matrices can be chosen
YT+ = 2 g, (2.9)

where I’ = diag(1,1,1,1).



Square root metric
» The definition of Dirac matrices has U(4) rotation freedom

A =Tl W e U4), (2.10)

such that v’ still Dirac matrices.
» Then, the entity / can be rewriten as
1(x) = i7" (x)8a(x) = iUy VO, (x)
= i\f/jfy”\llﬂa(x)e} ® ef,(x), (2.11)

]

; ® ej) = eie}L = d;;. One simple choice of ¢; is

where #r(

e1 = (€91,0,0,0), ey =(0,€92,0,0), (2.12a)
e3 = (0,0,e%,0), e4=(0,0,0,e%). (2.12b)

» Direct calculation shows that

I'(x) = —I(x). (2.13)



Connections and gauge field

» Coefficients of affine connections on coordinates, coefficients of
spin connections on orthonormal frame [S. Chern, W. Chen, and
K. Lam, Lectures on differential geometry, (1999)] and gauge
fields on U(4’) x U(4)-bundle are defined as follows

V0, = 17,,(x)0,, (2.14a)
Viba(x) = T%,(x)05(x), (2.14b)
V(") = U(x) O = )], (2.140)

Vel = iWu)el, (2.14d)

P The relation between coefficients of affine connections on coordi-
nates and coefficients of spin connections on orthonormal frame
is found

Fb(w(x)eg(x) = 0,07 (x) + 0, (x)['",,(x). (2.15)



Connections and gauge field

» The Hermiticity conditions for gauge fields are

V(x) = Vulx),  Wi(x) = Wylx). (2.16)
» The gauge field V,,(x) and W,;;(x) can be decomposed by the gen-

erators of the U(4) group
Vi(x) =V x)T?, Wij(x) = Wi ()T, (2.17)

y

where . = 0,1,2,--- ,15 and

v = v

I3 o

wer = e, (2.18)

m



Equation and Lagrangian

> A equation satisfy U(4’) x U(4) gauge invariant, locally Lorentz
invariant and generally covariant principles is constructed

trVi(x) = 0. (2.19)

» This equation describes a manifold parallel transporting itself.
» Eliminate index x, the explicit formula of equation (2.19) is

(10,0 — UiV, + W)y + Uy (10,0 + V,, U — U W,y;0)
+iU A T, | O = 0(2.20
> We define a Lagrangian
L o= U (i0,9; + V,V; — VW) 08 + U,00;, (2.21a)
b = éybrabueg. (2.21b)
One find that Lagrangian (2.21a) have relation with (2.19)
trVi(x) = £ — L. (2.22)



Lagrangian and equation

» Ifequation (2.19) being satisfied, Lagrangian (2.21a) is Hermitian

L=rh (2.23)

» Curvature tensor and gauge field strength tensors are defined as
follows

Rab/uz 8,ul—‘abl/ - al’rabu + Fcbyracu - Cb,uFacw (22421)

H,, = 0,V, =0, V,—iV,V, +iV,V,, (2.24b)
F;wij = 8# Wl/ij — 0, ij — inkWy}q' + iWVikWM]g',(z.24C)

where Ryp, = —Rpaun if Vg = 0 and

H}yy = Hyy,  Fy = Fu (2.25)



Curvature, gauge field strength tensor and identity

» There is Yang-Mills [C. N. Yang and R. L. Mills, Phys. Rev. 96,
191-195 (1954)] Lagrangian for gauge bosons in this model

—1 v
Ly= —tr (H"Hy) — gF;; Fouji (2.26)

where ¢ € R is constant.



Lagrangian of Gravity

» For gravity, Einstein-Hilbert action be showed as follows

S— / R, (227)

where R is Ricci scalar curvature, w = /—gdx® Adx* Adx? A dx®
is volume form. The variation of action give us Einstein tensor.

» The Einstein equation is

1
Ry — §gWR = kT (2.28)
» Einsteinsay: “The reason for the formalism of left hand is to let its
divergence identically zero in the meaning of covariant derivative.
The right hand of equation are the sum up of all the things still
problems in the meaning of field theory.”



Lagrangian of Gravity, Einstein-Cartan gravity

> After defining V* = V[,V dx* Adx”, the equation of motion for
this gravity theory is constructed

trV2[I(x){(x)] = 0. (2.29)
» This equation (2.29) is obviously U(4') x U(4) gauge invariant,

locally Lorentz invariant and generally covariant. The explicit for-
mula of equation (2.29) is

RUW; =i (Fabzy-q’}(v“'yb — Ty — B H (v - 'be'y“T)\Ifi) :
> We define a Hermitian Lagrangian
Ly =RU[W,; —i (Fabgllf}('y”’vb — 7"y,
—UHa(y" =AM w) 230)

where R\IJIT\I/i is Einstein-Hilbert action.



Total Lagrangian

» The total lagrangian for U(4') x U(4) Pati-Salam model in curved
space-time and Einstein-Cartan gravity [W. Drechsler, Z. Phys. C
41, 197-205 (1988); M. Tecdhiolli, Universe 5, 206 (2019)] is

Lr =L+ gLy~ gL, (2.31)
where g and g are parameters

g.g€R. (2.32)



Sheaf quantization, path integral quantization and canonical

quantization

» Sheaf (&) [R. Harshorne, Algebraic geometry, (2013);M. Kashi-
wara and P. Masaki, Sheaves on manifolds (1990)] is a geometry
structure natural than section.

Sheaf B ‘

Section ﬁsunme

v 4

Base Manifold

Figure 4: Fibre bundle is a map from bundle to base manifold. The sheaf
is the contravariant functor of the map.

» The sheaf quantization [K, Nakayama, J.Math.Phys.55,102103 (2014);
A. Doring and C. Isham, J. Math. Phys. 49, 053515 (2018); C.
Flori, A first course in topos quantum theory, (2013)], path in-
tegral quantization and canonical quantization of this theory are
consistent with each other.



Sheaf quantization, path integral quantization and canonical
quantization

» The path integral formulation of transition amplitude can be de-
rived from sheaf quantization

e (t,x9) = / Dm(/’xq)eifwﬁ[dm(t’,xq)ﬁmﬁ(t’,x‘f)]aﬁ(to,xq)_(2.33)
' €(to,t)

» The sheaf quantiztion suggest the canonial quantiztion formula-
tion based on Lgrangian (not Lagrangian density).
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Flat space-time limits of Pati-Salam model in curved
space-time

» The flat space-time limits version of Lagrangian L7 is

Lr = tr[iPy*9,V + fUy*V, U — gUy UW, + VoV + V(9)
1 v n v o 4 v
— S H Hyy — P Fy — igFy U (719" — 47T w

HfUTH,, (VY — 4| 3.1

where each terms are Dirac, minimal coupling, Yukawa coupling
, Higgs potential, Yang-Mills and magnetic moment terms.

» WU, V, and W, are 4 x 4 matrices. Without loss of generality, we
choose minimal coupling model to analyse the interaction vetices

Lyin = tr [iy*0, 0 + fUyHV, U — g UW,]| . (3.2)



Flat space-time limits of Pati-Salam model in curved
space-time

> We observe that the second term in Lagrangian (3.2) is difficult
to decompose due to chiral symmetry, but the third term can be
decomposed

15
Lygin = tr | 19990, 0 + > (AU VETU — gl "0, Wo T
a=1

—g\I/R’y“\I/RWﬁTa)] ,(3.3)

accordingly, the second term in Lagrangian (3.2) describes the
SU(4") color gauge interaction, and the third term in Lagrangian
(3.2) describes the SU(4), x SU(4) chiral flavor gauge interac-
tion.



Flat space-time limits of Pati-Salam model in curved
space-time

» Lagrangian (3.1) is invariant under local gauge transformations of
color space and flavor space rotation U and U, respectively,

¥ =0T, 34
where
UecU#), UeU@4), (3.5)
such that
A = UyPUT = AV = U4 UT, (3.6a)
v, = urU - (0,0)U, (3.6b)

w, = U (9,U)-UW,U. (3.6¢)



Representation of fermions

» Then the column of the fermion matrix ¥ corresponding to color
and the row corresponding to flavor, and transfer as U(4") x U(4)
fundamental representation.

» So, fermions are filled into SU(4) fundamental representation nat-
urally as Table 1. In Pati-Salam model,“lepton number as the
fourth color” [J. C. Pati and A. Salam, Phys.Rev. D10, 275 (1974)].

Table 1: Fermions are filled into SU(4) fundamental representation 4 ® 6.

SU(4) 6
R
Quarks G u ¢ t d s b
4 B

Leptons e U T Ve Vy Vg

» Anti-fermions are filled into 4 ® 6 similarly.



Representation of fermions

Lepton

I
I

B

=

¢ I

Figure 5: Weight diagram of SU(4) fundamental representation 4 ® 6. Repre-
sentation 4 = 3 + 1, 3 is 3 kinds of color, red, green and blue, 1 is the lepton
number. Representation 6 gives us 6 flavor of quarks and leptons. 6 flavors
devided to 3 generations, I ,II and III, each generation has 2 kinds of quarks
or leptons.



Representation of fermions

P> An explicit fermions representation in this model might be

V2ur V2cr \2tr  df
V2ug V2ce V2 dg
V2ug 2ep V2 dy |’

e I T v

U = (3.7)

where u, ¢, t and d’ are quarks fields, e, 4, 7 and v/ are electron,
mu, tau and neutrinos fields.

» The corresponding fermions electric charges of (3.7) are

2/3 2/3 2/3 —1/3

| 2/3 2/3 2/3 —1/3
Qv = 2/3 2/3 2/3 —1/3
1 1 1 0

» The quarks states like |d), |s), |) and neutrinos states |v,), |1,), |Vr)
are eigen states of the Lagrangian.



Gauge bosons

> Vi, and W (a = 0,1,---,15) are gauge bosons fields.

» The interactions related with I; always preserves the possibility
of chiral symmetry breaking such that the gauge group can de-
composed to U(4") x U(4) x U(4)r, where U(4') is color group
and U(4), x U(4)g is chiral flavor group.

> The Vg is dark photon [arXiv: 1311.0029; B. Holdom, Phys. Let.
B. 166 (2):196-198 (1986)] and W), is Fiona () particle.

» The left over part gauge group is a Pati-Salam gauge group SU(4") x
SU(4) x SU(4)g and the SU(4") can be decomopsed as follow

SU4) =SU3) & U') + Uyt + Uy-. (3.8)



Gauge bosons,Color SU(4’) processes

» The SU(3') is the gauge group of quantum chramodynamics (QCD)
and the corresponding gauge bosons Vﬁ(a =1,2---,8) are glu-
ons.

» The U(1’) is electro-magnetic interaction gauge group and corre-
sponding gauge boson ¥} is photon ~.

Uc Cc fc d}w
)QQQ/ g )-w g >\o,o.o/ v >w ~
uc Cc tC d,C
e i 7
)m g >mm Y >\m g
e 1 T

Figure 6: The fermion—anti-fermion—boson interaction vertices of photon.



Gauge bosons,Color SU(4’) processes

» The X*C particles transport semi-leptonic processes and

X =P Linhre. 3.9)

ran )wxc )wx- )mxc

17/

>~Q.QSU X+ >\QQQ/ X+ }Q.0.0z X+ >\QQ9/ X+
uc cc to d,

Figure 7: The fermion—anti-fermion—boson interaction vertices of X
bosons. All three external legs are momentum in.

» The electric charge of X*€ and X~ € are % and —



Gauge bosons,Color SU(4’) processes

» The representation (filling scheme) of matrix ¥, might be

RR 15 RG RB —R
Gu + Vu Gu Gu Xu
GGR GGG 4 V15 GGB X—G
V= Br " opg ! BB 115 "p (3.10)
G# Gu G# + Vu X#
+R +G +B 15
Xu Xu Xu —BVH

where G, are gluons and V}f are photon. The corresponding elec-
tric charge matrix of V), is

o 0 0 -1/3

[ o o o -1/3
=109 o o0 -1/3
1/3 1/3 1/3 0

(3.11)



Gauge bosons,Color SU(4") processes,flavor mixing
» The left-handed flavor eigenstates |d] ), [} ), |0} ) of d, s, b quark

states are
V2 o
_7gtr[uLC7MdILCW:”d/LC> = ai|d)c), (3.12a)
V2 oo
—Tﬂr[CLCWHd/LCW:”S/Ld = azlsyc), (3.12b)
V2
—TgtrﬁLC’V“d/LcW;f”b/Ld = az|byc). (3.12¢)
» The left-handed mass eigenstates of the d, s and b quarks are
itr [82C7#8udzc] ‘ch> = mdL]ch>, (3.138.)
itr [Zi’chy“aud/LC] |SLC> = mSL’SLc>, (3.13b)
itr [d’LCv“(?“d’LC] ’ch> = mbL\ch). (3.130)
» The Cabibbo-Kobayashi-Maskawa (CKM) matrix is
|dch> Vud Vs Vub ‘dLC>
500 | = | Vea Ves Ve s.e) | (3.14)

L) Via Vis Va |bre)



Gauge bosons, Chiral flavor SU(4), x SU(4)g processes
» The chiral gauge group SU(4). r can be decomposed as

SUA)r=SUB)y® U(1)z + Up+ + Uy, (3.15)
and related gauge bosons Wjj(a = 1,2,---,15) contain weak
bosons W+ and Z

e o= W Liw =w £iw? =W} +iw. (3.16a)

Z, = Wf; = WZ = W}f. (3.16b)

Urc Crc tro dr e
>-M VA VA >vvv 7 >\,\,\, VA
Urc cLc tro d
LC
€r i I vy,
€r 1L 7L V/L

Figure 8: The fermion—anti-fermion—boson interaction vertices of Z bosons.



Gauge bosons, Chiral flavor SU(4), x SU(4)g processes

irc CLc tre
>\M, w+ >\/\/\4 W+ >rwv w+
dic drc

d/LC
er nr 7L
}\’W w >~\~ w >"\~ wt
vy vy, v,
dyc e dyo
}VW w- }M w- >~W w-
Urc Cro trc
v v vL
>'M w- >.M w- >\'W w-
er r TL

Figure 9: The fermion—anti-fermion—boson interaction vertices of ' bosons.
All three external legs are momentum in.



Gauge bosons, Chiral flavor SU(4), x SU(4)g processes

» The left over gauge bosons are Y, Y? and Y1, Y2 with 0 eletric
charge

e e e e
e e e e
e e e e

~ =~
2 v SN N - 5

Figure 10: The gauge bosons Y', Y2 Yl ¥? transport fermion—anti-
fermion—boson interaction vertices about beyond-SM flavor changing
neutral currents (FCNCs). All three external legs are momentum in.



Gauge bosons, Chiral flavor SU(4), x SU(4)g processes

» The W, matrix might be

GZu Yo Vg Wy,

1 v Gz, Y. w;

— kL H H H
Wy=5 o ez e | (3.17)

Wi Wy WE o Gz,

The corresponding electric charge matrix of W, is

000 —1
000 —1
or=|0900 1| (3.18)
111 0



Gauge bosons, Chiral flavor SU(4), x SU(4)g processes,

flavor mixing
» The left-handed flavor eigenstates of neutrinos are

—%gtr[éL’y“V}‘W;fHVeL} = aylver), (3.19a)
— S ) = asl), (G190)
—%gtr[fL'y“in:]\l/Tﬁ = aglvrr). (3.19¢)
» The left-handed mass eigenstates of neutrinos are
itr [y 0uvy] lvir) = mi|var), (3.20a)
itr [y 0uvy] |var) = mar|var), (3.20b)
itr [y 0uvy] |var) = mar|vaL). (3.20¢)
» The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix is
|VeL) Ua Ue U [viL)
vur) | = U Uu2 Uy lvar) |- (3.21)

|vr) Ui Ur2 Ups |vsr)



Gauge bosons
» The masses of X* and Y!, Y2, Y1, Y2 must be superheavy from the
restrictions of experimental data.

(a) i, x

X X

Figure 11: Weight diagram of SU(4) adjoint representation and cor-
responding gauge bosons. The decomposition of SU(4) adjoint rep-
resentation is 15 = 8 & 1 + 3 + 3*. (a) The wight diagram of
Vila = 1,2,---,15) related gauge bosons. (b) The wight diagram
of Wﬁ(a =1,2,---,15) related gauge bosons.
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Gauge anomoly

» The anomaly in quantum field theory always means a symmetry
is preserved in classial theory but violated in quantum version.

» The golbal symmetry anomaly might be accessed by quantum field
theory, but the locally gauge symmetry anomaly (gauge anomaly)
is belived to be a consistence condition for a gauge theory.

» In four-dimenional spacetime, the quantum gauge anomaly free
condition of chiral flavor gauge group can be checked by triangle
Feymann diagram in Fig. 12.

pe

pe
a Ha WA<%;
vb

b

Figure 12: The Feynman amplitude about triangle anomaly is iM@Hv?,



Gauge anomoly

» The amplitude of Fig. 12 propotional to
P o o (77 + o (T“TCT”)
_ bre) (abc)
— 9tr (Tlﬂ T¢ ) 2d (5.1)

then for SU(4); x SU(4)g chiral Yang-Mills theory, the current
conservative equation has the formulation

Oy (x) oc d“lbD ool e (5.2)
such that the indices bc satisfy commutation and anti-commutation
relations

d(a[bc}) 1 (dabc dacb + dacb o dabc) -0 (5.3)
1 . .



Gauge anomoly

» The analyse about SU(4’) color gauge Yang-Mills theory is sim-
ilar. Note that a fermions loop cannot interact with flavor and
color gauge bosons in one triangle anomaly Feymann diagram at
the same time. So the SU(4), x SU(4)r x SU(4’) Pati-Salam
model with this fermions representation is gauge anomaly free.



Summary

» This theory unify fermions, gauge bosons, Higgs and gravitational
fields into a pair of “entities” , square root metric

g I(x) = I(x), I(x), (5.4)

and its connections, with new physics as torsion, supperheavy
neutrinos, X, ¥, dark photon, Fiona (%) and monopole.

» The interactions between fields can be derived from self-parallel
transportation principle

trVi(x) =0,  trV3[i(x)l(x)] = 0. (5.5)

» The sheaf quantization, path integral quantization and canonical
quantization are consistent with each other.

> Particles spectrum, representation of fermions, fermion—anti-fermion—
boson interaction vertices, flavor mixing, gauge anomoly and monopole
current are discussed.



Thank you!  ##f!
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