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Pure geometry philosophy for fundamental physics

mathmatic

geometry

physics

Geometry is a logic system.



Geometry background of General Relativity (GR) and
Standard Model of particle physics (SM)

Figure 1: Geometry background of
GR is curved, smooth manifold,
pseudo-Riemannian manifold [M.
Fecko, Differential geometry and Lie
groups for physicists, (2006)] (more
precisely, Lorentzian manifold). The
gravitational field is determined by
the metric of manifold.

Figure 2: Geometry background of
SM is very similar with the flat space-
time with G-bundle [D. Husemoller,
Fibre bundles, (1966)]. The electro-
magnetic field, weak bosons fields,
gluon bosons fields are originated
from the principal G-bundle connec-
tions. Leptons, quarks are originated
from the sections of associated bun-
dle.



The curved manifold with G-bundle is a good option for
geometry background of Yang-Mills theory in curved
space-time

Figure 3: It can be found that“square root metric”Lorentz manifold not only
with metric, but also equipped with U(4′) × U(4)-bundle at the same time.
This geometry might give intrinsic geometrical interpretation to all the fields
being observed.



Square root something usual leads to unusual

▶ √
−1 = i

▶ √
Klein− Gordon equation ⇒ Dirac equation

▶ √
Metric g ⇒ ?
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Metric

▶ Riemannian manifold is described by metric

g(x) = −gµν(x)dxµ ⊗ dxν , gµν(x) = gνµ(x), det(gµν(x)) ̸= 0.
(2.1)

▶ The inverse metric is defined

g−1(x) = −gµν(x)∂µ∂ν , ⟨∂ν , dxµ⟩ = δµν . (2.2)

▶ And it can be described by orthonormal frame formalism as

g−1(x) = −ηabθa(x)θb(x). (2.3)

▶ Here orthonormal frame θa(x) = θµa (x)∂µ describes gravitational
field.



Square root metric

▶ Similar with square root Klein-Gordon equation gives us Dirac
equation, is there any explicit mathematic formulas for square root
inverse metric? √

g−1(x) ⇒ ? (2.4)

▶ Similar ideas have “Kaluze-Klein theorywithout extra dimensions:
curved Clifford space” [M. Pavsic, Phys. Lett. B 614, 85–95
(2005)], etc.



Square root metric

▶ Similar with square root Klein-Gordon equation gives us Dirac
equation and Dirac fermions, after ten years researching, we write
an explicit mathematic formula for square root inverse metric√

g−1(x) ⇒ l̃(x), l(x), (2.5)

with

g−1(x) =
1

4
tr[̃l(x)l(x)], (2.6)

where

l(x) = iγ0γaθa(x), (2.7a)
l̃(x) = iγaγ0θa(x). (2.7b)



Square root metric

▶ The definition of Dirac matrices is

γaγb + γbγa = 2ηabI4×4, (2.8)

where ηab = diag(1,−1,−1,−1).
▶ The Hermiticity conditions for Dirac matrices can be chosen

γaγb† + γb†γa = 2IabI4×4, (2.9)

where Iab = diag(1, 1, 1, 1).



Square root metric
▶ The definition of Dirac matrices has U(4) rotation freedom

γa′ = Ψ†γaΨ, Ψ ∈ U(4), (2.10)

such that γa′ still Dirac matrices.
▶ Then, the entity l can be rewriten as

l(x) = iγ0γa(x)θa(x) = iΨ̄γaΨθa(x)
= iΨ̄jγ

aΨiθa(x)e†j ⊗ eiθa(x), (2.11)

where tr(e†j ⊗ ei) = eie†j = δij. One simple choice of ei is

e1 = (eiθ1 , 0, 0, 0), e2 = (0, eiθ2 , 0, 0), (2.12a)
e3 = (0, 0, eiθ3 , 0), e4 = (0, 0, 0, eiθ4). (2.12b)

▶ Direct calculation shows that

l†(x) = −l(x). (2.13)



Connections and gauge field

▶ Coefficients of affine connections on coordinates, coefficients of
spin connections on orthonormal frame [S. Chern, W. Chen, and
K. Lam, Lectures on differential geometry, (1999)] and gauge
fields on U(4′)× U(4)-bundle are defined as follows

∇µ∂ν = Γρ
νµ(x)∂ρ, (2.14a)

∇µθa(x) = Γb
aµ(x)θb(x), (2.14b)

∇µ(γ
0γa) = i[Vµ(x)γ0γa − γ0γaVµ(x)], (2.14c)
∇µe†i = iWµij(x)e†j , (2.14d)

▶ The relation between coefficients of affine connections on coordi-
nates and coefficients of spin connections on orthonormal frame
is found

Γb
aµ(x)θ

ρ
b(x) = ∂µθ

ρ
a(x) + θνa (x)Γρ

νµ(x). (2.15)



Connections and gauge field

▶ The Hermiticity conditions for gauge fields are

V†
µ(x) = Vµ(x), W∗

µij(x) = Wµji(x). (2.16)

▶ The gauge field Vµ(x) andWµij(x) can be decomposed by the gen-
erators of the U(4) group

Vµ(x) = Vα
µ(x)T α, Wµij(x) = Wα

µ(x)T α
ij , (2.17)

where α = 0, 1, 2, · · · , 15 and

Vα∗
µ = Vα

µ, Wα∗
µ = Wα

µ. (2.18)



Equation and Lagrangian
▶ A equation satisfy U(4′)× U(4) gauge invariant, locally Lorentz

invariant and generally covariant principles is constructed

tr∇l(x) = 0. (2.19)

▶ This equation describes a manifold parallel transporting itself.
▶ Eliminate index x, the explicit formula of equation (2.19) is[

(i∂µΨ̄i − Ψ̄iṼµ +WµijΨ̄j)γ
aΨi + Ψ̄iγ

a(i∂µΨi + VµΨi −ΨjWµji)

+iΨ̄iγ
bΨiΓ

a
bµ

]
θµa = 0.(2.20)

▶ We define a Lagrangian

L = Ψ̄iγ
a(i∂µΨi + VµΨi −ΨjWµji)θ

µ
a + Ψ̄iϕΨi, (2.21a)

ϕ =
i
2
γbΓa

bµθ
µ
a . (2.21b)

One find that Lagrangian (2.21a) have relation with (2.19)

tr∇l(x) = L − L†. (2.22)



Lagrangian and equation

▶ If equation (2.19) being satisfied, Lagrangian (2.21a) is Hermitian

L = L†. (2.23)

▶ Curvature tensor and gauge field strength tensors are defined as
follows

Rabµν = ∂µΓ
a
bν − ∂νΓ

a
bµ + Γc

bνΓ
a
cµ − Γc

bµΓ
a
cν , (2.24a)

Hµν = ∂µVν − ∂νVµ − iVµVν + iVνVµ, (2.24b)
Fµνij = ∂µWνij − ∂νWµij − iWµikWνkj + iWνikWµkj,(2.24c)

where Rabµν = −Rbaµν if∇g = 0 and

H†
µν = Hµν , F∗

µνij = Fµνji. (2.25)



Curvature, gauge field strength tensor and identity

▶ There is Yang-Mills [C. N. Yang and R. L. Mills, Phys. Rev. 96,
191–195 (1954)] Lagrangian for gauge bosons in this model

LY =
−1

2
tr (HµνHµν)−

ζ

2
Fµν
ij Fµνji, (2.26)

where ζ ∈ R is constant.



Lagrangian of Gravity

▶ For gravity, Einstein-Hilbert action be showed as follows

S =

∫
Rω, (2.27)

where R is Ricci scalar curvature, ω =
√
−gdx0∧ dx1∧ dx2∧ dx3

is volume form. The variation of action give us Einstein tensor.
▶ The Einstein equation is

Rµν −
1

2
gµνR = κTµν . (2.28)

▶ Einstein say:“The reason for the formalism of left hand is to let its
divergence identically zero in the meaning of covariant derivative.
The right hand of equation are the sum up of all the things still
problems in the meaning of field theory.”



Lagrangian of Gravity, Einstein-Cartan gravity
▶ After defining∇2 = ∇[µ∇ν]dxµ∧dxν , the equation of motion for

this gravity theory is constructed

tr∇2 [̃l(x)l(x)] = 0. (2.29)

▶ This equation (2.29) is obviously U(4′) × U(4) gauge invariant,
locally Lorentz invariant and generally covariant. The explicit for-
mula of equation (2.29) is

RΨ†
iΨi = i

(
FabijΨ†

j (γ
aγb − γb†γa†)Ψi −Ψ†

iHab(γ
aγb − γb†γa†)Ψi

)
.

▶ We define a Hermitian Lagrangian

Lg = RΨ†
iΨi − i

(
FabijΨ†

j (γ
aγb − γb†γa†)Ψi

−Ψ†
iHab(γ

aγb − γb†γa†)Ψi

)
, (2.30)

where RΨ†
iΨi is Einstein-Hilbert action.



Total Lagrangian

▶ The total lagrangian forU(4′)×U(4) Pati-Salam model in curved
space-time and Einstein-Cartan gravity [W. Drechsler, Z. Phys. C
41, 197–205 (1988); M. Tecdhiolli, Universe 5, 206 (2019)] is

LT = L+ g̃LYM + gLg, (2.31)

where g̃ and g are parameters

g̃, g ∈ R. (2.32)



Sheaf quantization, path integral quantization and canonical
quantization

▶ Sheaf（层）[R. Harshorne, Algebraic geometry, (2013);M. Kashi-
wara and P. Masaki, Sheaves on manifolds (1990)] is a geometry
structure natural than section.

Figure 4: Fibre bundle is a map from bundle to base manifold. The sheaf
is the contravariant functor of the map.

▶ The sheaf quantization [K,Nakayama, J.Math.Phys.55,102103 (2014);
A. Doring and C. Isham, J. Math. Phys. 49, 053515 (2018); C.
Flori, A first course in topos quantum theory, (2013)], path in-
tegral quantization and canonical quantization of this theory are
consistent with each other.



Sheaf quantization, path integral quantization and canonical
quantization

▶ The path integral formulation of transition amplitude can be de-
rived from sheaf quantization

ακ(t, xq) =
∫
t′∈(t0,t)

Dπκ(t′, xq)ei
∫
ωL̂[ϕκ(t′,xq),∂µϕκ(t′,xq)]ακ(t0, xq).(2.33)

▶ The sheaf quantiztion suggest the canonial quantiztion formula-
tion based on Lgrangian (not Lagrangian density).
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Flat space-time limits of Pati-Salam model in curved
space-time

▶ The flat space-time limits version of Lagrangian LT is

LT−L = tr
[
iΨ̄γµ∂µΨ+ fΨ̄γµVµΨ− gΨ̄γµΨWµ + Ψ̄ϕΨ+ V(ϕ)

−1

2
HµνHµν −

η

2
FµνFµν − igFµνΨ

†(γµγν − γν†γµ†)Ψ

+ifΨ†Hµν(γ
µγν − γν†γµ†)Ψ

]
, (3.1)

where each terms are Dirac, minimal coupling, Yukawa coupling
, Higgs potential, Yang-Mills and magnetic moment terms.

▶ Ψ,Vµ and Wµ are 4 × 4 matrices. Without loss of generality, we
choose minimal coupling model to analyse the interaction vetices

LMin = tr
[
iΨ̄γµ∂µΨ+ fΨ̄γµVµΨ− gΨ̄γµΨWµ

]
. (3.2)



Flat space-time limits of Pati-Salam model in curved
space-time

▶ We observe that the second term in Lagrangian (3.2) is difficult
to decompose due to chiral symmetry, but the third term can be
decomposed

LMin = tr
[
iΨ̄γµ∂µΨ+

15∑
α=1

(
fΨ̄γµVα

µTαΨ− gΨ̄Lγ
µΨLWα

µTα

−gΨ̄Rγ
µΨRWα

µTα
)]

, (3.3)

accordingly, the second term in Lagrangian (3.2) describes the
SU(4′) color gauge interaction, and the third term in Lagrangian
(3.2) describes the SU(4)L × SU(4)R chiral flavor gauge interac-
tion.



Flat space-time limits of Pati-Salam model in curved
space-time

▶ Lagrangian (3.1) is invariant under local gauge transformations of
color space and flavor space rotation Ũ and U, respectively,

Ψ′ = ŨΨU, (3.4)

where

Ũ ∈ U(4′), U ∈ U(4), (3.5)

such that

γµ′ = ŨγµŨ† ⇒ γ0′γµ′ = Ũγ0γµŨ†, (3.6a)
V′
µ = ŨVµŨ† − (∂µŨ)Ũ†, (3.6b)

W′
µ = U†(∂µU)− U†WµU. (3.6c)



Representation of fermions

▶ Then the column of the fermion matrix Ψ corresponding to color
and the row corresponding to flavor, and transfer as U(4′)×U(4)
fundamental representation.

▶ So, fermions are filled into SU(4) fundamental representation nat-
urally as Table 1. In Pati-Salam model,“lepton number as the
fourth color” [J. C. Pati andA. Salam, Phys.Rev. D10, 275 (1974)].

Table 1: Fermions are filled into SU(4) fundamental representation 4 ⊗ 6.

SU(4) 6

4 Quarks
R
G u c t d s b
B

Leptons e µ τ νe νµ ντ

▶ Anti-fermions are filled into 4̄ ⊗ 6 similarly.



Representation of fermions

!
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Figure 5: Weight diagram of SU(4) fundamental representation 4⊗ 6. Repre-
sentation 4 = 3 + 1, 3 is 3 kinds of color, red, green and blue, 1 is the lepton
number. Representation 6 gives us 6 flavor of quarks and leptons. 6 flavors
devided to 3 generations, I ,II and III, each generation has 2 kinds of quarks
or leptons.



Representation of fermions
▶ An explicit fermions representation in this model might be

Ψ =


√
2uR

√
2cR

√
2tR d′R√

2uG
√
2cG

√
2tG d′G√

2uB
√
2cB

√
2tB d′B

e µ τ ν ′

 , (3.7)

where u, c, t and d′ are quarks fields, e, µ, τ and ν ′ are electron,
mu, tau and neutrinos fields.

▶ The corresponding fermions electric charges of (3.7) are

QΨ =


2/3 2/3 2/3 −1/3
2/3 2/3 2/3 −1/3
2/3 2/3 2/3 −1/3
1 1 1 0

 .

▶ The quarks states like |d⟩, |s⟩, |b⟩ and neutrinos states |νe⟩, |νµ⟩, |ντ ⟩
are eigen states of the Lagrangian.



Gauge bosons

▶ Vα
µ andWα

µ (α = 0, 1, · · · , 15) are gauge bosons fields.
▶ The interactions related with Wα

µ always preserves the possibility
of chiral symmetry breaking such that the gauge group can de-
composed to U(4′)×U(4)L ×U(4)R, where U(4′) is color group
and U(4)L × U(4)R is chiral flavor group.

▶ The V0
µ is dark photon [arXiv: 1311.0029; B. Holdom, Phys. Let.

B. 166 (2):196–198 (1986)] and W0
µ is Fiona (芳) particle.

▶ The left over part gauge group is a Pati-Salam gauge group SU(4′)×
SU(4)L × SU(4)R and the SU(4′) can be decomopsed as follow

SU(4′) = SU(3′)⊕ U(1′) + UX+ + UX− . (3.8)



Gauge bosons,Color SU(4′) processes

▶ The SU(3′) is the gauge group of quantum chramodynamics (QCD)
and the corresponding gauge bosons Vα

µ(α = 1, 2 · · · , 8) are glu-
ons.

▶ The U(1′) is electro–magnetic interaction gauge group and corre-
sponding gauge boson V15

µ is photon γ.

Figure 6: The fermion–anti-fermion–boson interaction vertices of photon.



Gauge bosons,Color SU(4′) processes

▶ The X±C particles transport semi-leptonic processes and

X±C = V8+C
µ ± iV9+C

µ . (3.9)

Figure 7: The fermion–anti-fermion–boson interaction vertices of X
bosons. All three external legs are momentum in.

▶ The electric charge of X+C and X−C are 1
3 and −

1
3 .



Gauge bosons,Color SU(4′) processes

▶ The representation (filling scheme) of matrix Vµ might be

Vµ =


GRR
µ + V15

µ GRG
µ GRB

µ X−R
µ

GGR
µ GGG

µ + V15
µ GGB

µ X−G
µ

GBR
µ GBG

µ GBB
µ + V15

µ X−B
µ

X+R
µ X+G

µ X+B
µ −3V15

µ

 ,(3.10)

whereGµ are gluons and V15
µ are photon. The corresponding elec-

tric charge matrix of Vµ is

QV =


0 0 0 −1/3
0 0 0 −1/3
0 0 0 −1/3

1/3 1/3 1/3 0

 . (3.11)



Gauge bosons,Color SU(4′) processes,flavor mixing
▶ The left-handed flavor eigenstates |d′LC⟩, |s′LC⟩, |b′LC⟩ of d, s, b quark

states are

−
√
2

2
gtr[ūLCγµd′LCW+

µ ]|d′LC⟩ = α1|d′LC⟩, (3.12a)

−
√
2

2
gtr[c̄LCγµd′LCW+

µ ]|s′LC⟩ = α2|s′LC⟩, (3.12b)

−
√
2

2
gtr[̄tLCγµd′LCW+

µ ]|b′LC⟩ = α3|b′LC⟩. (3.12c)

▶ The left-handed mass eigenstates of the d, s and b quarks are

itr
[
d̄′LCγµ∂µd′LC

]
|dLC⟩ = mdL|dLC⟩, (3.13a)

itr
[
d̄′LCγµ∂µd′LC

]
|sLC⟩ = msL|sLC⟩, (3.13b)

itr
[
d̄′LCγµ∂µd′LC

]
|bLC⟩ = mbL|bLC⟩. (3.13c)

▶ The Cabibbo-Kobayashi-Maskawa (CKM) matrix is |d′LC⟩
|s′LC⟩
|b′LC⟩

 =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 |dLC⟩
|sLC⟩
|bLC⟩

 . (3.14)



Gauge bosons, Chiral flavor SU(4)L × SU(4)R processes
▶ The chiral gauge group SU(4)L,R can be decomposed as

SU(4)L,R = SU(3)Y ⊕ U(1)Z + UW+ + UW− , (3.15)

and related gauge bosons Wα
µ(α = 1, 2, · · · , 15) contain weak

bosons W± and Z

W±
µ = W9

µ ± iW10
µ = W11

µ ± iW12
µ = W13

µ ± iW14
µ ,(3.16a)

Zµ = W3
µ = W8

µ = W15
µ . (3.16b)

Figure 8: The fermion–anti-fermion–boson interaction vertices of Z bosons.



Gauge bosons, Chiral flavor SU(4)L × SU(4)R processes

Figure 9: The fermion–anti-fermion–boson interaction vertices ofW bosons.
All three external legs are momentum in.



Gauge bosons, Chiral flavor SU(4)L × SU(4)R processes
▶ The left over gauge bosons are Y1, Y2 and Y1∗, Y2∗ with 0 eletric

charge.

Figure 10: The gauge bosons Y1, Y2, Y1∗, Y2∗ transport fermion–anti-
fermion–boson interaction vertices about beyond-SM flavor changing
neutral currents (FCNCs). All three external legs are momentum in.



Gauge bosons, Chiral flavor SU(4)L × SU(4)R processes

▶ TheWµ matrix might be

Wµ =
1

2


ζ1Zµ Y1µ Y2µ W−

µ

Y1∗µ ζ2Zµ Y1µ W−
µ

Y2∗µ Y1∗µ ζ3Zµ W−
µ

W+
µ W+

µ W+
µ ζ4Zµ

 . (3.17)

The corresponding electric charge matrix ofWµ is

QW =


0 0 0 −1
0 0 0 −1
0 0 0 −1
1 1 1 0

 . (3.18)



Gauge bosons, Chiral flavor SU(4)L × SU(4)R processes,
flavor mixing

▶ The left-handed flavor eigenstates of neutrinos are

−1

2
gtr[ēLγµν ′LW+

µ ]|νeL⟩ = α4|νeL⟩, (3.19a)

−1

2
gtr[µ̄Lγµν ′LW+

µ ]|νµL⟩ = α5|νµL⟩, (3.19b)

−1

2
gtr[τ̄Lγµν ′LW+

µ ]|ντL⟩ = α6|ντL⟩. (3.19c)

▶ The left-handed mass eigenstates of neutrinos are

itr
[
ν̄ ′Lγ

µ∂µν
′
L
]
|ν1L⟩ = m1L|ν1L⟩, (3.20a)

itr
[
ν̄ ′Lγ

µ∂µν
′
L
]
|ν2L⟩ = m2L|ν2L⟩, (3.20b)

itr
[
ν̄ ′Lγ

µ∂µν
′
L
]
|ν3L⟩ = m3L|ν3L⟩. (3.20c)

▶ The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix is |νeL⟩
|νµL⟩
|ντL⟩

 =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 |ν1L⟩
|ν2L⟩
|ν3L⟩

 . (3.21)



Gauge bosons
▶ The masses of X± and Y1, Y2, Y1∗, Y2∗ must be superheavy from the

restrictions of experimental data.

Figure 11: Weight diagram of SU(4) adjoint representation and cor-
responding gauge bosons. The decomposition of SU(4) adjoint rep-
resentation is 15 = 8 ⊕ 1 + 3 + 3∗. (a) The wight diagram of
Vα
µ(α = 1, 2, · · · , 15) related gauge bosons. (b) The wight diagram

of Wα
µ(α = 1, 2, · · · , 15) related gauge bosons.
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Gauge anomoly
▶ The anomaly in quantum field theory always means a symmetry

is preserved in classial theory but violated in quantum version.
▶ The golbal symmetry anomalymight be accessed by quantum field

theory, but the locally gauge symmetry anomaly (gauge anomaly)
is belived to be a consistence condition for a gauge theory.

▶ In four-dimenional spacetime, the quantum gauge anomaly free
condition of chiral flavor gauge group can be checked by triangle
Feymann diagram in Fig. 12.

Figure 12: The Feynman amplitude about triangle anomaly is iMabcµνρ.



Gauge anomoly

▶ The amplitude of Fig. 12 propotional to

iMabcµνρ ∝ tr
(
TaTbTc

)
+ tr

(
TaTcTb

)
= 2tr

(
TaT(bTc)

)
=

1

2
d(abc), (5.1)

then for SU(4)L × SU(4)R chiral Yang-Mills theory, the current
conservative equation has the formulation

∂µJµ,a(x) ∝ d(a[bc])ϵ[µνρσ]FbµνFcρσ, (5.2)

such that the indices bc satisfy commutation and anti-commutation
relations

d(a[bc]) =
1

4

(
dabc − dacb + dacb − dabc

)
= 0. (5.3)



Gauge anomoly

▶ The analyse about SU(4′) color gauge Yang-Mills theory is sim-
ilar. Note that a fermions loop cannot interact with flavor and
color gauge bosons in one triangle anomaly Feymann diagram at
the same time. So the SU(4)L × SU(4)R × SU(4′) Pati-Salam
model with this fermions representation is gauge anomaly free.



Summary
▶ This theory unify fermions, gauge bosons, Higgs and gravitational

fields into a pair of“entities”, square root metric√
g−1(x) ⇒ l(x), l̃(x), (5.4)

and its connections, with new physics as torsion, supperheavy
neutrinos, X, Y, dark photon, Fiona (芳) and monopole.

▶ The interactions between fields can be derived from self-parallel
transportation principle

tr∇l(x) = 0, tr∇2 [̃l(x)l(x)] = 0. (5.5)

▶ The sheaf quantization, path integral quantization and canonical
quantization are consistent with each other.

▶ Particles spectrum, representation of fermions, fermion–anti-fermion–
boson interaction vertices, flavormixing, gauge anomoly andmonopole
current are discussed.



Thank you！ 谢谢！
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