

Investigating excited Ω_c states from pentaquark perspective

Ye Yan (颜晔)

Collaborators: Hongxia Huang (黄虹霞), Jialun Ping (平加伦)

第七届强子谱和强子结构研讨会 2024.04.27 电子科技大学 成都

Investigating excited Ωc states from pentaquark perspective

Outline

- Brief introduction of excited Ω_c states
 - Quark delocalization color screening model
- Investigation of $ssc\overline{q}q$ system in QDCSM

Summary

Experimental results

LHCb collaboration Phys. Rev. Lett. **118**, 182001 (2017)

Experimental results

Five narrow Ωc states: $\Omega c(3000)$, $\Omega c(3050)$, $\Omega c(3066)$, $\Omega c(3090)$, and $\Omega c(3119)$

LHCb collaboration Phys. Rev. Lett. **118**, 182001 (2017)

Experimental results

Five narrow Ωc states: $\Omega c(3000)$, $\Omega c(3050)$, $\Omega c(3066)$, $\Omega c(3090)$, and $\Omega c(3119)$

LHCb collaboration Phys. Rev. Lett. **118**, 182001 (2017)

Belle collaboration Phys. Rev. D **97**, 051102 (2018)

Experimental results

Five narrow Ωc states: $\Omega c(3000)$, $\Omega c(3050)$, $\Omega c(3066)$, $\Omega c(3090)$, and $\Omega c(3119)$

Four of them are confirmed

LHCb collaboration Phys. Rev. Lett. **118**, 182001 (2017)

Belle collaboration Phys. Rev. D **97**, 051102 (2018)

Experimental results

Five narrow Ωc states: $\Omega c(3000)$, $\Omega c(3050)$, $\Omega c(3066)$, $\Omega c(3090)$, and $\Omega c(3119)$

LHCb collaboration Phys. Rev. Lett. **118**, 182001 (2017)

LHCb collaboration Phys. Rev. Lett. **131**, 131902 (2023)

Experimental results

Five narrow Ωc states: $\Omega c(3000)$, $\Omega c(3050)$, $\Omega c(3066)$, $\Omega c(3090)$, and $\Omega c(3119)$

LHCb collaboration Phys. Rev. Lett. **118**, 182001 (2017)

LHCb collaboration Phys. Rev. Lett. **131**, 131902 (2023)

Theoretical work involving $\Omega c(3185)$ and $\Omega c(3327)$

QCD sum rules:

Z. G. Wang, F. Lu and Y. Liu, Eur. Phys. J. C 83, 689 (2023)
Q. Xin, X. S. Yang and Z. G. Wang, Int. J. Mod. Phys. A 38, 2350123 (2023)
U. Ozdem, Phys. Lett. B 849, 138432 (2024)

Various quark models:

S. Q. Luo and X. Liu, Phys. Rev. D 107, 074041 (2023)
P. Jakhad, J. Oudichhya, K. Gandhi and A. K. Rai, Phys. Rev. D 108, 014011 (2023)
E. Ortiz-Pacheco and R. Bijker, Phys. Rev. D 108, 054014 (2023)
G. L. Yu, Y. Meng, Z. Y. Li, Z. G. Wang and L. Jie, Int. J. Mod. Phys. A 38, 2350082 (2023)
J. H. Pan and J. Pan, Phys. Rev. D 109, 076010 (2024)

Effective Lagrangian approach:

J. Feng, C. Cheng, F. Yang and Y. Huang, arXiv:2303.17770

Contact range theory:

M. J. Yan, F. Z. Peng and M. Pavon Valderrama, Phys. Rev. D 109, 014023 (2024)

Theoretical work involving $\Omega c(3185)$ and $\Omega c(3327)$

Three-quark perspective:

Z. G. Wang, F. Lu and Y. Liu, Eur. Phys. J. C 83, 689 (2023)
U. Ozdem, Phys. Lett. B 849, 138432 (2024)
S. Q. Luo and X. Liu, Phys. Rev. D 107, 074041 (2023)
P. Jakhad, J. Oudichhya, K. Gandhi and A. K. Rai, Phys. Rev. D 108, 014011 (2023)
E. Ortiz-Pacheco and R. Bijker, Phys. Rev. D 108, 054014 (2023)
G. L. Yu, Y. Meng, Z. Y. Li, Z. G. Wang and L. Jie, Int. J. Mod. Phys. A 38, 2350082 (2023)
J. H. Pan and J. Pan, Phys. Rev. D 109, 076010 (2024)

Pentaquark perspective:

Q. Xin, X. S. Yang and Z. G. Wang, Int. J. Mod. Phys. A 38, 2350123 (2023)
M. J. Yan, F. Z. Peng and M. Pavon Valderrama, Phys. Rev. D 109, 014023 (2024)
J. Feng, C. Cheng, F. Yang and Y. Huang, arXiv:2303.17770

> Our work

Phys. Rev. D 108, 094045 (2023)

Based on baryon-meson configuration

 Bound state calculation single-channel coupled-channel

 Scattering process examine resonance state

Quark delocalization color screening model (QDCSM)

QDCSM was developed by Nanjing-Los Alamos collaboration in1990s aimed to multi-quark study. (Phys. Rev. Lett. 69, 2901 (1992))

• Two new ingredients (based on quark cluster model configuration) quark delocalization (orbital excitation)

$$\phi_{\alpha}(\mathbf{S}_{i}) = \left(\frac{1}{\pi b^{2}}\right)^{\frac{2}{4}} e^{-\frac{(\mathbf{r}-\mathbf{S}_{i}/2)^{2}}{2b^{2}}},$$

$$\psi_{\alpha}(\mathbf{S}_{i},\epsilon) = \left(\phi_{\alpha}(\mathbf{S}_{i}) + \epsilon\phi_{\alpha}(-\mathbf{S}_{i})\right)/N(\epsilon),$$

$$\psi_{\beta}(-\mathbf{S}_{i},\epsilon) = \left(\phi_{\beta}(-\mathbf{S}_{i}) + \epsilon\phi_{\beta}(\mathbf{S}_{i})\right)/N(\epsilon),$$

$$N(\epsilon) = \sqrt{1 + \epsilon^{2} + 2\epsilon e^{-S_{i}^{2}/4b^{2}}}.$$

color screening (color structure)

- Apply to the study of baryon-baryon interaction and dibaryons deuteron, d*, NN, NA, NΩ, ...
- Apply to the study of baryon-meson interaction and pentaquarks
 NK, Nπ, Pc, ...

QDCSM

$$\begin{split} H &= \sum_{i=1}^{5} \left(m_{i} + \frac{p_{i}^{2}}{2m_{i}} \right) - T_{CM} + \sum_{j>i=1}^{5} V(\boldsymbol{r}_{ij}) \\ &\textcircled{1} \quad V_{CON}(\boldsymbol{r}_{ij}) = -a_{c} \boldsymbol{\lambda}_{i}^{c} \cdot \boldsymbol{\lambda}_{j}^{c} \left[f(\boldsymbol{r}_{ij}) + V_{0} \right] \\ &\quad f(\boldsymbol{r}_{ij}) = \begin{cases} \boldsymbol{r}_{ij}^{2} & i, j \text{ occur in the same cluster} \\ \frac{1-e^{-\mu_{a_{i}a_{j}}\boldsymbol{r}_{ij}^{2}}{\mu_{a_{i}a_{j}}} & i, j \text{ occur in different cluster} \end{cases} \\ &\textcircled{2} \quad V_{OGE}(\boldsymbol{r}_{ij}) = \frac{1}{4} \alpha_{s} \boldsymbol{\lambda}_{i}^{c} \cdot \boldsymbol{\lambda}_{j}^{c} \left[\frac{1}{r_{ij}} - \frac{\pi}{2} \delta\left(\boldsymbol{r}_{ij} \right) \left(\frac{1}{m_{i}^{2}} + \frac{1}{m_{j}^{2}} + \frac{4\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}}{3m_{i}m_{j}} \right) \right] \\ &\textcircled{3} \quad V_{\chi}(\boldsymbol{r}_{ij}) = V_{\pi}(\boldsymbol{r}_{ij}) + V_{K}(\boldsymbol{r}_{ij}) + V_{\eta}(\boldsymbol{r}_{ij}) \\ &\quad V_{\pi}\left(\boldsymbol{r}_{ij} \right) = \frac{g_{ch}^{2}}{4\pi} \frac{m_{\pi}^{2}}{12m_{i}m_{j}} \frac{\Lambda_{\pi}^{2} m_{\pi}}{\Lambda_{\pi}^{2} - m_{\pi}^{2}} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} \left[Y(m_{\pi}r_{ij}) - \frac{\Lambda_{\pi}^{3}}{m_{\pi}^{3}} Y(\Lambda_{\pi}r_{ij}) \right] \sum_{a=1}^{3} \lambda_{i}^{a} \lambda_{j}^{a}, \\ &\quad V_{K}(\boldsymbol{r}_{ij}) = \frac{g_{ch}^{2}}{4\pi} \frac{m_{R}^{2}}{12m_{i}m_{j}} \frac{\Lambda_{\pi}^{2} m_{\pi}}{\Lambda_{\pi}^{2} - m_{\pi}^{2}} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} \left[Y(m_{K}r_{ij}) - \frac{\Lambda_{\pi}^{3}}{m_{\pi}^{3}} Y(\Lambda_{K}r_{ij}) \right] \sum_{a=1}^{7} \lambda_{i}^{a} \lambda_{j}^{a} \\ &\quad V_{\eta}\left(\boldsymbol{r}_{ij} \right) = \frac{g_{ch}^{2}}{4\pi} \frac{m_{\eta}^{2}}{12m_{i}m_{j}} \frac{\Lambda_{\eta}^{2}}{\Lambda_{\eta}^{2} - m_{\pi}^{2}} m_{\eta} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} \left[Y(m_{\eta}r_{ij}) - \frac{\Lambda_{\pi}^{3}}{m_{\eta}^{3}} Y(\Lambda_{\eta}r_{ij}) \right] \\ &\quad \times \left[\cos \theta_{P}(\lambda_{i}^{8} \lambda_{j}^{8}) - \sin \theta_{P}(\lambda_{i}^{0} \lambda_{j}^{0}) \right], \end{split}$$

 $J^P = \frac{1}{2}^-$

single-channel

Structure	χ^{f_i}	χ^{σ_j}	Channel	E_{th}^{Theo}	E_{sc}	E_B	E_{th}^{Exp}	E'
$qss - \bar{q}c$	i = 2	j = 1	ΞD	3235	3238	ub	3187	3190
	i = 2	j = 2	ΞD^*	3319	3321	ub	3325	3327
	i = 2	j = 3	Ξ^*D^*	3441	3447	ub	3543	3549
$qsc - \bar{q}s$	i = 2	j = 1	$\Xi_c' \bar{K}$	3130	3137	ub	3072	3079
	i = 2	j = 1	$\Xi_c \bar{K}$	3060	3066	ub	2962	2968
	i = 2	j = 2	$\Xi_c' \bar{K}^*$	3449	3454	ub	3469	3574
	i = 2	j = 2	$\Xi_c \bar{K}^*$	3379	3386	ub	3359	3366
	i = 2	j = 3	$\Xi_c^* \bar{K}^*$	3466	3472	ub	3537	3543
$ssc - \bar{q}q$	i = 1	j = 2	$\Omega_c \omega$	3548	3545	-3	3477	3474
	i = 1	j = 3	$\Omega_c^*\omega$	3558	3554	-4	3548	3544

coupled-channel

unbound

1

17 17					
Coupled-structure	E_{th}^{Theo} (Channel)	E_{cc}	E_B	E_{th}^{Exp}	E'
$qss - \bar{q}c$	$3235 \ (\Xi D)$	3237	ub	3187	3190
$qsc-ar{q}s$	$3060~(\Xi_c ar{K})$	3065	ub	2962	2967
$ssc-ar{q}q$	$3548~(\Omega_c\omega)$	3545	-3	3477	3474
$qss - \bar{q}c, \ ssc - \bar{q}q$	$3235 \ (\Xi D)$	3230	-5	3187	3192
$qss - \bar{q}c, \ qsc - \bar{q}s, \ ssc - \bar{q}q$	$3060~(\Xi_c \bar{K})$	3064	ub	2962	2966

 $J^P = \frac{1}{2}^-$

single-channel

Structure	χ^{f_i}	χ^{σ_j}	Channel	E_{th}^{Theo}	E_{sc}	E_B	E_{th}^{Exp}	E'
$qss - \bar{q}c$	i = 2	j = 1	ΞD	3235	3238	ub	3187	3190
	i = 2	j = 2	ΞD^*	3319	3321	ub	3325	3327
	i = 2	j = 3	Ξ^*D^*	3441	3447	ub	3543	3549
$qsc - \bar{q}s$	i = 2	j = 1	$\Xi_c' \bar{K}$	3130	3137	ub	3072	3079
	i = 2	j = 1	$\Xi_c \bar{K}$	3060	3066	ub	2962	2968
	i = 2	j = 2	$\Xi_c' \bar{K}^*$	3449	3454	ub	3469	3574
	i = 2	j = 2	$\Xi_c \bar{K}^*$	3379	3386	ub	3359	3366
	i = 2	j = 3	$\Xi_c^*ar K^*$	3466	3472	ub	3537	3543
$ssc - \bar{q}q$	i = 1	j = 2	$\Omega_c \omega$	3548	3545	-3	3477	3474
	i = 1	j = 3	$\Omega_c^*\omega$	3558	3554	-4	3548	3544

coupled-channel

n quaqsibound

×	-					
	Coupled-structure	E_{th}^{Theo} (Channel)	E_{cc}	E_B	E_{th}^{Exp}	E'
	$qss - \bar{q}c$	$3235 \ (\Xi D)$	3237	ub	3187	3190
	$qsc - \bar{q}s$	$3060~(\Xi_c \bar{K})$	3065	ub	2962	2967
	$ssc - \bar{q}q$	$3548~(\Omega_c\omega)$	3545	-3	3477	3474
	$qss - \bar{q}c, \ ssc - \bar{q}q$	$3235 \ (\Xi D)$	3230	-5	3187	3192
qss	$\bar{q} - \bar{q}c, \ qsc - \bar{q}s, \ ssc - \bar{q}q$	$3060~(\Xi_c \bar{K})$	3064	ub	2962	2966

 $J^P = \frac{1}{2}^-$

single-channel

Structure	χ^{f_i}	χ^{σ_j}	Channel	E_{th}^{Theo}	E_{sc}	E_B	E_{th}^{Exp}	E'
$qss - \bar{q}c$	i = 2	j = 1	ΞD	3235	3238	ub	3187	3190
	i = 2	j = 2	ΞD^*	3319	3321	ub	3325	3327
	i = 2	j = 3	Ξ^*D^*	3441	3447	ub	3543	3549
$qsc - \bar{q}s$	i = 2	j = 1	$\Xi_c' \bar{K}$	3130	3137	ub	3072	3079
	i = 2	j = 1	$\Xi_c ar{K}$	3060	3066	ub	2962	2968
	i = 2	j = 2	$\Xi_c' ar K^*$	3449	3454	ub	3469	3574
	i = 2	j = 2	$\Xi_c \bar{K}^*$	3379	3386	ub	3359	3366
	i = 2	j = 3	$\Xi_c^*ar{K}^*$	3466	3472	ub	3537	3543
$ssc - \bar{q}q$	i = 1	j = 2	$\Omega_c \omega$	3548	3545	-3	3477	3474
	i = 1	j = 3	$\Omega_c^*\omega$	3558	3554	-4	3548	3544

coupled-c	1 qua	aqsibound			
Coupled-structure	E_{th}^{Theo} (Channel)	E_{cc}	E_B	E_{th}^{Exp}	E'
$qss - \bar{q}c$	$3235~(\Xi D)$	3237	ub	3187	3190
$qsc - \bar{q}s$	$3060\ (\Xi_c \bar{K})$	3065	ub	2962	2967
$ssc - \bar{q}q$	$3548~(\Omega_c\omega)$	3545	-3	3477	3474
$qss - \bar{q}c, \ ssc - \bar{q}q$	$3235 \ (\Xi D)$	3230	-5	3187	3192
$qss - \bar{q}c, \ qsc - \bar{q}s, \ ssc - \bar{q}q$	$3060 \ (\Xi_c \bar{K})$	3064	ub	2962	2966

Scattering process

The phase shift of open channel $\Xi_c \bar{K}$

The phase shift of open channel $\Xi_c' \bar{K}$

Scattering process

A resonance is identified, dominated by ΞD

In
$$\Xi_c \bar{K}$$
 channel : $M_{res}^{Theo} = 3230$ MeV,
 $M_{res}' = 3182$ MeV,
 $\Gamma_{res} = 8.4$ MeV,
In $\Xi'_c \bar{K}$ channel : $M_{res}^{Theo} = 3221$ MeV,
 $M_{res}' = 3174$ MeV,
 $\Gamma_{res} = 33.6$ MeV.

ED: corrected mass: 3174--3182 MeV, width: 42 MeV Ωc(3185): mass: $3185.1 \pm 1.7^{+7.4}_{-0.9} \pm 0.2$ MeV, width: $50 \pm 7^{+10}_{-20}$ MeV Phys. Rev. Lett. **131**, 131902 (2023)

Further, RMS cluster spacing of the ED: 1.9 fm,

Therefore Ω c(3185) can be interpreted as ΞD molecular state with $J^P = \frac{1}{2}^-$

The phase shifts of other open channels

The phase shifts of other open channels

No other resonance state is identified

What happened to $\ \Omega_c \omega, \ \Omega_c^* \omega$?

The phase shifts of other open channels

The phase shifts of the open channel $\Xi_c \bar{K}$ with $ssc - \bar{q}q$ structure coupling (left) and $qss - \bar{q}c \& ssc - \bar{q}q$ structure coupling (right)

Investigating excited Ωc states from pentaquark perspective

 $J^P = \frac{3}{2}^-$

single-channel

Structure	χ^{f_i}	χ^{σ_j}	Channel	E_{th}^{Theo}	E_{sc}	E_B	E_{th}^{Exp}	E'
$qss - \bar{q}c$	i = 2	j = 4	ΞD^*	3319	3323	ub	3325	3329
	i = 2	j = 5	Ξ^*D	3357	3362	ub	3405	3410
	i = 2	j = 6	Ξ^*D^*	3441	3446	ub	3543	3548
$qsc - \bar{q}s$	i = 2	j = 4	$\Xi_c'ar{K}^*$	3449	3457	ub	3469	3477
	i = 2	j = 4	$\Xi_c ar{K}^*$	3379	3 386	ub	3359	3366
	i = 2	j = 5	$\Xi_c^* \bar{K}$	3147	3153	ub	3140	3146
	i = 2	j = 6	$\Xi_c^* ar K^*$	3466	3472	ub	3537	3543
$ssc - \bar{q}q$	i = 1	j = 4	$\Omega_c \omega$	3548	3546	-2	3477	3475
	i = 1	j = 6	$\Omega_c^*\omega$	3558	3554	-4	3548	3544

coupled-channel

Coupled-structure	E_{th}^{Theo} (Channel)	E_{cc}	E_B	E_{th}^{Exp}	E'
$qss - \bar{q}c$	$3319 \ (\Xi D^*)$	3322	ub	3325	3328
$qsc - \bar{q}s$	$3147 \ (\Xi_c^* \bar{K})$	3150	ub	3140	3143
$ssc - \bar{q}q$	$3548~(\Omega_c\omega)$	3546	-2	3477	3475
$qss - \bar{q}c, \ ssc - \bar{q}q$	$3319 \ (\Xi D^*)$	3321	ub	3325	3327
$qss - \bar{q}c, \ qsc - \bar{q}s, \ ssc - \bar{q}q$	$3147 \ (\Xi_c^* \bar{K})$	3145	-2	3140	3138

 $J^P = \frac{3}{2}^-$

single-channel

Structure	χ^{f_i}	χ^{σ_j}	Channel	E_{th}^{Theo}	E_{sc}	E_B	E_{th}^{Exp}	E'
$qss - \bar{q}c$	i = 2	j = 4	ΞD^*	3319	3323	ub	3325	3329
	i = 2	j = 5	Ξ^*D	3357	3362	ub	3405	3410
	i = 2	j = 6	Ξ^*D^*	3441	3446	ub	3543	3548
$qsc - \bar{q}s$	i = 2	j = 4	$\Xi_c'ar{K}^*$	3449	3457	ub	3469	3477
	i = 2	j = 4	$\Xi_c ar{K}^*$	3379	3386	ub	3359	3366
	i = 2	j = 5	$\Xi_c^* \bar{K}$	3147	3153	ub	3140	3146
	i = 2	j = 6	$\Xi_c^* ar K^*$	3466	3472	ub	3537	3543
$ssc - \bar{q}q$	i = 1	j = 4	$\Omega_c \omega$	3548	3546	-2	3477	3475
	i = 1	j = 6	$\Omega_c^*\omega$	3558	3554	-4	3548	3544

coupled-channel

a bound state

Coupled-structure	E_{th}^{Theo} (Channel)	E_{cc}	E_B	E_{th}^{Exp}	E'
$qss - \bar{q}c$	$3319 \ (\Xi D^*)$	3322	ub	3325	3328
$qsc - \bar{q}s$	$3147 \; (\Xi_c^* \bar{K})$	3150	ub	3140	3143
$ssc - \bar{q}q$	$3548 (\Omega_c \omega)$	3546	-2	3477	3475
$qss - \bar{q}c, \ ssc - \bar{q}q$	$3319 \ (\Xi D^*)$	3321	ub	3325	3327
$qss - \bar{q}c, \ qsc - \bar{q}s, \ ssc - \bar{q}q$	$3147 \; (\Xi_c^* \bar{K})$	3145	-2	3140	3138

Investigating excited Ωc states from pentaquark perspective

The phase shift of open channel $\Xi_c^* \bar{K}$

The bound state is dominated by the $\Xi_c^* \overline{K}$ corrected mass: 3138 MeV, width: narrow Phys. Rev. C 83, 015202 (2011) RMS cluster spacing: 1.8 fm

 Ω c(3120): mass = 3119.1±0.3±0.9±0.3 MeV, width = 0.60±0.63 MeV. Phys. Rev. Lett. **118**, 182001 (2017)

Therefore, $\Xi_c^* \overline{K}$ with $J^P = \frac{3}{2}^-$ can be a good candidate for the Ω c(3120).

The phase shifts of other open channels

No other resonance state is identified

NNU · 俞 京师 范大学

The phase shifts of other open channels

$$J^P = \frac{5}{2}^{-1}$$

Structure	χ^{f_i}	χ^{σ_j}	Channel	E_{th}^{Theo}	E_{sc}	E_B	E_{th}^{Exp}	E'
$qss - \bar{q}c$	i = 2	j = 7	Ξ^*D^*	3441	3444	ub	3543	3546
$qsc - \bar{q}s$	i = 2	j = 7	$\Xi_c^* \bar{K}^*$	3466	3474	ub	3537	3545
$ssc - \bar{q}q$	i = 1	j = 7	$\Omega_c^*\omega$	3558	3555	-3	3548	3545

After channel coupling, a bound state with binding energy of -11 MeV

- A $ssc\overline{q}q$ pentaquark with $J^P = 5/2^$ and mass of 3526 MeV, is predicted here.
- The lowest energy of the $\Omega_c^* \omega$ is elevated above its threshold

$$J^P = \frac{5}{2}^{-1}$$

Structure	χ^{f_i}	χ^{σ_j}	Channel	E_{th}^{Theo}	E_{sc}	E_B	E_{th}^{Exp}	E'
$qss - \bar{q}c$	i = 2	j = 7	Ξ^*D^*	3441	3444	ub	3543	3546
$qsc - \bar{q}s$	i = 2	j = 7	$\Xi_c^* \bar{K}^*$	3466	3474	ub	3537	3545
$ssc - \bar{q}q$	i = 1	j = 7	$\Omega_c^*\omega$	3558	3555	-3	3548	3545

After channel coupling, a bound state with binding energy of -11 MeV

- A $ssc\overline{q}q$ pentaquark with $J^P = 5/2^$ and mass of 3526 MeV, is predicted here.
- The lowest energy of the $\Omega_c^* \omega$ is elevated above its threshold

Summary

- The Ω c(3185) can be interpreted as a **ED** molecular state with $J^P = \frac{1}{2}^{-}$.
- The Ω c(3120) can be interpreted as a $\Xi_c^* \overline{K}$ molecular state with $J^P = \frac{3}{2}^-$.
- A *ssc* $\bar{q}q$ pentaquark with $J^P = \frac{5}{2}^-$ and mass of 3526 MeV is predicted.
- Channel coupling plays a crucial role in our work.
- Investigation from an unquenched picture is expcted in the future.

Thanks for your attention !

Investigating excited Ωc states from pentaquark perspective