Current Fluctuations in 1D Diffusion-Reaction Systems via Tensor Networks

Jiayin Gu (FHR$R)
IR SRS, BRIBEAS
2024 IBiLYIBRTE S XX RERITS

27 April 2024, IR, HE



Fluctuation Relation for Currents

= R; denotes particle reservoir with chemical potential
Hi-

= Z; denotes particle transfers flowing from reservoir
R; to system S.

= A; denotes affinity between the reservoir R; and Ry
(taken as the reference); If the whole system is
isothermal, then A; = B(ui — o), where
B = (ks T)_1 is inverse temperature, and kg the
Boltzmann's constant.

s 7= (Zl,'-' 7Z,771), A= (Al’... 7lé\,171)_

Figure: Schematic representation of a = Pa(Z,t) denotes the probability distribution of

tem S i tact with ticl . . S
fzzefxr/?)irs |,ri1>0co;;1acR2W|' N "Igarl'c € particle transfers Z during the time interval [0, t].
k) ’ ) k) n—1-

Pa(Z, t) obeys the multivariate fluctuation relation, reading

PA(Z, t)

m ~ oo exp (A - Z).
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Fluctuation Relation for Currents

We define the cumulant generating function in terms of the counting parameters A = {\;} as

QA A) = lim —f|nZPA (Z,t)e ™2,

t—oo
then the fluctuation relation can be written in the following form,
QX A) = Q(A — X A).

The mean currents and their diffusivities can be obtained by taking the successive derivatives of the
cumulant generating function with respect to the counting parameters:

QA A)

J(A) = I|m *( (t)) T)\/ o '

Dy(A) = lim = (1Z(t) ~ 4 [Z(6) ~ Jitha = —3 TINA
M Ix=0

where the notation (-) stands for the sample average over the data from the counting statistics.
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Application of Tensor Networks to Nonequilibrium

Study the dynamical fuctuations in systems with

stochastic dynamics.

= exploit tensor networks to obtain the long-time
statistics, i.e. the large deviations, of trajectory
observables from tilted generators (in analogy with

finding quantum ground states);

= exploit tensor networks to efficiently sample rare

events;

= extend tensor-network approach to finite time

trajectories.
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Application of Tensor Networks to Nonequilibrium Physics

Table: Comparison Between Markov Jump Process and Quantum Dynamics.

Markov Jmmp Process

Quantum Dynamics

state distribution

P(X, t) (probability)

|W(X,t)) (probability amplitude)

normalization

Y xPX,t)=1

S (WIX 0)W(X, 1) =1

evolution equation

master equation

Schrédinger equation

generator

L (not necessarily Hermitian)

H (Hamiltonian, always Hermitian)

propagator

exp (Lt)

exp (—iHt/h)

stable distribution

steady state (eigenvector of L
corresponding to the largest
eigenvalue 0)

ground state (eigenvector of H
corresponding to smallest
eigenvalue)

state space

grows exponentially with the degree
freedoms (number of state variables)

grows exponentially with the degree
freedoms (number of state variables)
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1D Diffusion-Reaction Systems

Two kinds of species
= holes h™, positive charged, density p

= electrons e™, negative charged, density n

Figure: Schematic representation of the system.
The white dots represent holes and the black ones
represent electrons. At the two ends are the
resevoirs with fixed densities, pr,, nr,, pr, Nr.

Elementary process:
= hole diffusion, D
= electron diffusion, D

= generation and recombination reaction

k.
D= h"+e,
k

where ki and k_ are respectively rate
constants.

We neglect the long-ranged electrostatic interactions!!
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Stochastic Diffusion-Reaction Equations

The balance equations are
atn+v 'jn = On,
Op+V jp=o0p,
with the current densities

jn=—DVn+ §jn,
jp = —DVp+ djp,

and reaction rate densities

on=0p=ky —k_np+do.

&jn, Ojp, and do are Gaussian white noises
characterized by

(8jn(r, ) @ 8jn(r', t')) = Fon(r, )83 (r — ¥')3(t — t)1,
(Glp(r, 1) @ 0jp(r', 1)) = Top(r, 1)0°(r — )32 — 1)1,
(60 (r,t) do(r, ') = Tou(r, £)83(r — ¥)é(t — t'),
where | is the 3 x 3 identity matrix and

[on(r, t) = 2Dn(r, t),

op(r, t) = 2Dp(r, t),

Moo (r,t) = ki + k_n(r, t)p(r, t),

are the spectral densities of the noises.
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Spatial Discretization

= L cells

= each of length Ax = //L, section area ¥, and volume Q = XAx

= numbers of electrons and holes: N; = n(x;)Q2, P; = p(x;)Q, with x; = (i — 0.5)Ax — /2
(i=1,2,---,1L)

. numbe_rs of electrons and holeg in reservoirs: No = Np, = n.Q, Npy1 = Ng = nr<Q,
Po = PL = pLR, and P11 = Pr = prQ2.

The system state is specified by the hole numbers P = {P;}%_; and the electron numbers N = {N;}5;
in the cells and they evolve in time according to the network

~ W0(+P) wa) W2(+P) WL(:Z) WL(t':) WE+P) B
P (—P) P (—P) P (—P) ) P ) P (—P) Pr
—p —P —P —P —P —P)

WD Wl WZ W—Z WL—I WL
+ - + - + - + -

W i W i W, i) W
B Wé+N) W1(+N) W2(+N) W{tl\;) WF—J\I/) WL(+N) _
N, —— N AN Ny JRACTEN LN Ny LN N, AU S
Wi w=m Wi w=m w=m e

L—-1



Master Equation
The probability P(P, N, t) is ruled by the master equation

ar LP Zl +6P Piir 1) VV,-HP)P-I- ( —dp, +8pl+1 _ 1) VVI(fP)P

+ (eﬂ?"’ -, _ 1) VV,-HN)’PJr ( —On; o tONyy _ 1) W'(fN)fP

(efapiefa’\/i — ]_) VVI-(HP + (e+8pie+8,\,i _ 1) VV"(,)P '

i=1

where the transition rates are

W = kP, W = kPia,
WY = kn;, WY = kN,
N; P;
wih = Qk Wi =qk =
i * QQ

and k = D/Ax? for brevity.
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Operator Definitions (in Doi-Peliti Formalism)
The state of a local cell is denoted by |P;N;), then we define the operators

<PilNi/|ai_|PiNi> = kPi5P;,Pi—15NI.',N,-v <PilNil|ai+|PiNi> = 6PI./,P,-+15NI.’,N,--
<P;N;|bf|PiNi> = kNi(SPI.',P,-(SN/.’,N,-flv <P1{Ni/|bi+|PiNi> = 5P,.',P,-5N;,N,-+1-
For reservoir cells, the operators should defined separately
ay = kPy, ag = aL++1 =1, a = kPg.
by = kNg, by = b1 =1, b, = kNg.

Besides, we define
(PiN;|ai| PiN;) = kPidpr p.On! N,
(PIN;|bi|PiN;) = kNidp: p,0n: p,.

= at (b;") is called local creation operator for holes (electrons);
e o (b

i

= 3; (b;) is called local number operator for holes (electrons).

) is called local annihilation operator for holes (electrons);

The Doi-Peliti formalism is the classical version of second quantization.
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Operator Definitions

For the generation and recombination reaction, we can define the following operators:
(P,-/N,-'|c+|P,-N,-) = k+95P.’—1,P,-5N,’—1,N,-,
_ P: N;
(PIN;|c™|PiN;) = kfﬂﬁﬁéP{+l,Pf6Nl.’+l,Ni'

<ﬂMkmwo:(hQ+nQ%%)@W@%M

.- o

is called local generation operator for hole-electron pair;
= ¢; is called local recombination operator for hole-electron pair;

= ¢ is called local xx operator for hole-electron pair.
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Tilted Generator for the Master Equation

L L
Ly=ay ®afe " +aj @are™ + ) (o @af+a ®an) — Y (ai+ain1)

i=1 i=0
L L
+by @ble N+ bf @bie t + Y (b @by + bl ®byy) =Y (bi+ bis)
i=1 i=0
L

+> (¢ +q —a)

i=1

the parameter X is included to count transfers of unit charge

the cumulant generating function turns out to be the leading eigenvalue of the tilted generator
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Numerical Values in Computation

Table: The values of quantities and parameters specified in numerical computations.

diffusion coefficient, D

0.01

width of each cell, Ax 0.1

number of cells in discretized channel, L 10
number of holes in left-reservoir cell, N, 8
number of holes in right-reservoir cell, Ng 2
number of electrons in left-reservoir cell, N, 2
number of electrons in right-reservoir cell, Nr 8
truncation parameter, M 25
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Results — Probability Distribution

Figure: Probability distribuiton P(Ps3, N3) in the steady state. ki = k— = 10.0.
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Results — Profile

Figure: Mean number of holes (P) in the steady state. ky = k— = 10.0.
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Results — Cumulant Generating Function

0.5
ki=k =0
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Figure: Cumulant generating function. The dash line is the analytical solution in the case kx = k— = 0.

Gallavotti-Cohen symmetry: Q(\) = Q(A — ).
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Results — Cumulant Generating Function
In the case k; = k_ = 0 (the reaction is turned off), the cumulant generating function reads

hole contribution

KPR gy g KN gmny p KR g oy

Q\) = kP (1-e)+

L+1 L+1 L+1 L+1
electron contribution
So we have
A=in Pl =g N
R Ny, We arrive at the equality:
hole contribution
——— _ _ A, 2P+J
g KPL=Pr) = k(Ne — Ni) “"ap—J
T L+1 L+1 ' )
——— or equivalently
electron contribution
hole contribution 1 1
— D=J < + 7).
eA—-1 2

k(Pr + Pr)  k(NL + Ng)
2(L+1) 2(L+1)

electron contribution
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Results — Cumulant Generating Function

In the case ky = k— = 10.0 (the reaction is turned on):
= Ais the same;
= J is the same (first derivative of Q()), with some analysis);
= D is smaller (second derivative of Q(\)).

We arrive at inequality

1 1
D — .
<J<eAfl+2)

A new thermodynamic uncertainty relation (upper bound)??
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Conclusion and Perspectives

Conclusion:
= We demonstrate the power of tensor networks in their application to nonequilibrium physics.

= The cumulant generating function (or large deviation function) for the current in 1D
diffusion-reaction systems is for the first time evaluated with DMRG approach.

= The current fluctuations is dampened by the nonlinear reactions between two species of charge
carriers.

Perspectives

= The power of tensor networks in the application to nonequilibrium physics is far from being fully
exploited, | hope more Chinese scientists can enter into this field.
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Thank You!



