JHEP 07 (2019) 050, 2403.02721, and 2404.12019

Thermal Dark Matter below GeV

Yue-Lin Sming Tsai (Purple Mountain Observatory) 2024.04.27@NJNU

JHEP 07 (2019) 050

Light Fermionic WIMP Dark Matter with Light Scalar Mediator

2403.02721

Light Thermal Dark Matter Beyond *p*-Wave Annihilation in

Minimal Higgs Portal Model

Yu-Tong Chen^{a,b}, Shigeki Matsumoto^c, Tian-Peng Tang^a, Yue-Lin Sming Tsai^{a,d}, and Lei Wu^b

2404.12019

The relic density and temperature evolution of light dark sector

Xin-Chen Duan,^{1,2,*} Raymundo Ramos,^{3,†} and Yue-Lin Sming Tsai^{1,2,‡}

Shigeki Matsumoto^(a), Yue-Lin Sming Tsai^(b,c) and Po-Yan Tseng^(a)

- Motivations.
- Minimal Higgs Portal Model.
- Parameter space to be detected in gammaray telescopes.
- The relic density of special scenarios.
- Results and summary.

Small coupling <mark>gx</mark>: a larger exposure is required!

Small DM mass: DM mass might be outside the detector range.

Small mass splitting between DM and other dark particles.

The light DM mass region

Can we go to the region below GeV?

VOLUME 39	25 JULY 1977	NUMBER 4

Cosmological Lower Bound on Heavy-Neutrino Masses

Benjamin W. Lee^(a)

Fermi National Accelerator Laboratory, (b) Batavia, Illinois 60510

If only a DM introduced...

and

Steven Weinberg^(c) Stanford University, Physics Department, Stanford, California 94305 (Received 13 May 1977)

g=Weak coupling

The present cosmic mass density of possible stable neutral heavy leptons is calculated in a standard cosmological model. In order for this density not to exceed the upper limit of 2×10^{-29} g/cm³, the lepton mass would have to be *greater* than a lower bound of the order of 2 GeV.

Unless, a new light mediator is introduced!

Simplicity and Light mediator

Z_2 odd scalar mediator (like squark) + SM fermion. LEP mass limit for <u>charged mediator is</u> <u>heavier than 100 GeV</u>.

Z_2 odd fermion mediator (like Chargino) + SM gauge boson. Invisible decay gives a severe limit.

Therefore, an MeV mediator of the the DM annihilation to SM pair via t-channel CANNOT be Z_2 -odd.

Motivations.

Minimal Higgs Portal Model.

- Parameter space to be detected in gammaray telescopes.
- The relic density of special scenarios.
- Results and summary.

Basic and minimum Lagrangian

	Z_2 even mediator				
DM f	types	Lagrangian	$\begin{array}{l} \langle \sigma v \rangle_{2\mu} \\ \simeq a + b v^2 \end{array}$	$\begin{array}{l} \langle \sigma v \rangle_{4\mu} \\ \simeq a + bv^2 \end{array}$	DD
\land	$\chi ~{ m and}~ \phi$	$\mathcal{L}_1 = (g_D \bar{\chi} \chi + g_f \bar{f} f) \phi$	a = 0	<i>a</i> = 0	Eq. (B1)
		$\mathcal{L}_2 = (g_D \bar{\chi} \chi + g_f \bar{f} i \gamma^5 f) \phi$	a = 0	a = 0	·
		$\mathcal{L}_3 = (g_D \bar{\chi} i \gamma^5 \chi + g_f \bar{f} f) \phi$	Case (i)	a = 0	Eq. (B2)
*		$\mathcal{L}_4 = (g_D \bar{\chi} i \gamma^5 \chi + g_f \bar{f} i \gamma^5 f) \phi$	Case (i)	a = 0	
		$\mathcal{L}_5 = (g_D \bar{\chi} \gamma^\mu \gamma^5 \chi + g_f \bar{f} \gamma^\mu f) V_\mu$	a = 0	Case (A)	Eq. (B3)
	γ and V_{μ}	$\mathcal{L}_6 = (g_D \bar{\chi} \gamma^\mu \gamma^5 \chi + g_f \bar{f} \gamma^\mu \gamma^5 f) V_\mu$	Case (ii)	Case (A)	- 1
£	A and th	$\mathcal{L}_7 = (g_D \bar{\chi} \gamma^\mu \chi + g_f \bar{f} \gamma^\mu f) V_\mu$	Case (i)	Case (C)	Eq. (B4)
DM 1		$\mathcal{L}_8 = (g_D \bar{\chi} \gamma^\mu \chi + g_f \bar{f} \gamma^\mu \gamma^5 f) V_\mu$	Case (i)	Case (C)	-
	C and t	$\mathcal{L}_9 = (M_{D\phi}S^{\dagger}S + g_f\bar{f}f)\phi$	Case (i)	Case (B)	Eq. (B5)
		$\mathcal{L}_{10} = (M_{D\phi}S^{\dagger}S + g_f \bar{f} i \gamma^5 f)\phi$	Case (i)	Case (B)	
DM Phi	ϕ and ϕ	${\cal L}_{9'}=(g_DS^\dagger S\phi+g_far ff)\phi$		b = 0	
7	($\mathcal{L}_{10'} = (g_D S^{\dagger} S \phi + g_f \bar{f} i \gamma^5 f) \phi$		b = 0	
\mathbf{X}	S and V	$\mathcal{L}_{11} = (ig_D S^{\dagger} \overleftrightarrow{\partial_{\mu}} S + g_D^2 S^{\dagger} S V_{\mu} + g_f \bar{f} \gamma_{\mu} f) V^{\mu}$	a = 0	Case (C)	Eq. (B6)
	S and V_{μ}	$\mathcal{L}_{12} = (ig_D S^{\dagger} \overleftrightarrow{\partial_{\mu}} S + g_D^2 S^{\dagger} S V_{\mu} + g_f \bar{f} \gamma_{\mu} \gamma^5 f) V^{\mu}$	a = 0	Case (C)	
	$X_{\mu} ext{ and } \phi$	$\mathcal{L}_{13} = (M_{D\phi} X^{\mu} X^{\dagger}_{\mu} + g_f \bar{f} f) \phi$	Case (i)	Case (D)	Eq. (B7)
¥− − ≺		${\cal L}_{14} = (M_{D\phi} X^{\mu} X^{\dagger}_{\mu} + g_f \bar{f} i \gamma^5 f) \phi$	Case (i)	Case (D)	- 1
		$\mathcal{L}_{13'} = (g_D X^\mu X^\dagger_\mu \phi + g_f \bar{f} f) \phi$	<u>111 - P</u>	b = 0	
		$\mathcal{L}_{14'} = (g_D X^\mu X^\dagger_\mu \phi + g_f \bar{f} i \gamma^5 f) \phi$		b = 0	_
	X_{μ} and V_{μ}	$\mathcal{L}_{15} = ig_D \{ X^{\mu\nu} X^{\dagger}_{\mu} V_{\nu} - X^{\mu\nu\dagger} X_{\mu} V_{\nu} + X_{\mu} X^{\dagger}_{\nu} V^{\mu\nu} \}$	- 0	G(C)	E- (D9)
DM phi		$+g_D^2\{X_\mu^\dagger X^\mu V_\nu V^\nu - X_\mu^\dagger V^\mu X_\nu V^\nu\} + g_f \bar{f} \gamma^\mu f V_\mu$	<i>a</i> = 0	Case (C)	Eq. (B 8)
· · · · · · · · · · · · · · · · · · ·		$\mathcal{L}_{16} = ig_D \{ X^{\mu\nu} X^{\dagger}_{\mu} V_{\nu} - X^{\mu\nu\dagger} X_{\mu} V_{\nu} + X_{\mu} X^{\dagger}_{\nu} V^{\mu\nu} \}$	a = 0	Case (C)	
		$+g_{D}^{2}\{X_{\mu}^{\dagger}X^{\mu}V_{\nu}V^{\nu}-X_{\mu}^{\dagger}V^{\mu}X_{\nu}V^{\nu}\}+g_{f}\bar{f}\gamma^{\mu}\gamma^{5}fV_{\mu}$	a = 0	Case (C)	

Thermal dark matter

	Likelihood	Constraints
Relic abundance	Gaussian	$\Omega_{\chi}^{\exp}h^2 = 0.1193 \pm 0.0014$ [90];
		$\sigma_{\rm sys} = 10\% \times \Omega_{\chi}^{\rm th} h^2. \label{eq:sys}$
Equilibrium	Conditions	either $(\Gamma_{\chi \text{SM}}^{\text{FO}} \ge H_{\text{FO}})$, or
		$(\Gamma_{\phi \text{SM}}^{\text{FO}} \ge H_{\text{FO}} \text{ and } \Gamma_{\chi\phi}^{\text{FO}} \ge H_{\text{FO}})$
DM direct detection	Half Gaussian	$9 { m GeV} < m_{\phi} < 10 { m TeV} ({ m LZ} [91]),$
		$3.5 { m GeV} < m_{\phi} < 9 { m GeV}$ (PANDAX-4T [16]),
		$60{\rm MeV} < m_\phi < 5{\rm GeV}$ (DarkSide [92]).
$ riangle N_{ ext{eff}}$	Half Gaussian $ riangle N_{ m eff} < 0.17$ for 95% C.L. [90]	
BBN	Conditions	if $(m_{\phi} \ge 2m_{\pi})$ then $\tau_{\phi} \le 1$ s [93],
		if $(m_{\phi} \le 2m_{\pi})$ then $\tau_{\phi} \le 10^5$ s [94].

Heat transfer can be via the green or red+blue.

Motivations.

- Minimal Higgs Portal Model.
- Parameter space to be detected in gammaray telescopes.
- The relic density of special scenarios.
- Results and summary.

Possible parameter space

Parameter space is finite and we may be able to probe them ALL!

- Motivations.
- Minimal Higgs Portal Model.
- Parameter space to be detected in gammaray telescopes.
- The relic density of special scenarios.

Results and summary.

The evolution equations of the comoving number density and temperature $x\tilde{H}Y'_{\gamma} = \langle \sigma_{\varphi\bar{\varphi}\to\chi\chi}v\rangle_T \, sY^2_{\varphi,\mathrm{eq}} - \langle \sigma_{\chi\chi\to\varphi\bar{\varphi}}v\rangle_T, \, sY^2_{\chi}$ $x\tilde{H}Y_{\chi}T_{\chi}\left(\frac{y_{\chi}'}{y_{\nu}}+\frac{Y_{\chi}'}{Y_{\nu}}\right) = \frac{H}{3}\left\langle\frac{\mathbf{p}_{\chi}^{4}}{E_{\nu}^{3}}\right\rangle Y_{\chi} + \left\langle T_{\chi}\sigma_{\varphi\bar{\varphi}\to\chi\chi}v\right\rangle_{T}sY_{\varphi,\mathrm{eq}}^{2} - \left\langle T_{\chi}\sigma_{\chi\chi\to\varphi\bar{\varphi}\bar{\varphi}}v\right\rangle_{T_{\chi}}sY_{\chi}^{2}$ $-\langle \sigma_{\chi\chi\to\phi\phi}v\rangle_T sY_{\chi}^2 + \langle \sigma_{\phi\phi\to\chi\chi}v\rangle_T sY_{\phi}^2$ $+ \langle \Gamma_{\phi \to \chi \chi} \rangle_{T_{\star}} Y_{\phi} - \langle \sigma_{\chi \chi \to \phi} v \rangle_{T_{\star}} s Y_{\chi}^2$ $- \langle T_{\chi} \sigma_{\chi\chi \to \phi\phi} v \rangle_{T_{\chi}} s Y_{\chi}^2 + \langle T_{\chi} \sigma_{\phi\phi \to \chi\chi} v \rangle_{T_{\phi}} s Y_{\phi}^2$ and $+ \langle T_{\chi} \Gamma_{\phi \to \chi \chi} \rangle_{T_{\star}} Y_{\phi} - \langle T_{\chi} \sigma_{\chi \chi \to \phi} v \rangle_{T_{\star}} s Y_{\chi}^{2}$ $x\tilde{H}Y'_{\phi} = \langle \sigma_{\varphi\bar{\varphi}\to\phi\phi}v \rangle_T sY^2_{\varphi,eq} - \langle \sigma_{\phi\phi\to\varphi\bar{\varphi}}v \rangle_T sY^2_{\phi}$ $+\mathcal{S}_{\gamma\phi}(T_{\gamma},T_{\phi})sY_{\gamma}Y_{\phi}+\mathcal{S}_{\gamma\phi}(T_{\gamma},T)sY_{\gamma}Y_{\phi,eq}$ $-\langle \sigma_{\phi\phi\to\chi\chi}v\rangle_T sY_{\phi}^2 + \langle \sigma_{\chi\chi\to\phi\phi}v\rangle_T sY_{\chi}^2$ $- \left\langle \Gamma_{\phi \to \varphi \bar{\varphi}} \right\rangle_{T_{\pm}} Y_{\phi} + \left\langle \sigma_{\varphi \bar{\varphi} \to \phi} v \right\rangle_{T} s Y_{\varphi, eq}^{2}$ $x\tilde{H}Y_{\phi}T_{\phi}\left(\frac{y_{\phi}'}{y_{\phi}}+\frac{Y_{\phi}'}{Y_{\phi}}\right) = \frac{H}{3}\left\langle\frac{\mathbf{p}_{\phi}^{4}}{E_{\phi}^{3}}\right\rangle Y_{\phi} + \left\langle T_{\phi}\sigma_{\varphi\bar{\varphi}\to\phi\phi}v\right\rangle_{T}sY_{\varphi,\mathrm{eq}}^{2} - \left\langle T_{\phi}\sigma_{\phi\phi\to\varphi\bar{\varphi}}v\right\rangle_{T_{\phi}}sY_{\phi}^{2}$ $- \langle \Gamma_{\phi \to \chi \chi} \rangle_{T_{\star}} Y_{\phi} + \langle \sigma_{\chi \chi \to \phi} v \rangle_{T_{\star}} s Y_{\chi}^2$ $- \langle T_{\phi} \sigma_{\phi\phi \to \chi\chi} v \rangle_{T_{\star}} s Y_{\phi}^2 + \langle T_{\phi} \sigma_{\chi\chi \to \phi\phi} v \rangle_{T_{\star}} s Y_{\chi}^2$ $+ \sum_{\varphi_2,\varphi_3,\varphi_4} \left[\langle \sigma_{\varphi_3\varphi_4 \to \phi\varphi_2} v \rangle_T \ sY_{\varphi_3,\mathrm{eq}} Y_{\varphi_4,\mathrm{eq}} - \langle \sigma_{\phi\varphi_2 \to \varphi_3\varphi_4} v \rangle_{(T_{\phi},T)} \ sY_{\varphi_2,\mathrm{eq}} Y_{\phi} \right].$ Scalar $-\langle T_{\phi}\Gamma_{\phi}\rangle_{T_{\star}}Y_{\phi}+\langle T_{\phi}\sigma_{\chi\chi\to\phi}v\rangle_{T_{\star}}sY_{\chi}^{2}+\langle T_{\phi}\sigma_{\varphi\bar{\varphi}\to\phi}v\rangle_{T}sY_{\varphi,eq}^{2}$ ϕ $\chi\chi\leftrightarrow\phi\phi$ $\phi\phi\leftrightarrow f\bar{f}$ $+\mathcal{S}_{\phi\chi}(T_{\phi},T_{\chi})sY_{\chi}Y_{\phi}+\mathcal{S}_{\phi\varphi}(T_{\phi},T)sY_{\phi}Y_{\varphi,\mathrm{eq}}$ $\chi\phi\leftrightarrow\chi\phi$ $\phi f \leftrightarrow \phi f$ $\phi \leftrightarrow \chi \chi$ $\sin \theta$ $\phi \leftrightarrow \mathrm{SMs}$ $+ \sum s \left[\langle T_{\phi} \sigma_{\varphi_{3}\varphi_{4} \to \phi\varphi_{2}} v \rangle_{T} Y_{\varphi_{3}, \mathrm{eq}} Y_{\varphi_{4}, \mathrm{eq}} - \langle T_{\phi} \sigma_{\phi\varphi_{2} \to \varphi_{3}\varphi_{4}} v \rangle_{(T_{\phi}, T)} Y_{\varphi_{2}, \mathrm{eq}} Y_{\phi} \right].$ $\phi \operatorname{SM} \leftrightarrow \operatorname{SMs}$ $\lambda_{\phi H}$ Dark Standard Matter Model χ $\sin\theta.c.$ $\chi f \leftrightarrow \chi f \quad \chi \chi \leftrightarrow f ar f$

Interaction rates

The challenge of Relic density computation

Summary

- The light thermal DM has a lower mass limit around MeV.
- Direct detection can also constrain the low mass mediator mass region, but pseudoscalar can relax this tension.
- Pseudoscalar can generate s-wave annihilation which is testable in indirect detection.
- Considering CMB constraints, most of p-wave annihilation with mass below GeV is excluded, while the resonance is still testable in future MeV gamma ray telescopes.
- For the resonance DM and forbidden DM scenario, the temperature evolution is very important (72% and 1000%), while the Seculded DM shows some impacts from asymmetric elastic scattering between phi and DM (9%).

Thank you for listening!