

Further study of $c\overline{c}c\overline{c}$ system within a chiral quark model

Yuheng Wu(吴雨衡) Nanjing Normal Univercity

Collaborate with Yue Tan, Hongxia Huang and Jialun Ping

第七届强子谱和强子结构研讨会 2024年4月26日-4月30日

2. Theoretical framework

3. Results and Discussion

4. Summary

> Experimental results

LHCb Collaboration, Science Bulletin 65 (2020) 1983-1993

CMS Collaboration, Phys.Rev.Lett. 132 (2024) 11, 111901

		BW ₁	BW ₂	BW ₃
No interference	m (MeV)	$6552 \pm 10 \pm 12$	$6927 \pm 9 \pm 4$	$7287^{+20}_{-18} \pm 5$
	Γ (MeV)	$124^{+32}_{-26} \pm 33$	$122^{+24}_{-21} \pm 18$	$95^{+59}_{-40} \pm 19$
	N	470^{+120}_{-110}	492^{+78}_{-73}	156^{+64}_{-51}
Interference	m (MeV)	6638+43+16	6847^{+44+48}_{-28-20}	7134_{-25-15}^{+48+41}
	Γ (MeV)	$440_{-200-240}^{+230+110}$	191_{-49-17}^{+66+25}	97 ⁺⁴⁰⁺²⁹ -29-26

4

ATLAS Collaboration Phys.Rev.Lett. 131 (2023) 15, 151902

	400	····			400	****			
	400	ATLAS √s = 13 TeV, 140 fb ⁻¹	Sig. + Bkg. Background		ATLAS		$\text{Di-}J/\psi$	Model A	
-	300	di-J/w	Bkg. w/o Feed-down	-	E di-J/w	Bkg. w/o Feed-down	mo	$6.41 \pm 0.08^{+0.08}_{-0.02}$	
Gel	200	E /A	Sig. Int.	Gel	200	Sig. w/o Int.	Γο	$0.59 \pm 0.35^{+0.12}_{-0.00}$	
0.04	100	Entrething in a	+ Data	0.04	100	-+- Data	m_1	$6.63 \pm 0.05^{+0.08}_{-0.01}$	
ts/		- Y - martine	when you	Its /	1 Maria	a marine and a marine and	Γ_1	$0.35 \pm 0.11^{+0.11}_{-0.04}$	
Fver	U			Ever		page 1 and	<i>m</i> ₂	$6.86 \pm 0.03^{+0.01}_{-0.02}$	
	-100				100		Γ_2	$0.11 \pm 0.05 \substack{+0.02 \\ -0.01}$	
	-200	$F \setminus \mathcal{I}$	(a)	-	200	(b)	$\Delta s/s$	$\pm 5.1\%^{+8.1\%}_{-8.9\%}$	
		6.5 7 7.5	5 8 8.5 9		6.5 7 7	5 8 8.5 9			
		m _{4µ}	[GeV]		m ₄ ,	[GeV]	$J/\psi + \psi(2S)$	Model α	
	50	<u>e</u>			50 C	<u></u>	<i>m</i> ₃	$7.22 \pm 0.03^{+0.01}_{-0.04}$	
	50	ATLAS	Sig. + Bkg.		ATLAS	Sig. + Bkg.	Γ ₃	$0.09 \pm 0.06^{+0.06}_{-0.05}$	
	> 40	_J/ψ+ψ(2S)	Background	>	40 -J/\+\(2S)	Background	$\Delta s/s$	$\pm 21\%^{+25\%}_{-15\%}$	
	Ge	F1	-+ Data	Ge	Ē1	-+- Data		49.70	_
	30	FN 1.	-	320.0	30	-			
	ts /0	E/A.A.	-	ts / 0		1			
	Leven	F, ff 4, 1		ven	²⁰ + + +	1			
	10		\downarrow (c) $=$	ш	10	(d) =			
		V/ "**							
	0	7 7.5	3 8.5 9		7 7.5	8 8.5 9			
		m _{4u}	[GeV]		m ₄	[GeV]			

Model B

 $\begin{array}{c} 6.65 \pm 0.02 \substack{+0.03 \\ -0.02} \\ 0.44 \pm 0.05 \substack{+0.06 \\ -0.05} \end{array}$

 $\begin{array}{c} \dots \\ 6.91 \pm 0.01 \pm 0.01 \\ 0.15 \pm 0.03 \pm 0.01 \\ \dots \end{array}$

- Theoretical studies
- Before LHCb's results
- Y. Iwasaki, Prog. Theor. Phys. 54, 492 (1975)
- K.T. Chao, Z. Phys. C 7, 317 (1981)
- L. Heller, J.A. Tjon, Phys. Rev. D 32, 755 (1985)
- R.J. Lloyd, J.P. Vary, Phys. Rev. D 70, 014009 (2004)
- A.V. Berezhnoy, A.V. Luchinsky, A.A. Novoselov, Phys. Rev. D 86, 034004 (2012)
- V.R. Debastiani, F.S. Navarra, Chin. Phys. C 43(1), 013105 (2019)
- Y. Bai, S. Lu, J. Osborne, Phys. Lett. B 798, 134930 (2019)
- A. Esposito, A.D. Polosa, Eur. Phys. J. C 78(9), 782 (2018)
- W. Chen, H.X. Chen, X. Liu, T.G. Steele, S.L. Zhu, Phys. Lett. B 773, 247 (2017)

and others

京师范大学 1902 NNU NNU Vormal UN

- After 2020
- Q. F. Lü, D. Y. Chen, Y. B. Dong, Eur. Phys. J. C 80, 871 (2020)
- P. Lundhammar and T. Ohlsson, Phys. Rev. D 102, 054018 (2020)
- J. F. Giron and R. F. Lebed, Phys. Rev. D 102, 074003 (2020)
- Z. G. Wang, Chin.Phys.C 44 11, 113106 (2020)
- X. Jin, Y. Y. Xue, H. X. Huang, J. L Ping Eur. Phys. J.C 80 11, 1083 (2020)
- G. Yang, J. L. Ping, L. He and Q. Wang, arXiv: 2006.13756
- H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Sci.Bull. 65 1994-2000 (2020)
- M. S. Liu, F. X. Liu, X. H. Zhong, Q. Zhao, Phys.Rev.D 109 7, 076017 (2024)
- W. L. Wu, Y. K. Chen, L. Meng and S. L. Zhu, Phys.Rev.D 109 5, 054034 (2024)

and others.

Our work

arXiv:2403.10375

Bound state calculation

meson-meson

diquark-antidiquark

• A stabilization method (real scaling method)

Theoretical framework

> The chiral quark model: The most used QM

Describes properties of hadrons, hadron-hadron interactions well

> In ChQM:

Confinement: confining potential (phenomenology)

Asmptotic freedom: single-gluon-exchange potential

Chiral symmetry spontaneous breaking: Goldstone boson exchange potential

- Makato Oka, Koichi Yazaki, Nuclear Physics A402 (1983) 477-490
- L.Ya Glozman, Z. Papp, W. Plessas, Physics Letters B 381 (1996) 311-316
- J . Vijande, F . Fernandez, A . Valcarce, J. Phys. G 31, 481(2005)

el (ChQM)

The chiral quark model (ChQM)

$$H = \sum_{i=1}^{n} (m_i + \frac{p_i^2}{2m_i}) - T_{cm} + \sum_{i=1 < j}^{n} (V_{con}(r_{ij}) + V_{oge}(r_{ij})),$$

$$V_{CON}^{C} = [-a_{c}r_{ij}^{2} - \Delta]\boldsymbol{\lambda}_{i}^{c} \cdot \boldsymbol{\lambda}_{j}^{c},$$

$$V_{CON}^{SO} = -\lambda_i^c \cdot \lambda_j^c \frac{a_c}{4m_i^2 m_j^2} [((m_i^2 + m_j^2)(1 - 2a_s) + 4m_i m_j (1 - a_s)) \\ \times (\mathbf{S}_+ \cdot \mathbf{L}) + (m_j^2 - m_i^2)(1 - 2a_s)(\mathbf{S}_+ \cdot \mathbf{L})]$$

$$V_{OGE}^{C} = \frac{1}{4} \alpha_s \boldsymbol{\lambda}_i^c \cdot \boldsymbol{\lambda}_j^c \{ \frac{1}{r_{ij}} - \frac{1}{6m_i m_j} \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j \frac{e^{-\frac{r_{ij}}{r_0 \mu}}}{r_{ij} r_0(\mu)^2} \},$$

$$\begin{split} V_{OGE}^{T} &= -\frac{1}{16} \frac{\alpha_{s}}{m_{i}m_{j}} \boldsymbol{\lambda}_{i}^{c} \cdot \boldsymbol{\lambda}_{j}^{c} [\frac{1}{r_{ij}^{3}} - \frac{e^{-r_{ij}/r_{g}(\mu)}}{r_{ij}} (\frac{1}{r_{ij}^{2}} + \frac{1}{3r_{g}^{2}(\mu)} + \frac{1}{r_{ij}r_{g}(\mu)})] S_{ij}, \\ V_{OGE}^{SO} &= -\frac{1}{16} \frac{\alpha_{s}}{m_{i}^{2}m_{j}^{2}} \boldsymbol{\lambda}_{i}^{c} \cdot \boldsymbol{\lambda}_{j}^{c} [\frac{1}{r_{ij}^{3}} - \frac{e^{-r_{ij}/r_{g}(\mu)}}{r_{ij}^{3}} (1 + \frac{r_{ij}}{r_{g}(\mu)})] \\ &\times [((m_{i} + m_{j})^{2} + 2m_{i}m_{j})(\boldsymbol{S}_{+} \cdot \boldsymbol{L}) + (m_{j}^{2} - m_{i}^{2})(\boldsymbol{S}_{-} \cdot \boldsymbol{L})] \end{split}$$

Gaussian Expansion Method

C3

 \overline{q}_4

(a)-(d) mean meson-meson structure, while (d) represents diquarkantidiquark structure 11

 $\psi_{JM} = \mathcal{A} \ \phi_{JM}^{(1)}(\lambda_{a}, \rho_{a}, R_{a}) = \phi_{JM}^{(1)}(\lambda_{a}, \rho_{a}, R_{a}) + \phi_{JM}^{(2)}(\lambda_{b}, \rho_{b}, R_{b}) + \phi_{JM}^{(3)}(\lambda_{c}, \rho_{c}, R_{c}) + \phi_{JM}^{(4)}(\lambda_{d}, \rho_{d}, R_{d})$

$$\phi_{JM}^{(c)}(r_c, R_c) = \sum_{nl, NL} \underbrace{\mathcal{C}_{NL, lm} \phi_{nl}^{(c)}(r_c) \psi_{NL}^{(c)}(R_c) [Y_{lm}(\widehat{r_c}) \otimes Y_{LM}(\widehat{R_c})]_{JM}}_{\text{Determined by diagonalizing H}}$$

Radial part Gaussian function:

$$\phi_{nl}(r) = \sum_{n=1}^{n_{max}} c_n N_{nl} r^l e^{-\nu_n r^2} , \qquad N_{nl} = \left[\frac{2^{l+2} (2\nu_n)^{l+\frac{3}{2}}}{\sqrt{\pi} (2l+1)!!} \right]^{\frac{1}{2}}$$

Wave functions

• The spin-orbit wave function

$$\chi_{11}^{\sigma} = \alpha \alpha, \quad \chi_{10}^{\sigma} = \frac{1}{\sqrt{2}} (\alpha \beta + \beta \alpha),$$
$$\chi_{1-1}^{\sigma} = \beta \beta, \quad \chi_{00}^{\sigma} = \frac{1}{\sqrt{2}} (\alpha \beta - \beta \alpha).$$

$$\psi_{J_1,mJ_1}(\boldsymbol{\lambda}) = \phi_{n_1L_1m_1}(\boldsymbol{\lambda}) \otimes \chi_{S_1,mS_1},$$

$$\psi_{J_2,mJ_2}(\boldsymbol{\rho}) = \phi_{n_2L_2m_2}(\boldsymbol{\rho}) \otimes \chi_{S_2,mS_2}.$$

$$\psi_{J_{12},mJ_{12}} = \psi_{J_1,mJ_1}(\boldsymbol{\lambda}) \otimes \psi_{J_2,mJ_2}(\boldsymbol{\rho}),$$

$$\psi_i^{SO}(\mathbf{r}) = \psi_{J_{12},mJ_{12}} \otimes \phi_{n_3L_3m_3}(\mathbf{R}),$$

$$i \equiv \{L_1, S_1, J_1, L_2, S_2, J_2, J_{12}, L_3\}.$$

TABLE	III. Different cor	nbinations of J-J	coupling
$L_3 = 0$	$J_1 = 0$	$J_2 = 0$	index(i)
	$L_1 = 0 S_1 = 0$	$L_2 = 0 S_2 = 0$	1
	$L_1 = 1 \ S_1 = 1$	$L_2 = 1 \ S_2 = 1$	2
	$J_1 = 1$	$J_2 = 1$	index(i)
	$L_1 = 0 \ S_1 = 1$	$L_2 = 0 \ S_2 = 1$	3
	$L_1 = 1 \ S_1 = 0$	$L_2 = 1 \ S_2 = 0$	4
	$L_1 = 1 \ S_1 = 1$	$L_2 = 1 \ S_2 = 1$	5
	$L_1 = 1 \ S_1 = 1$	$L_2 = 1 \ S_2 = 0$	6
1	$J_1 = 2$	$J_2 = 2$	index(i)
12	$L_1 = 1 \ S_1 = 1$	$L_2 = 1 \ S_2 = 1$	7

Wave functions

• The color wave function:

$$\begin{aligned} 1 \otimes 1 \quad |C_1\rangle &= \sqrt{\frac{1}{9}} (r_1 \bar{r}_2 r_3 \bar{r}_4 + r_1 \bar{r}_2 g_3 \bar{g}_4 + r_1 \bar{r}_2 b_3 \bar{b}_4 + g_1 \bar{g}_2 r_3 \bar{r}_4 \\ &+ g_1 \bar{g}_2 g_3 \bar{g}_4 + g_1 \bar{g}_2 b_3 \bar{b}_4 + b_1 \bar{b}_2 r_3 \bar{r}_4 + b_1 \bar{b}_2 g_3 \bar{g}_4 + b_1 \bar{b}_2 b_3 \bar{b}_4) \\ 8 \otimes 8 \quad |C_2\rangle &= \sqrt{\frac{1}{72}} (3r_1 \bar{b}_2 b_3 \bar{r}_4 + 3r_1 \bar{g}_2 g_3 \bar{r}_4 + 3g_1 \bar{b}_2 b_3 \bar{g}_4 \\ &+ 3b_1 \bar{g}_2 g_3 \bar{b}_4 + 3g_1 \bar{r}_2 r_3 \bar{g}_4 + 3b_1 \bar{r}_2 r_3 \bar{b}_4 + 2r_1 \bar{r}_2 r_3 \bar{r}_4 \\ &+ 2g_1 \bar{g}_2 g_3 \bar{g}_4 + 2b_1 \bar{b}_2 b_3 \bar{b}_4 - r_1 \bar{r}_2 g_3 \bar{g}_4 - g_1 \bar{g}_2 r_3 \bar{r}_4 \\ &- b_1 \bar{b}_2 g_3 \bar{g}_4 - b_1 \bar{b}_2 r_3 \bar{r}_4 - g_1 \bar{g}_2 b_3 \bar{b}_4 - r_1 \bar{r}_2 b_3 \bar{b}_4). \end{aligned}$$

$$\bar{3} \otimes 3 \quad |C_3\rangle &= \sqrt{\frac{1}{12}} (r_1 g_3 \bar{r}_2 \bar{g}_4 - r_1 g_3 \bar{g}_2 \bar{r}_4 + g_1 r_3 \bar{g}_2 \bar{r}_4 - g_1 r_3 \bar{r}_2 \bar{g}_4 \\ &+ r_1 b_3 \bar{r}_2 \bar{b}_4 - r_1 b_3 \bar{b}_2 \bar{r}_4 + b_1 r_3 \bar{b}_2 \bar{r}_4 - b_1 r_3 \bar{r}_2 \bar{b}_4 + g_1 b_3 \bar{g}_2 \bar{b}_4 \\ &- g_1 b_3 \bar{b}_2 \bar{g}_4 + b_1 g_3 \bar{b}_2 \bar{g}_4 - b_1 g_3 \bar{g}_2 \bar{b}_4). \end{aligned}$$

$$6 \otimes \bar{6} \quad |C_4\rangle &= \sqrt{\frac{1}{24}} (2r_1 r_3 \bar{r}_2 \bar{r}_4 + 2g_1 g_3 \bar{g}_2 \bar{g}_4 + 2b_1 b_3 \bar{b}_2 \bar{b}_4 + r_1 g_3 \bar{r}_2 \bar{g}_4 \\ &+ r_1 g_2 \bar{g}_2 \bar{g}_3 \bar{g}_4 + g_1 r_2 \bar{g}_2 \bar{g}_3 \bar{g}_4 + 2b_1 b_3 \bar{b}_2 \bar{b}_4 + r_1 g_3 \bar{r}_2 \bar{g}_4 \\ &+ r_1 g_2 \bar{g}_2 \bar{g}_3 \bar{g}_4 + g_1 r_2 \bar{g}_2 \bar{g}_4 + 2b_1 b_3 \bar{b}_2 \bar{b}_4 + r_1 g_3 \bar{r}_2 \bar{g}_4 \\ &+ r_1 g_2 \bar{g}_2 \bar{g}_3 \bar{g}_4 + g_1 r_2 \bar{g}_2 \bar{g}_4 + g_1 r_3 \bar{g}_2 \bar{g}_4 + 2b_1 b_3 \bar{b}_2 \bar{b}_4 + r_1 g_3 \bar{r}_2 \bar{g}_4 \\ &+ r_1 g_2 \bar{g}_2 \bar{g}_3 \bar{g}_4 + g_1 r_2 \bar{g}_2 \bar{g}_3 \bar{g}_4 + g_1 r_3 \bar{g}_2 \bar{g}_4 + r_1 g_3 \bar{g}_3 \bar{g}_3 \bar{g}_4 + r_1 g_3 \bar{g}_2 \bar{g}_4 + r_1 g_3 \bar{g}_2 \bar{g}_4 + r_1 g_3 \bar{g}_2 \bar{g}_4 + r_1 g_3 \bar{g}_2$$

$$+ r_1 g_3 \bar{g}_2 \bar{r}_4 + g_1 r_3 \bar{g}_2 \bar{r}_4 + g_1 r_3 \bar{r}_2 \bar{g}_4 + r_1 b_3 \bar{r}_2 b_4 + r_1 b_3 b_2 \bar{r}_4 + b_1 r_3 \bar{b}_2 \bar{r}_4 + b_1 r_3 \bar{r}_2 \bar{b}_4 + g_1 b_3 \bar{g}_2 \bar{b}_4 + g_1 b_3 \bar{b}_2 \bar{g}_4 + b_1 g_3 \bar{b}_2 \bar{g}_4 + b_1 g_3 \bar{g}_2 \bar{b}_4).$$

Wave functions

• The flavor wave function

$$\begin{aligned} |F_1\rangle &= c_1 \bar{c}_2 c_3 \bar{c}_4 \\ |F_2\rangle &= c_1 c_3 \bar{c}_2 \bar{c}_4 \end{aligned}$$

parameters:

$m_c({\rm MeV})$	$a_c({\rm MeV})$	$\Delta ({ m MeV})$	$\hat{r}_0({ m MeV})$	$\hat{r}_g(\text{MeV})$	α_{cc}	a_s
4978	98	-18.1	81.0	100.6	0.56	0.77

masses of mesons (unit:MeV):

Meson	This work	ChQM2[70]	LP[73]	EXP.(PDG)
η_c	2980	2990	2983	$2983.9 {\pm} 0.4$
$\eta_c(2S)$	3637	3627	3635	$3637.7 {\pm} 1.1$
$\eta_c(3S)$	4132	-	4048	-
J/ψ	3100	3097	3097	$3096.9 {\pm} 0.006$
$\psi(2S)$	3713	3685	3679	$3686.1 {\pm} 0.06$
h_c	3508	3507	3522	$3525.37{\pm}0.14$
χ_{c0}	3428	3436	3415	$3414.71 {\pm} 0.30$
χ_{c1}	3493	3494	3516	$3510.67 {\pm} 0.05$
χ_{c2}	3543	3526	3552	$3556.17 {\pm} 0.07$

bound state calculation in cccc system with $J^{P}=O^{+}$ (unit:MeV)

Channel	$ [LS]_i F_j C_k\rangle$	E_{th}	Е	Mixed
$\eta_c\eta_c$	111 angle	5960	5962	5961
$J/\psi J/\psi$	$ 321\rangle$	6200	6201	
$\chi_{c0}\chi_{c0}$	$ 221\rangle$	6856	6858	
$\chi_{c1}\chi_{c1}$	$ 521\rangle$	6986	6988	
$\chi_{c2}\chi_{c2}$	712 angle	7086	7089	
$\chi_{c1}h_c$	612 angle	7001	7004	
$h_c h_c$	$ 412\rangle$	7016	7018	
$[\eta_c]_8[\eta_c]_8$	$ 112\rangle$		6454	6300
$[J/\psi]_8[J/\psi]_8$	$ 222\rangle$		6430	
$[cc]^0_6[ar car c]^0_{ar 6}$	134 angle		6445	
$[cc]^1_3[\bar{c}\bar{c}]^1_{\bar{3}}$	$ 243\rangle$		6411	
Complete	coupled-channel	ls:		5960

There is no bound state below the below the minimum threshold.¹⁷

Resonance state test and decay width

• A stabilization method (real scaling method)

J. Simon, J. Chem, Phys. 75, 2465 (1981).

- Gaussian size parameters rn are scaled by multiplying one factor α : rn $\rightarrow \alpha$ rn.
- A compact resonance should not be affected by the variation of α while other continuum state will fall off towards its threshold.
- A resonance state shall emerge as avoid-crossing structures periodically.

• Decay width

$$\Gamma = 4V(\alpha) \frac{\sqrt{k_r k_c}}{|k_r - k_c|}$$

- V(α) is the minimum energy difference between contimuum state and resonance.
- k_c and k_r stand for the slopes of scattering state and resonance state at the avoid-crossing point respectively.

• Four colorful channels 7300 R(7280) R(7210) 7200 R(7160) 7100 R(7080) R(7000) 7000 R(6920) Energy (MeV) 6900 R(6850) 6800 6700 R(6690) R(6610) 6600 6500 6400 R(6390) 6300 R(6300) 6200 1.2 1.6 1.8 2.0 1.0 1.4 α

• Four colorful channels + open channel $\eta_c \eta_c$

• Four colorful channels + open channel $J/\psi J/\psi$

• Four colorful channels + open channel $\chi_{c0}\chi_{c0}$

• Four colorful channels + open channel $\chi_{c1}\chi_{c1}$

- Four colorful channels
 - + open channel $\chi_{c2}\chi_{c2}$

- Four colorful channels
 - + open channel $\chi_{c1}h_c$

• Four colorful channels + open channel <u>hchc</u>

TABLE VI. Various decay channels and corresponding decay widths of the obtained resonances. (unit: MeV)

Decay channels	R(6920)	R(7160)	R(7000)	R(7080)
$\eta_c\eta_c$	1.1	9.3	7.9	12.4
$J/\psi J/\psi$	9.8	22.9	10.3	1.9
$\chi_{c0}\chi_{c0}$	0.2	35.1	26.2	34.8
$\chi_{c1}\chi_{c1}$	-	2.7	0.2	1.8
$\chi_{c2}\chi_{c2}$	-	2.5	-	-
$\chi_{c1}h_c$	-	0.4	-	0.3
h_ch_c	E.	4.9	-	8.8
Total	10.1	77.8	44.6	<u>60.0</u>

Summary

- There is no bound state below the below the minimum threshold in $c\overline{c}c\overline{c}$ system.
- Four resonance states are obtained:

resonance	width
R(6920)	$\Gamma = 10.1 \text{ MeV}$
R(7000)	$\Gamma = 77.8 \text{ MeV}$
R(7080)	Γ =44.6 MeV
R(7160)	Γ =60.0 MeV

Thanks for your attention!