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Fluctuation Relation for Currents

Figure: Schematic representation of a
system S in contact with n particle
reservoirs R0, R1, R2, · · · , Rn−1.

• Ri denotes particle reservoir with chemical potential
µi .

• Zi denotes particle transfers flowing from reservoir
Ri to system S.

• Ai denotes affinity between the reservoir Ri and R0
(taken as the reference); If the whole system is
isothermal, then Ai = β(µi − µ0), where
β ≡ (kBT )−1 is inverse temperature, and kB the
Boltzmann’s constant.

• Z = (Z1, · · · , Zn−1), A = (A1, · · · , An−1).
• PA(Z, t) denotes the probability distribution of

particle transfers Z during the time interval [0, t].

PA(Z, t) obeys the multivariate fluctuation relation, reading

PA(Z, t)
PA(−Z, t) ≃t→∞ exp (A · Z).
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Fluctuation Relation for Currents

We define the cumulant generating function in terms of the counting parameters λ = {λi } as

Q(λ; A) ≡ lim
t→∞

−1
t ln

∑
Z

PA(Z, t) e−λ·Z,

then the fluctuation relation can be written in the following form,

Q(λ; A) = Q(A − λ; A).

The mean currents and their diffusivities can be obtained by taking the successive derivatives of the
cumulant generating function with respect to the counting parameters:

Ji (A) ≡ lim
t→∞

1
t ⟨Zi (t)⟩A = ∂Q(λ; A)

∂λi

∣∣∣∣
λ=0

,

Dij(A) ≡ lim
t→∞

1
2t ⟨[Zi (t) − Ji t] [Zj(t) − Jjt]⟩A = −1

2
∂2Q(λ; A)

∂λi ∂λj

∣∣∣∣
λ=0

,

where the notation ⟨·⟩ stands for the sample average over the data from the counting statistics.
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Application of Tensor Networks to Nonequilibrium Physics

Study the dynamical fuctuations in systems with
stochastic dynamics.

• exploit tensor networks to obtain the long-time
statistics, i.e. the large deviations, of trajectory
observables from tilted generators (in analogy with
finding quantum ground states);

• exploit tensor networks to efficiently sample rare
events;

• extend tensor-network approach to finite time
trajectories.
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Application of Tensor Networks to Nonequilibrium Physics

Table: Comparison Between Markov Jump Process and Quantum Dynamics.

Markov Jmmp Process Quantum Dynamics
state distribution P(X , t) (probability) |Ψ(X , t)⟩ (probability amplitude)

normalization
∑

X P(X , t) = 1
∑

X ⟨Ψ†(X , t)|Ψ(X , t)⟩ = 1
evolution equation master equation Schrödinger equation

generator L (not necessarily Hermitian) H (Hamiltonian, always Hermitian)
propagator exp (Lt) exp (−iHt/ℏ)

stable distribution
steady state (eigenvector of L
corresponding to the largest

eigenvalue 0)

ground state (eigenvector of H
corresponding to smallest

eigenvalue)

state space grows exponentially with the degree
freedoms (number of state variables)

grows exponentially with the degree
freedoms (number of state variables)
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1D Diffusion-Reaction Systems

Two kinds of species
• holes h+, positive charged, density p
• electrons e−, negative charged, density n

Figure: Schematic representation of the system.
The white dots represent holes and the black ones
represent electrons. At the two ends are the
resevoirs with fixed densities, pL, nL, pR, nR.

Elementary process:
• hole diffusion, D
• electron diffusion, D
• generation and recombination reaction

∅
k+−−⇀↽−−
k−

h+ + e−,

where k+ and k− are respectively rate
constants.

We neglect the long-ranged electrostatic interactions!!

6 / 20



Stochastic Diffusion-Reaction Equations

The balance equations are

∂tn + ∇ · jn = σn,
∂tp + ∇ · jp = σp,

with the current densities

jn = −D∇n + δjn,
jp = −D∇p + δjp,

and reaction rate densities

σn = σp = k+ − k−np + δσ.

δjn, δjp, and δσ are Gaussian white noises
characterized by

⟨δjn(r, t) ⊗ δjn(r′, t ′)⟩ = Γnn(r, t)δ3(r − r′)δ(t − t ′)I,
⟨δjp(r, t) ⊗ δjp(r′, t ′)⟩ = Γpp(r, t)δ3(r − r′)δ(t − t ′)I,
⟨δσ(r, t) δσ(r′, t ′)⟩ = Γσσ(r, t)δ3(r − r′)δ(t − t ′),

where I is the 3 × 3 identity matrix and

Γnn(r, t) ≡ 2Dn(r, t),
Γpp(r, t) ≡ 2Dp(r, t),
Γσσ(r, t) ≡ k+ + k−n(r, t)p(r, t),

are the spectral densities of the noises.
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Spatial Discretization

• L cells
• each of length ∆x = l/L, section area Σ, and volume Ω = Σ∆x
• numbers of electrons and holes: Ni = n(xi )Ω, Pi = p(xi )Ω, with xi = (i − 0.5)∆x − l/2

(i = 1, 2, · · · , L)
• numbers of electrons and holes in reservoirs: N0 ≡ N̄L = nLΩ, NL+1 ≡ N̄R = nRΩ,

P0 ≡ P̄L = pLΩ, and PL+1 ≡ P̄R = pRΩ.

The system state is specified by the hole numbers P = {Pi }L
i=1 and the electron numbers N = {Ni }L

i=1
in the cells and they evolve in time according to the network

P̄L
W (+P)

0−−−−⇀↽−−−−
W (−P)

0

P1
W (+P)

1−−−−⇀↽−−−−
W (−P)

1

P2
W (+P)

2−−−−⇀↽−−−−
W (−P)

2

· · ·
W (+P)

L−2−−−−⇀↽−−−−
W (−P)

L−2

PL−1
W (+P)

L−1−−−−⇀↽−−−−
W (−P)

L−1

PL
W (+P)

L−−−−⇀↽−−−−
W (−P)

L

P̄R

W (+)
1 ↕ W (−)

1 W (+)
2 ↕ W (−)

2 · · · W (+)
L−1 ↕ W (−)

L−1 W (+)
L ↕ W (−)

L

N̄L
W (+N)

0−−−−⇀↽−−−−
W (−N)

0

N1
W (+N)

1−−−−⇀↽−−−−
W (−N)

1

N2
W (+N)

2−−−−⇀↽−−−−
W (−N)

2

· · ·
W (+N)

L−2−−−−⇀↽−−−−
W (−N)

L−2

NL−1
W (+N)

L−1−−−−⇀↽−−−−
W (−N)

L−1

NL
W (+N)

L−−−−⇀↽−−−−
W (−N)

L

N̄R

.
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Master Equation
The probability P(P, N, t) is ruled by the master equation

dP
dt = L̂P =

L∑
i=0

[(
e+∂Pi e−∂Pi+1 − 1

)
W (+P)

i P +
(
e−∂Pi e+∂Pi+1 − 1

)
W (−P)

i P

+
(
e+∂Ni e−∂Ni+1 − 1

)
W (+N)

i P +
(
e−∂Ni e+∂Ni+1 − 1

)
W (−N)

i P

]

+
L∑

i=1

[(
e−∂Pi e−∂Ni − 1

)
W (+)

i P +
(
e+∂Pi e+∂Ni − 1

)
W (−)

i P

]
,

where the transition rates are

W (+P)
i = kPi , W (−P)

i = kPi+1,

W (+N)
i = kNi , W (−N)

i = kNi+1,

W (+)
i = Ωk+, W (−)

i = Ωk−
Ni

Ω
Pi

Ω ,

and k ≡ D/∆x2 for brevity.
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Operator Definitions (in Doi-Peliti Formalism)
The state of a local cell is denoted by |Pi Ni ⟩, then we define the operators

⟨P ′
i N ′

i |a−
i |Pi Ni ⟩ = kPi δP′

i ,Pi −1δN′
i ,Ni , ⟨P ′

i N ′
i |a+

i |Pi Ni ⟩ = δP′
i ,Pi +1δN′

i ,Ni ,

⟨P ′
i N ′

i |b−
i |Pi Ni ⟩ = kNi δP′

i ,Pi δN′
i ,Ni −1, ⟨P ′

i N ′
i |b+

i |Pi Ni ⟩ = δP′
i ,Pi δN′

i ,Ni +1.

For reservoir cells, the operators should defined separately

a−
0 = kP̄L, a+

0 = a+
L+1 = 1, a−

L+1 = kP̄R.
b−

0 = kN̄L, b+
0 = b+

L+1 = 1, b−
L+1 = kN̄R.

Besides, we define

⟨P ′
i N ′

i |ai |Pi Ni ⟩ = kPi δP′
i ,Pi δN′

i ,Ni ,

⟨P ′
i N ′

i |bi |Pi Ni ⟩ = kNi δP′
i ,Pi δN′

i ,Ni ,

• a+
i (b+

i ) is called local creation operator for holes (electrons);
• a−

i (b−
i ) is called local annihilation operator for holes (electrons);

• ai (bi ) is called local number operator for holes (electrons).
The Doi-Peliti formalism is the classical version of second quantization.
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Operator Definitions

For the generation and recombination reaction, we can define the following operators:

⟨P ′
i N ′

i |c+|Pi Ni ⟩ = k+ΩδP′
i −1,Pi δN′

i −1,Ni ,

⟨P ′
i N ′

i |c−|Pi Ni ⟩ = k−ΩPi

Ω
Ni

Ω δP′
i +1,Pi δN′

i +1,Ni ,

⟨P ′
i N ′

i |c|Pi Ni ⟩ =
(

k+Ω + k−ΩPi

Ω
Ni

Ω

)
δP′

i ,Pi δN′
i ,Ni .

• c+
i is called local generation operator for hole-electron pair;

• c−
i is called local recombination operator for hole-electron pair;

• ci is called local xx operator for hole-electron pair.
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Tilted Generator for the Master Equation

L̂λ =a−
0 ⊗ a+

1 e−λ + a+
0 ⊗ a−

1 e+λ +
L∑

i=1

(
a−

i ⊗ a+
i+1 + a+

i ⊗ a−
i+1

)
−

L∑
i=0

(ai + ai+1)

+ b−
0 ⊗ b+

1 e+λ + b+
0 ⊗ b−

1 e−λ +
L∑

i=1

(
b−

i ⊗ b+
i+1 + b+

i ⊗ b−
i+1

)
−

L∑
i=0

(bi + bi+1)

+
L∑

i=1

(
c+

i + c−
i − ci

)
the parameter λ is included to count transfers of unit charge

the cumulant generating function turns out to be the leading eigenvalue of the tilted generator
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Numerical Values in Computation

Table: The values of quantities and parameters specified in numerical computations.

diffusion coefficient, D 0.01
width of each cell, ∆x 0.1

number of cells in discretized channel, L 10
number of holes in left-reservoir cell, N̄L 8

number of holes in right-reservoir cell, N̄R 2
number of electrons in left-reservoir cell, N̄L 2

number of electrons in right-reservoir cell, N̄R 8
truncation parameter, M 25
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Results – Probability Distribution
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Figure: Probability distribuiton P(P3, N3) in the steady state. k+ = k− = 10.0.
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Results – Profile
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Figure: Mean number of holes ⟨P⟩ in the steady state. k+ = k− = 10.0.
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Results – Cumulant Generating Function
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Figure: Cumulant generating function. The dash line is the analytical solution in the case k+ = k− = 0.

Gallavotti-Cohen symmetry: Q(λ) = Q(A − λ).
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Results – Cumulant Generating Function
In the case k+ = k− = 0 (the reaction is turned off), the cumulant generating function reads

Q(λ) =

hole contribution︷ ︸︸ ︷
kP̄L

L + 1
(
1 − e−λ

)
+ kP̄R

L + 1
(
1 − e+λ

)
+ kN̄L

L + 1
(
1 − e+λ

)
+ kN̄R

L + 1
(
1 − e−λ

)
︸ ︷︷ ︸

electron contribution

.

So we have

A = ln P̄L

P̄R
≡ ln N̄R

N̄L
,

J =

hole contribution︷ ︸︸ ︷
k(P̄L − P̄R)

L + 1 + k(N̄R − N̄L)
L + 1︸ ︷︷ ︸

electron contribution

,

D =

hole contribution︷ ︸︸ ︷
k(P̄L + P̄R)

2(L + 1) + k(N̄L + N̄R)
2(L + 1)︸ ︷︷ ︸

electron contribution

.

We arrive at the equality:

A = ln 2D + J
2D − J ,

or equivalently

D = J
( 1

eA − 1 + 1
2

)
.
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Results – Cumulant Generating Function

In the case k+ = k− = 10.0 (the reaction is turned on):
• A is the same;
• J is the same (first derivative of Q(λ), with some analysis);
• D is smaller (second derivative of Q(λ)).

We arrive at inequality

D < J
( 1

eA − 1 + 1
2

)
.

A new thermodynamic uncertainty relation (upper bound)??
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Conclusion and Perspectives

Conclusion:
• We demonstrate the power of tensor networks in their application to nonequilibrium physics.
• The cumulant generating function (or large deviation function) for the current in 1D

diffusion-reaction systems is for the first time evaluated with DMRG approach.
• The current fluctuations is dampened by the nonlinear reactions between two species of charge

carriers.

Perspectives
• The power of tensor networks in the application to nonequilibrium physics is far from being fully

exploited, I hope more Chinese scientists can enter into this field.

19 / 20



Thank You!


