Current Fluctuations in 1D Diffusion-Reaction Systems via Tensor Networks

Jiayin Gu (顾加银)

物理科学与技术学院,南京师范大学

2024 理论物理前沿与交叉科学研讨会

27 April 2024, 南京, 中国

Fluctuation Relation for Currents

Figure: Schematic representation of a system *S* in contact with *n* particle reservoirs R_0 , R_1 , R_2 , \cdots , R_{n-1} .

- *R_i* denotes particle reservoir with chemical potential *µ_i*.
- Z_i denotes particle transfers flowing from reservoir R_i to system S.
- A_i denotes affinity between the reservoir R_i and R_0 (taken as the reference); If the whole system is isothermal, then $A_i = \beta(\mu_i \mu_0)$, where $\beta \equiv (k_{\rm B}T)^{-1}$ is inverse temperature, and $k_{\rm B}$ the Boltzmann's constant.
- $\mathbf{Z} = (Z_1, \cdots, Z_{n-1}), \mathbf{A} = (A_1, \cdots, A_{n-1}).$
- \$\mathcal{P}_A(Z, t)\$ denotes the probability distribution of particle transfers Z during the time interval [0, t].

 $\mathcal{P}_{\mathbf{A}}(\mathbf{Z},t)$ obeys the multivariate fluctuation relation, reading

$$\frac{\mathcal{P}_{\mathsf{A}}(\mathsf{Z},t)}{\mathcal{P}_{\mathsf{A}}(-\mathsf{Z},t)} \simeq_{t \to \infty} \exp{(\mathsf{A} \cdot \mathsf{Z})}.$$

Fluctuation Relation for Currents

We define the cumulant generating function in terms of the counting parameters $\lambda = \{\lambda_i\}$ as

$$Q(\lambda; \mathbf{A}) \equiv \lim_{t \to \infty} -rac{1}{t} \ln \sum_{\mathbf{Z}} \mathcal{P}_{\mathbf{A}}(\mathbf{Z}, t) e^{-\lambda \cdot \mathbf{Z}},$$

then the fluctuation relation can be written in the following form,

 $Q(\lambda; \mathbf{A}) = Q(\mathbf{A} - \lambda; \mathbf{A}).$

The mean currents and their diffusivities can be obtained by taking the successive derivatives of the cumulant generating function with respect to the counting parameters:

$$J_i(\mathbf{A}) \equiv \lim_{t \to \infty} \frac{1}{t} \langle Z_i(t) \rangle_{\mathbf{A}} = \left. \frac{\partial Q(\lambda; \mathbf{A})}{\partial \lambda_i} \right|_{\lambda=0},$$

 $D_{ij}(\mathbf{A}) \equiv \lim_{t \to \infty} \frac{1}{2t} \langle [Z_i(t) - J_i t] [Z_j(t) - J_j t] \rangle_{\mathbf{A}} = -\frac{1}{2} \left. \frac{\partial^2 Q(\lambda; \mathbf{A})}{\partial \lambda_i \partial \lambda_j} \right|_{\lambda=0},$

where the notation $\langle \cdot \rangle$ stands for the sample average over the data from the counting statistics.

Application of Tensor Networks to Nonequilibrium Physics

Study the dynamical fuctuations in systems with stochastic dynamics.

- exploit tensor networks to obtain the long-time statistics, i.e. the large deviations, of trajectory observables from tilted generators (in analogy with finding quantum ground states);
- exploit tensor networks to efficiently sample rare events;
- extend tensor-network approach to finite time trajectories.

10	2 Q & PR 1002	the second second second second				
•	Fedder"	(Inst		9		
		Juan Gar	rahan			
		Tensor networ and large d	k metho eviations	ds s		
	"Large Deviations	Thematic Progr Extremes and Anomalou September 19 – Oc	wame on s Transport in N tober 14, 2022	lon-equilibrium Sys	tems"	
	ESI/www.	biesdeni tellar difigies elbade sull'arge deviations miteri fa Materia anti-	() universit wien	ät	
1 011		unities torises, Protected	a, ana par	51.9 S M	[74.9% ~] Q]	I
PRI. 109, 170601	(2012)	Selected for a View	point in Physi EW LETT	er ERS	26 OCTOR	dag DK 2012
	PH	YSICAL REVIEW	LETTERS	125, 140601	(2020)	
D Division of	ynamical Pha	se Transitions in 2D Te Phillip Helms® rmical Engineering, Ca	a 2D Class msor Netw	sical Nonequ rorks Kin-Lic Chan [†] te of Technology,	ilibrium Mo Pasadena, Calife	del via unia 91125, USA
teeser	network approaches to	counting statistics for the cu	rreet in a bounda	ary-driven diffusive	83.3% ~ 0.	
	New Journ	nal of Physics	1	balahilk	INP Instruct of Physics	Published in paranetship with: Deutsche Physikali Gesellschaft and the ins of Physics
CrossMark	PAPER					
OPEN ACCESS	lensor-net	work approach	ies to co	unting sta	tistics	
	for the cur	rent in a boun	dary-driv	en diffusiv	e system	
10 June 2022	Jiayin Gu' 😑 and	l Fan Zhang 💿				
26 October 2022 ADDPTE PER PERIODPER	School of Physics, Pe 7 Authors to whom	king University, Beijing 10085 any correspondence should b	'I, People's Reput to addressed.	blic of China		
31 October 2022 Pontonen	Comm Solvingh	aneman and card (1996)		e		

Application of Tensor Networks to Nonequilibrium Physics

	Markov Jmmp Process	Quantum Dynamics		
state distribution	$\mathcal{P}(X,t)$ (probability)	$ \Psi(X,t) angle$ (probability amplitude)		
normalization	$\sum_X \mathcal{P}(X,t) = 1$	$\sum_X raket{\Psi^\dagger(X,t) \Psi(X,t) angle = 1}$		
evolution equation	master equation	Schrödinger equation		
generator	L (not necessarily Hermitian)	H (Hamiltonian, always Hermitian)		
propagator	$\exp(Lt)$	$\exp\left(-\mathrm{i}Ht/\hbar ight)$		
stable distribution	steady state (eigenvector of <i>L</i> corresponding to the largest eigenvalue 0)	ground state (eigenvector of <i>H</i> corresponding to smallest eigenvalue)		
state space	grows exponentially with the degree freedoms (number of state variables)	grows exponentially with the degree freedoms (number of state variables)		

Table: Comparison Between Markov Jump Process and Quantum Dynamics.

1D Diffusion-Reaction Systems

Two kinds of species

- holes h⁺, positive charged, density p
- electrons e⁻, negative charged, density n

Figure: Schematic representation of the system. The white dots represent holes and the black ones represent electrons. At the two ends are the resevoirs with fixed densities, $p_{\rm L}$, $n_{\rm L}$, $p_{\rm R}$, $n_{\rm R}$.

Elementary process:

- hole diffusion, D
- electron diffusion, D
- generation and recombination reaction

$$\emptyset \stackrel{k_+}{\underset{k_-}{\overleftarrow{}}} h^+ + e^-$$
,

where k_+ and k_- are respectively rate constants.

We neglect the long-ranged electrostatic interactions!!

Stochastic Diffusion-Reaction Equations

The balance equations are

$$\partial_t \boldsymbol{n} + \boldsymbol{\nabla} \cdot \mathbf{j}_n = \sigma_n, \\ \partial_t \boldsymbol{p} + \boldsymbol{\nabla} \cdot \mathbf{j}_p = \sigma_p,$$

with the current densities

$$\mathbf{j}_n = -D\boldsymbol{\nabla}n + \delta\mathbf{j}_n,$$
$$\mathbf{j}_p = -D\boldsymbol{\nabla}p + \delta\mathbf{j}_p,$$

and reaction rate densities

$$\sigma_n = \sigma_p = k_+ - k_- np + \delta\sigma.$$

 $\delta {\bf j}_n,\,\delta {\bf j}_p,$ and $\delta \sigma$ are Gaussian white noises characterized by

$$\begin{split} \langle \delta \mathbf{j}_n(\mathbf{r},t) \otimes \delta \mathbf{j}_n(\mathbf{r}',t') \rangle &= \Gamma_{nn}(\mathbf{r},t) \delta^3(\mathbf{r}-\mathbf{r}') \delta(t-t') \mathbf{I}, \\ \langle \delta \mathbf{j}_p(\mathbf{r},t) \otimes \delta \mathbf{j}_p(\mathbf{r}',t') \rangle &= \Gamma_{pp}(\mathbf{r},t) \delta^3(\mathbf{r}-\mathbf{r}') \delta(t-t') \mathbf{I}, \\ \langle \delta \sigma(\mathbf{r},t) \delta \sigma(\mathbf{r}',t') \rangle &= \Gamma_{\sigma\sigma}(\mathbf{r},t) \delta^3(\mathbf{r}-\mathbf{r}') \delta(t-t'), \end{split}$$

where I is the 3×3 identity matrix and

$$\begin{split} & \Gamma_{nn}(\mathbf{r},t) \equiv 2Dn(\mathbf{r},t), \\ & \Gamma_{pp}(\mathbf{r},t) \equiv 2Dp(\mathbf{r},t), \\ & \Gamma_{\sigma\sigma}(\mathbf{r},t) \equiv k_{+} + k_{-}n(\mathbf{r},t)p(\mathbf{r},t), \end{split}$$

are the spectral densities of the noises.

Spatial Discretization

- L cells
- each of length $\Delta x = I/L$, section area Σ , and volume $\Omega = \Sigma \Delta x$
- numbers of electrons and holes: $N_i = n(x_i)\Omega$, $P_i = p(x_i)\Omega$, with $x_i = (i 0.5)\Delta x 1/2$ $(i = 1, 2, \dots, L)$
- numbers of electrons and holes in reservoirs: $N_0 \equiv \bar{N}_{\rm L} = n_{\rm L}\Omega$, $N_{L+1} \equiv \bar{N}_{\rm R} = n_{\rm R}\Omega$, $P_0 \equiv \bar{P}_{\rm L} = p_{\rm L}\Omega$, and $P_{L+1} \equiv \bar{P}_{\rm R} = p_{\rm R}\Omega$.

The system state is specified by the hole numbers $\mathbf{P} = \{P_i\}_{i=1}^{L}$ and the electron numbers $\mathbf{N} = \{N_i\}_{i=1}^{L}$ in the cells and they evolve in time according to the network

$$\bar{P}_{L} \xrightarrow[w_{0}^{(+P)}]{} P_{1} \xrightarrow[w_{1}^{(+P)}]{} P_{2} \xrightarrow[w_{2}^{(+P)}]{} \cdots \xrightarrow[w_{2}^{(+P)}]{} P_{L-1} \xrightarrow[w_{L-1}^{(+P)}]{} P_{L-1} \xrightarrow[w_{L-1}^{(+P)}]{} P_{L} \xrightarrow[w_{L-1}^{(+P)}]{} P_{L} \xrightarrow[w_{L-1}^{(+P)}]{} \bar{P}_{R} \xrightarrow[w_{L}^{(+P)}]{} \bar{N}_{L} \xrightarrow[w_{1}^{(+P)}]{} w_{1}^{(-N)} N_{1} \xrightarrow[w_{2}^{(+P)}]{} N_{2} \xrightarrow[w_{2}^{(-P)}]{} \cdots \xrightarrow[w_{L-2}^{(+P)}]{} N_{L-1} \xrightarrow[w_{L-1}^{(+P)}]{} N_{L-1} \xrightarrow[w_{L-1}^{(+P)}]{} N_{L-1} \xrightarrow[w_{L-1}^{(+P)}]{} N_{L} \xrightarrow[w_{L}^{(+P)}]{} \bar{N}_{R} \xrightarrow[w_{L}^{(+P)}]{} N_{2} \xrightarrow[w_{L}^{(-N)}]{} \cdots \xrightarrow[w_{L-2}^{(+P)}]{} N_{L-1} \xrightarrow[w_{L-1}^{(+P)}]{} N_{L-1} \xrightarrow[w_{L-1}^{(+P)}]{} N_{L} \xrightarrow[w_{L}^{(+P)}]{} N_{R} \xrightarrow[w_{L}^{(+P)}]{} N_{R} \xrightarrow[w_{L-1}^{(+P)}]{} N_{L} \xrightarrow[w_{L-1$$

Master Equation

The probability $\mathcal{P}(\mathbf{P}, \mathbf{N}, t)$ is ruled by the master equation

$$\begin{split} \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}t} &= \hat{\mathbf{L}}\mathcal{P} = \sum_{i=0}^{L} \left[\left(\mathrm{e}^{+\partial_{P_{i}}} \mathrm{e}^{-\partial_{P_{i+1}}} - 1 \right) W_{i}^{(+P)} \mathcal{P} + \left(\mathrm{e}^{-\partial_{P_{i}}} \mathrm{e}^{+\partial_{P_{i+1}}} - 1 \right) W_{i}^{(-P)} \mathcal{P} \right. \\ &+ \left(\mathrm{e}^{+\partial_{N_{i}}} \mathrm{e}^{-\partial_{N_{i+1}}} - 1 \right) W_{i}^{(+N)} \mathcal{P} + \left(\mathrm{e}^{-\partial_{N_{i}}} \mathrm{e}^{+\partial_{N_{i+1}}} - 1 \right) W_{i}^{(-N)} \mathcal{P} \right] \\ &+ \sum_{i=1}^{L} \left[\left(\mathrm{e}^{-\partial_{P_{i}}} \mathrm{e}^{-\partial_{N_{i}}} - 1 \right) W_{i}^{(+)} \mathcal{P} + \left(\mathrm{e}^{+\partial_{P_{i}}} \mathrm{e}^{+\partial_{N_{i}}} - 1 \right) W_{i}^{(-)} \mathcal{P} \right], \end{split}$$

where the transition rates are

and $k \equiv D/\Delta x^2$ for brevity.

Operator Definitions (in Doi-Peliti Formalism)

The state of a local cell is denoted by $|P_iN_i\rangle$, then we define the operators

For reservoir cells, the operators should defined separately

$$\begin{aligned} &a_0^- = k\bar{P}_{\mathrm{L}}, & a_0^+ = a_{L+1}^+ = 1, & a_{L+1}^- = k\bar{P}_{\mathrm{R}}. \\ &b_0^- = k\bar{N}_{\mathrm{L}}, & b_0^+ = b_{L+1}^+ = 1, & b_{L+1}^- = k\bar{N}_{\mathrm{R}}. \end{aligned}$$

Besides, we define

$$\langle P'_i N'_i | a_i | P_i N_i \rangle = k P_i \delta_{P'_i, P_i} \delta_{N'_i, N_i}, \langle P'_i N'_i | b_i | P_i N_i \rangle = k N_i \delta_{P'_i, P_i} \delta_{N'_i, N_i},$$

- a_i⁺ (b_i⁺) is called local creation operator for holes (electrons);
- a_i⁻ (b_i⁻) is called local annihilation operator for holes (electrons);
- a_i (b_i) is called local number operator for holes (electrons).

The Doi-Peliti formalism is the classical version of second quantization.

Operator Definitions

For the generation and recombination reaction, we can define the following operators:

$$\begin{split} \langle P_i' N_i' | \boldsymbol{c}^+ | P_i N_i \rangle &= k_+ \Omega \delta_{P_i'-1, P_i} \delta_{N_i'-1, N_i}, \\ \langle P_i' N_i' | \boldsymbol{c}^- | P_i N_i \rangle &= k_- \Omega \frac{P_i}{\Omega} \frac{N_i}{\Omega} \delta_{P_i'+1, P_i} \delta_{N_i'+1, N_i}, \\ \langle P_i' N_i' | \boldsymbol{c} | P_i N_i \rangle &= \left(k_+ \Omega + k_- \Omega \frac{P_i}{\Omega} \frac{N_i}{\Omega} \right) \delta_{P_i', P_i} \delta_{N_i', N_i}. \end{split}$$

- c_i^+ is called local generation operator for hole-electron pair;
- c_i^- is called local recombination operator for hole-electron pair;
- c_i is called local xx operator for hole-electron pair.

Tilted Generator for the Master Equation

$$\begin{split} \hat{L}_{\lambda} = & a_{0}^{-} \otimes a_{1}^{+} e^{-\lambda} + a_{0}^{+} \otimes a_{1}^{-} e^{+\lambda} + \sum_{i=1}^{L} \left(a_{i}^{-} \otimes a_{i+1}^{+} + a_{i}^{+} \otimes a_{i+1}^{-} \right) - \sum_{i=0}^{L} \left(a_{i} + a_{i+1} \right) \\ &+ b_{0}^{-} \otimes b_{1}^{+} e^{+\lambda} + b_{0}^{+} \otimes b_{1}^{-} e^{-\lambda} + \sum_{i=1}^{L} \left(b_{i}^{-} \otimes b_{i+1}^{+} + b_{i}^{+} \otimes b_{i+1}^{-} \right) - \sum_{i=0}^{L} \left(b_{i} + b_{i+1} \right) \\ &+ \sum_{i=1}^{L} \left(c_{i}^{+} + c_{i}^{-} - c_{i} \right) \end{split}$$

the parameter λ is included to count transfers of unit charge

the cumulant generating function turns out to be the leading eigenvalue of the tilted generator

Numerical Values in Computation

diffusion coefficient, D	0.01
width of each cell, Δx	0.1
number of cells in discretized channel, L	10
number of holes in left-reservoir cell, $ar{N}_{ m L}$	8
number of holes in right-reservoir cell, $ar{N}_{ m R}$	2
number of electrons in left-reservoir cell, $ar{N}_{ m L}$	2
number of electrons in right-reservoir cell, $ar{N}_{ m R}$	8
truncation parameter, M	25

Table: The values of quantities and parameters specified in numerical computations.

Figure: Probability distribution $\mathcal{P}(P_3, N_3)$ in the steady state. $k_+ = k_- = 10.0$.

Results - Profile

Figure: Mean number of holes $\langle P \rangle$ in the steady state. $k_+ = k_- = 10.0$.

Results - Cumulant Generating Function

Figure: Cumulant generating function. The dash line is the analytical solution in the case $k_{+} = k_{-} = 0$.

Gallavotti-Cohen symmetry: $Q(\lambda) = Q(A - \lambda)$.

Results - Cumulant Generating Function

In the case $k_{+} = k_{-} = 0$ (the reaction is turned off), the cumulant generating function reads

$$Q(\lambda) = \underbrace{\frac{k\bar{P}_{\rm L}}{L+1}\left(1-{\rm e}^{-\lambda}\right) + \frac{k\bar{P}_{\rm R}}{L+1}\left(1-{\rm e}^{+\lambda}\right)}_{\text{electron contribution}} + \underbrace{\frac{k\bar{N}_{\rm L}}{L+1}\left(1-{\rm e}^{+\lambda}\right) + \frac{k\bar{N}_{\rm R}}{L+1}\left(1-{\rm e}^{-\lambda}\right)}_{\text{electron contribution}}.$$

So we have

We arrive at the equality:

$$A = \ln \frac{2D+J}{2D-J},$$

or equivalently

$$D=J\left(rac{1}{\mathrm{e}^{\mathcal{A}}-1}+rac{1}{2}
ight).$$

Results - Cumulant Generating Function

In the case $k_{+} = k_{-} = 10.0$ (the reaction is turned on):

- A is the same;
- J is the same (first derivative of $Q(\lambda)$, with some analysis);
- D is smaller (second derivative of $Q(\lambda)$).

We arrive at inequality

$$D < J\left(rac{1}{\mathrm{e}^{\mathcal{A}}-1}+rac{1}{2}
ight).$$

A new thermodynamic uncertainty relation (upper bound)??

Conclusion and Perspectives

Conclusion:

- We demonstrate the power of tensor networks in their application to nonequilibrium physics.
- The cumulant generating function (or large deviation function) for the current in 1D diffusion-reaction systems is for the first time evaluated with DMRG approach.
- The current fluctuations is dampened by the nonlinear reactions between two species of charge carriers.

Perspectives

• The power of tensor networks in the application to nonequilibrium physics is far from being fully exploited, I hope more Chinese scientists can enter into this field.

Thank You!