

# **Experimental Program for Super Tau-Charm Facility**

张剑宇(Jianyu Zhang)
(on behalf of the STCF working group)
University of Chinese Academy of Sciences

第七届强子谱与强子结构会议 2024.04.27 成都

# Super tau-charm facility in China



- Peak luminosity >0.5×10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup> at 4 GeV
- Energy range E<sub>cm</sub> = 2-7 GeV
- Potential to increase luminosity & realize beam polarization
- Total cost: 4.5B RMB

- 1 ab<sup>-1</sup> data expected per year
- Rich of physics program, unique for physics with c quark and  $\tau$  leptons,
- Important playground for study of QCD, exotic hadrons, flavor physics and search for new physics.

# **Expected data samples at STCF**



- STCF is expected to have higher detection efficiency and low bkg. for productions at threshold
- STCF has excellent resolution, kinematic constraining
- Opportunities at 5-7 GeV which is experimentally blank before

# Physics program of STCF



# Hadron structure and hadron spectroscopy





# **Fragmentation functions**



### World data: Pion



### World data: Kaon



Fragmentation function  $D_q^h(z)$ : probability that hadron *h* is found in the debris of a hadron carrying a fraction  $z=2E_h/\sqrt{s}$  of parton's momentum.

# **Collins fragmentation function**

### **Collins FF**

 $\rightarrow$  describes the fragmentation of a transversely polarized quark into a spin-less hadron *h*.

 $\rightarrow$  leads to an azimuthal modulation of hadrons around the quark momentum, that can be extract by the double ratio



Significant Collins asymmetries are observed rise with fractional energies and  $\ensuremath{p_t}$ 



Journal of UCAS 38 (2021) 433

# **Hadrons Spectrum**

- Experiments at particle accelerators in last fifties and sixties created more than 100 hadrons → "hadronic zoo"
- Quark model established order in the hadronic zoo

### M. Gell-Mann, A schematic model of baryons and mesons: Phys.Lett. 8 (1964) 214-215

"Baryons can now be constructed from quarks by using the combinations (qqq),  $(qqqq\bar{q})$ , etc., while mesons are made out of  $(q\bar{q})$ ,  $(qq\bar{q}\bar{q})$ , etc".

### G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. CERN-TH-401

"In general, we would expect that baryons are built not only from the product of these aces, *AAA*, but also from  $\bar{A}AAAA$ ,  $\bar{A}\bar{A}AAAAA$ , etc., where  $\bar{A}$  denotes an anti-ace. Similarly, mesons could be formed from  $\bar{A}A$ ,  $\bar{A}\bar{A}AA$ , etc.".

- Suggested by self-coupling of gluons of QCD, glueballs and hybrids exist.
- Experimental searches for exotic hadrons have a long history
- Recent high-quality data samples from several experiments allow us study the properties of established mesons, and search for new states.



# **Glueballs and hybrids**



### Heavy "nonstandard" hadron candidates

- Large amount of experimental activity on the "nonstandard" heavy sector
  - $\succ e^+e^-$  direct production: BESIII, Belle, BaBar
  - ▶  $pp/p\bar{p}$  promote production: LHCb, CMS, ALTAS...
  - Quarkonia decay: BESIII, Belle, BaBar



• However, their properties are still poorly known.

2021-

2019-

P<sub>c</sub>(4457)

X(4685)

X(4630)

# Charmonium (Like) states at STCF





**Belle II** : ISR approach; B meson decay ( $m_R < 4.8 \text{ GeV}$ )

**LHCb**:  $B/\Lambda_b$  decay; Prompt production

STCF: Scan with 10 MeV/step, every point has 10 fb<sup>-1</sup>/year, 3 ab<sup>-1</sup> in 4-7 GeV

arXiv: 2203.07141

# Flavor physics and CPV study



# **Charm physics**

≻LHCb: huge x-sec, boost, 9 fb<sup>-1</sup> now (×40 current B factories)

► B-factories (Belle(-II), BaBar): more kinematic constrains, clean environment, ~100% trigger efficiency

> τ-charm factory : Low backgrounds and high efficiency, Quantum correlations and CP-tagging are unique

### $\succ$ STCF :

- $4 \times 10^9$  pairs of  $D^{\pm,0}$  and  $10^8 D_s$  pairs per year
  - $-10^{10}$  charm from Belle II/year
- Highlighted Physics programs
  - Precise measurement of (semi-)leptonic decay ( $f_D$ ,  $f_{Ds}$ , CKM matrix...)
  - *D* decay strong phase (Determination of  $\gamma/\phi 3$  angle)
  - $D^0 \overline{D}^0$  mixing, CPV
  - Rare decay (FCNC, LFV, LNV....)
  - Excite charm meson states  $D_J$ ,  $D_{sJ}$  (mass, width,  $J^{PC}$ , decay modes)
  - Charmed baryons (JPC, Decay modes, absolute BF)

|                             | STCF  | Belle II | LHCb |
|-----------------------------|-------|----------|------|
| Production yields           | **    | ****     | **** |
| Background level            | ****  | ***      | **   |
| Systematic error            | ****  | ***      | **   |
| Completeness                | ****  | ***      | *    |
| (Semi)-Leptonic mode        | ****  | ****     | **   |
| Neutron/K <sub>L</sub> mode | ****  | ★★★☆☆    | ☆    |
| Photon-involved             | ****  | ****     | ***  |
| Absolute measurement        | ***** | ***      | ☆    |

# **Precision measurements of CKM elements**

CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction.

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} V_{us} V_{ub} \\ V_{cd} V_{cs} V_{cb} \\ V_{td} V_{ts} V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

**Leptonic** and **semileptonic** decays of charmed hadrons (D<sup>0</sup>, D<sup>+</sup>, Ds<sup>+</sup>,  $\Lambda_c^+$ ) provide ideal testbeds to explore weak  $D_{(s)}^+$ and strong interactions

- 1.  $|V_{cs(d)|}$  better test on CKM matrix unitarity
- 2. (Semi-)leptonic D(s) decays allow for LFU tests
- 3.  $f_{D(s)}^{+}, f^{+K(\pi)}(0)$ : test of LQCD



### **Semi-Leptonic:**



# **Prospect of charm leptonic decay at STCF**

|                                                                                       | BESIII                                      | STCF                            | Belle II                              | :                                                      |
|---------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------|---------------------------------------|--------------------------------------------------------|
| Luminosity                                                                            | $2.93 \text{ fb}^{-1}$ at 3.773 GeV         | 1 ab <sup>-1</sup> at 3.773 GeV | 50 ab <sup>-1</sup> at $\Upsilon(nS)$ |                                                        |
| $\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$                                                  | 5.1% <sub>stat</sub> 1.6% <sub>syst</sub>   | $0.28\%_{\mathrm{stat}}$        | 2.8%stat                              |                                                        |
| $f_{D^+}^{\mu}$ (MeV)                                                                 | $2.6\%_{stat}  0.9\%_{syst}$                | $0.15\%_{\text{stat}}$          | Theory $\cdot 0.2\%$                  | (0.1% expected)                                        |
| $ V_{cd} $                                                                            | $2.6\%_{stat} 1.0\%_{syst}^{*}$             | 0.15% <sub>stat</sub>           | <b>Incory</b> . 0.270                 | (0.1 / 0 expected)                                     |
| $\mathcal{B}(D^+ \to \tau^+ \nu_{\tau})$                                              | $20\%_{\text{stat}}$ $10\%_{\text{syst}}$   | 0.41%stat                       | _                                     |                                                        |
| $\mathcal{B}(D^+ \to \tau^+ \nu_\tau)$                                                | 21% 13%                                     | 0.50%                           | _                                     |                                                        |
| $\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$                                                  | 21 /Ustat 15 /Usyst                         | 0.50 /0 <sub>stat</sub>         |                                       |                                                        |
| Luminosity                                                                            | 6.3 fb <sup>-1</sup> at (4.178, 4.226) GeV  | 1 ab <sup>-1</sup> at 4.009 GeV | 50 ab <sup>-1</sup> at $\Upsilon(nS)$ |                                                        |
| $\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$                                                | 2.4% <sub>stat</sub> 3.0% <sub>syst</sub>   | 0.30% <sub>stat</sub>           | 0.8%stat 1.8%syst                     |                                                        |
| $f^{\mu}_{D^+_s}$ (MeV)                                                               | 1.2%stat 1.5%syst                           | 0.15% <sub>stat</sub>           | Theory: $0.2\%$                       | 0.1% expected)                                         |
| $ V_{cs} $                                                                            | 1.2%stat 1.5%syst                           | 0.15% <sub>stat</sub>           |                                       | (on /o expected)                                       |
| $\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})$                                            | $1.7\%_{\rm stat} 2.1\%_{\rm syst}$         | 0.24% <sub>stat</sub>           | 0.6%stat 2.7%syst                     |                                                        |
| $f_{D_s^+}^{\tau}$ (MeV)                                                              | $0.8\%_{stat}$ $1.1\%_{syst}$               | 0.11% <sub>stat</sub>           | <b>Theory</b> : 0.2%                  | (0.1% expected)                                        |
| $ V_{cs} $                                                                            | $0.8\%_{\text{stat}}$ $1.1\%_{\text{syst}}$ | 0.11% <sub>stat</sub>           |                                       | ( i i i <b>r</b> i i i i i i i i i i i i i i i i i i i |
| $\overline{f}_{D_s^+}^{\mu\&	au}$ (MeV)                                               | 0.7%stat 0.9%syst                           | $0.09\%_{stat}$                 | 0.3%stat 1.0%syst                     |                                                        |
| $ \overline{V}_{cs}^{\mu\&	au} $                                                      | $0.7\%_{stat}$ $0.9\%_{syst}$               | $0.09\%_{stat}$                 | _                                     |                                                        |
| $\overline{f_{D_s^+}/f_{D^+}}$                                                        | 1.4%stat 1.7%syst                           | 0.21% <sub>stat</sub>           | _                                     |                                                        |
| $\frac{\mathcal{B}(D_s^+ \to \tau^+ \nu_\tau)}{\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)}$ | 2.9%stat 3.5%syst                           | 0.38%stat                       | $0.9\%_{stat}$ $3.2\%_{syst}$         |                                                        |

\* assuming Belle II improved systematics by a factor 2

Stat. uncertainty is closed to theory precision Sys. is challenging

# **Probe CP violation at tau-charm factory**



# **Testing CPT with neutral kaons**

CPV parameters  $|\eta_{+-}|$ ,  $\phi_{+-}$  can be determined from difference of time-dependent decay rates of  $K^0$  and  $\overline{K}^0$  to  $\pi^+\pi^-$ :

$$A_{CP}^{+-}(\tau) = \frac{\bar{R}_{f}(\tau) - R_{f}(\tau)}{\bar{R}_{f}(\tau) + R_{f}(\tau)} \propto \frac{|\eta_{+-}|e^{\frac{1}{2}\Delta\Gamma\tau}\cos(\Delta m\tau - \phi_{+-})}{1 + |\eta_{+-}|^{2}e^{\Delta\Gamma\tau}}$$



• Precise determination of *K*<sup>0</sup> decay vertex is crucial to time-dependence measurement



- $|\eta_{+-}|$  reveals direct CPV in kaon meson
- $\phi_{+-}$  will be used to set limits on CPT violation
- With over 10 billion  $K^0/\overline{K}^0$  events from  $J/\psi$  decay, the sensitivity of  $|\eta_{+-}|$ ,  $\phi_{+-}$  are  $\mathcal{O}(10^{-3}) \Rightarrow$  one magnitude better than PDG average

# Polarization of A hyperons and CPV

- Updated results based on 10B  $J/\psi$  events: ~0.42M signals
- Decay asymmetries with best precisions ever **CP test**  $A_{CP} = \frac{\alpha_- + \alpha_+}{\alpha_- \alpha_+}$





PRL 129, 131801 (2022)

| and chift from all                         | PDG 2018 ***      | Previous results **          | This Work*                      | Par.              |
|--------------------------------------------|-------------------|------------------------------|---------------------------------|-------------------|
| ······································     | $0.469 \pm 0.027$ | $0.461 \pm 0.006 \pm 0.007$  | $0.4748 \pm 0.0022 \pm 0.0024$  | $\alpha_{J/\psi}$ |
| previous measurements                      | - /               | $0.740 \pm 0.010 \pm 0.009$  | $0.7521 \pm 0.0042 \pm 0.0080$  | $\Delta \Phi$     |
|                                            | $0.642\pm0.013$   | $0.750 \pm 0.009 \pm 0.004$  | $0.7519 \pm 0.0036 \pm 0.0019$  | lpha              |
| 0.5% level sensitivity for CPV test        | $-0.71\pm0.08$    | $-0.758 \pm 0.010 \pm 0.007$ | $-0.7559 \pm 0.0036 \pm 0.0029$ | $lpha_+$          |
| 10.5% reverse is sensitivity for cr v rest | -                 | $0.006 \pm 0.012 \pm 0.007$  | $-0.0025 \pm 0.0046 \pm 0.0011$ | $A_{CP}$          |
| Sm prediction: 10 * 10 *                   | -                 | $0.754 \pm 0.003 \pm 0.002$  | $0.7542 \pm 0.0010 \pm 0.0020$  | $lpha_{\pm,avg.}$ |

# **CPV in** *A* **decay with polarized electron beam**



$$\mathbf{P}_{\Lambda} = \frac{\gamma_{\psi} P_e \sin \theta \hat{x}_1 - \beta_{\psi} \sin \theta \cos \theta \hat{y}_1 - (1 + \alpha_{\psi}) P_e \cos \theta \hat{z}_1}{1 + \alpha_{\psi} \cos^2 \theta}.$$

- Large statistics and electron polarization will improve the sensitivity of CPV significantly.
- The sensitivity of CPV follows :  $\sigma_{A_{CP}} \approx \sqrt{\frac{3}{2}} \frac{1}{\alpha_1 \sqrt{N_{sig}} \sqrt{\langle P_B^2 \rangle}}$ .

# Searching for hyperon EDM at STCF

*µ*: magnetic dipole moment*d*: electric dipole moment*S*: particle spin



Non-zero EDM will violate P and T symmetry: T violation  $\leftrightarrow$  CP violation, if CPT holds.

#### PRD47(1993)1744, PLB 839(2023)137834, PRD.108.L091301

### Systematic measurement of the EDMs of the hyperon family!

Only the EDM of  $\Lambda$  in the hyperon family has been measured (with low precision). Based on massive quantum-correlated hyperon pairs, BESIII is expected to improve the measurement precision of the  $\Lambda$  EDM by a factor of **1000**, and will be improved 2 order of magnitude furtherly by STCF.



J.Phys.G 47 (2020) 1, 010501

# Sensitivity of hyperon EDM measurements



first achievement for  $\Sigma^+, \Xi^$ and  $\Xi^0$  at level of  $10^{-19}$ e cm a litmus test for new physics

STCF: improved by 2 order of magnitude

# Sensitivity of precision measurements



Precision frontier for testing of SM parameters, uncertainties from reducible (selection-based), and irreducible sources (theoretical input, instrument effect).

# Sensitivity of rare/forbidden decays



- Sensitivity of various rare/forbidden decays from STCF measurements are compared with various BSM models.
- > The excellent precision from STCF can be used to distinguish from various BSM models.

# **STCF** accelerator



Op

Challenge: realize luminosity of >0.5x10<sup>35</sup> cm<sup>-2</sup> s<sup>-1</sup>

$$L(cm^{-2}s^{-1}) = \frac{\gamma n_b I_b}{2 e r_e \beta_y^*} H \xi_y$$

Interaction Region: Large Piwinski Angle Collision + Crabbed Wais

| Parameters                                                                           | Phase1     | Phase2            |
|--------------------------------------------------------------------------------------|------------|-------------------|
| Circumference/m                                                                      | 600~800    | 600~800           |
| timized Beam Energy/GeV                                                              | 2.0        | 2.0               |
| Beam Energy Range/GeV                                                                | 1-3.5      | 1-3.5             |
| Current/A                                                                            | 1.5        | 2.0               |
| mittance $(\varepsilon_x/\varepsilon_y)/nm \cdot rad$                                | 6/0.06     | 5/0.05            |
| Function @IP $(\beta_x^*/\beta_y^*)/mm$                                              | 60/0.6     | 50/0.5(estimated) |
| ll Collision Angle 20/mrad                                                           | 60         | 60                |
| Tune Shift ξy                                                                        | 0.06       | 0.08              |
| Hourglass Factor                                                                     | 0.8        | 0.8               |
| Aperture and Lifetime                                                                | 15σ, 1000s | 15σ, 1000s        |
| Luminosity @Optimized<br>Energy/ × 10 <sup>35</sup> cm <sup>-2</sup> s <sup>-1</sup> | ~0.5       | ~1.0              |



- Length: 400m
- e<sup>+</sup>, a convertor, a linac and a damping ring, 0.5 GeV
- $\succ$  e<sup>-</sup>, accelerated to 0.5 GeV
- > No booster, 0.5 GeV $\rightarrow$ 1~3.5 GeV

# **STCF detector**





### **Requirement:**

- High detection efficiency and good resolution
- Superior PID ability
- Tolerance to high rate/background environment



### PID

 $\pi$ /K (and K/p): 3-4 $\sigma$  separation up to 2GeV/c

### EMC

E range: 0.025-3.5 GeV

 $\sigma_{\text{E}}$  @ 1 GeV: 2 .5% in barrel, 4% at endcaps

Pos. Res. : ~ 4 mm

### MUD

0.4 - 1.8 GeV

 $\pi$  suppression >30

# **Detector options**



# **Tentative plan of STCF**

|                    |      |      |      |      |      |      |      |      |      |      |      |      |      |      | 2032- | 2043- |
|--------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|
|                    | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2042  | 2046  |
| Form collaboration |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |
| Conception design  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |
| CDR                |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |
| R&D                |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |
| (TDR)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |
| Construction       |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |
|                    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |
| Operation          |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |
| Upgrade            |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |

# Summary

- STCF is the next generation tau-charm factory, one of the crucial precision frontier aiming for understanding QCD, testing EW models and probing new physics.
- Many activities on physics/detector/accelerator, three volumes CDR finished.
- Key technology R&D project is now fully funded by Anhui Province, Hefei city and USTC (0.42 B RMB). The project is being conducted.
- An International collaboration is necessary to boost the construction of the project.



# Backup

# Status of project promotion



# Key technology R&D project

新一代正负电子对撞机——超级陶架装置关键技术攻关项目

新一代正负电子对撞机——超级陶粲装置

### 关键技术攻关项目 A new generation of e<sup>+</sup>e<sup>-</sup> collider —STCF Key Technolgy R&D

### April of 2022 Identified 31 items for R&D

| Year        | Budget (M CYN) |
|-------------|----------------|
| 2022        | 40             |
| 2023        | 190            |
| 2024        | 120            |
| 2025        | 62             |
| Total       | 420            |
| 机运动机械装置运行运行 | ۲ <b>۱</b>     |

新一代正负电子对撞机——超级陶架装置关键技术攻关项目

#### 目录

| -*-                                                                  | iê               |
|----------------------------------------------------------------------|------------------|
| 1.1項<br>11:<br>1.2項<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2 | 載述               |
| 第二章員                                                                 | l 湖陶縣装置預制的背景和必要性 |
| 2.1項<br>2.2項<br>2.3項                                                 | 1 持录             |
| 第三章 第                                                                | 暖机通和关键技术         |
| 3.1 纪纪<br>3.1.5<br>3.1.5                                             | 1時架装置上的物理机道      |



Total 120 pages Chapter 1. Instroduction Chapter 2. Background and necessity of STCF Chapter 3. Physics opportunities and the key technologies Chapter 4. Contents of the R&D Chapter 5. Project management and implementation scheduling Chapter 6. Project risks and countermeasures Chapter 7. Conclusions Chapter 8. Appendix

### Site - Hefei



Hefei Advanced Light Source Super Tau-Charm Facility **鹿** 超级陶柔装 Scientist Town

**6 big facilities for science and technologies (17155 acres). E**cological green space and modern agricultural (11815 acres) **HALF (4<sup>th</sup> generation light source)** was approved by central government, and just began construction **STCF** site is **preliminarily decided** by local government in Apr.