

Rethinking the molecular $a_1(1420)$ and its partners in low lying axial-vector meson spectrum

严茂俊

In collaboration with J. Dias, A. Guevara, F.K. Guo and B.S. Zou

中国科学院理论物理研究所

April 27, 2024

Outline

1 Observations on $a_1(1420)$ in 3π final states

- 2 Hint on $b_1(1400)$ or Z_s from BESIII in $J/\psi \rightarrow \phi \pi^0 \eta$
- **3 Models on** $a_1(1420)$

4 Molecular $a_1(1420)$ and its partners

- VP scattering in UChA
- Lineshapes in $f_0(980)\pi$ and $\phi\pi$ invariant mass distributions
- Isoscalar axial-vector meson spectrum

5 Summary

Observations on $a_1(1420)$ in 3π final states

Relativistic Breit-Wigner:

$$\mathcal{F}(m) = \frac{m_0 \Gamma_0}{m_0^2 - m^2 - im_0 \Gamma(m)} \quad \text{with} \quad \Gamma(m) = \Gamma_0 \frac{m_0}{m} \frac{p F_L^2(p)}{p_0 F_L^2(p_0)}.$$

 $m = 1416, \quad \Gamma = 145 \text{ MeV}.$

Observations on $a_1(1420)$ in 3π final states

• $a_1(1420)$ mainly decays into $f_0(980)\pi$. • mass (1414^{+15}_{-13}) MeV and width (153^{+8}_{-23}) MeV.

严茂俊 (ITP, CAS)

• $a_1(1260)$: (M, Γ) =(1328.9 ± 0.1, 388.4 ± 0.1).

• $a_1(1420)$: (M, Γ) =(1387.8 ± 0.3, 109.2 ± 0.6).

Hints on $b_1(1400)$ from BESIII in $J/\psi \rightarrow \phi \pi^0 \eta$

BESIII, PRL. 121(2018)2,022001,1802.00583; 2311.07043

The peak around 1400 MeV is non- ϕ background.

Models on $a_1(1420)$

- Tetraquark: H.X Chen et al, PRD 91 (2015), T. Gutsche et al, PRD 96 (2017) ;H. Sundu et al, PRD 97 (2018)
- Novelty: one pole generates two peaks in $\rho\pi f_0(980)\pi$ scattering, Jean-Louis Basdevant et al, PPL. 114 (2015)
- Lattice: $a_1(1260)$ is $q\bar{q}$ and $a_1(1420)$ is not $q\bar{q}$, Y. Murakami et al, 1812.07765; $a_1(1260)$ is a dynamical pole of $\rho\pi$, M. Mai et al, PRL. 127 (2021);

Models on $a_1(1420)$

- Tetraquark: H.X Chen et al, PRD 91 (2015), T. Gutsche et al, PRD 96 (2017) ;H. Sundu et al, PRD 97 (2018)
- Novelty: one pole generates two peaks in $\rho\pi f_0(980)\pi$ scattering, Jean-Louis Basdevant et al, PPL. 114 (2015)
- Lattice: $a_1(1260)$ is $q\bar{q}$ and $a_1(1420)$ is not $q\bar{q}$, Y. Murakami et al, 1812.07765; $a_1(1260)$ is a dynamical pole of $\rho\pi$, M. Mai et al, PRL. 127 (2021);
- Triangle singularity: M. Mikhasenko et al, PRD 91 (2015); F. Aceti et al, PRD 94 (2016);G.D. Alexeev et al, PRL 127 (2021)

严茂俊 (ITP, CAS)

VP scattering in ChUA

Bethe-Salpeter equation

$$T = \left[1 + V\hat{G}\right]^{-1} (-V) \vec{\epsilon} \cdot \vec{\epsilon}',$$

with

$$V_{ij}(s) = -\frac{\epsilon \cdot \epsilon'}{8f_{\pi}^2} C_{ij} \left[3s - \left(M^2 + m^2 + {M'}^2 + {m'}^2 \right) - \frac{1}{s} \left(M^2 - m^2 \right) \left(M'^2 - {m'}^2 \right) \right].$$

VP scattering in ChUA

Bethe-Salpeter equation

$$T = \left[1 + V\hat{G}\right]^{-1} (-V) \vec{\epsilon} \cdot \vec{\epsilon}',$$

with

$$V_{ij}(s) = -\frac{\epsilon \cdot \epsilon'}{8f_{\pi}^2} C_{ij} \left[3s - \left(M^2 + m^2 + {M'}^2 + {m'}^2 \right) \right. \\ \left. -\frac{1}{s} \left(M^2 - m^2 \right) \left(M'^2 - m'^2 \right) \right].$$

On-shell approach in inelastic scattering

•
$$V_{ij}^{WT} \rightarrow V_{ij}^{WT} \frac{m_i}{E_{P_i}} \frac{M_i}{E_{V_i}} \frac{m_j}{E_{P_j}} \frac{M_j}{E_{V_j}}, i \neq j$$

	ϕK	ωK	ρK	$K^*\eta$	$K^*\pi$
ϕK	0	0	0	$-\sqrt{\frac{3}{2}}$	$-\sqrt{\frac{3}{2}}$
ωK	0	0	0	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$
ρK	0	0	$^{-2}$	$-\frac{3}{2}$	$\frac{1}{2}$
$K^*\eta$	$-\sqrt{\frac{3}{2}}$	$\frac{\sqrt{3}}{2}$	$-\frac{3}{2}$	0	0
$K^*\pi$	$-\sqrt{\frac{3}{2}}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	$^{-2}$

Table 2: C_{ij} coefficients in isospin base for S = 1, $I = \frac{1}{2}$.

G		$\frac{1}{\sqrt{2}}(\bar{K}^{*}K + K^{*}\bar{K})$	$\phi\eta$	$\omega\eta$	$\rho\pi$	$\frac{1}{\sqrt{2}}(\bar{K}^{*}K - K^{*}\bar{K})$
+	$\frac{1}{\sqrt{2}}(\bar{K}^{*}K + K^{*}\bar{K})$	-3	0	0	0	0
-	$\phi\eta$	0	0	0	0	$\sqrt{6}$
-	$\omega\eta$	0	0	0	0	$-\sqrt{3}$
-	$\rho\pi$	0	0	0	-4	$\sqrt{3}$
-	$\frac{1}{\sqrt{2}}(\bar{K}^{*}K - K^{*}\bar{K})$	0	$\sqrt{6}$	$-\sqrt{3}$	$\sqrt{3}$	-3

Table 3: C_{ii} coefficients in isospin base for S = 0, I = 0. The first column indicates the

G		$\frac{1}{\sqrt{2}}(\bar{K}^*K + K^*\bar{K})$	$\phi\pi$	$\omega\pi$	$\rho\eta$	$\rho\pi$	$\frac{1}{\sqrt{2}}(\bar{K}^*K - K^*\bar{K})$
+	$\frac{1}{\sqrt{2}}(\bar{K}^{*}K + K^{*}\bar{K})$	-1	$-\sqrt{2}$	1	$\sqrt{3}$	0	0
+	$\phi\pi$	$-\sqrt{2}$	0	0	0	0	0
+	$\omega\pi$	1	0	0	0	0	0
+	$\rho\eta$	$\sqrt{3}$	0	0	0	0	0
-	$\rho\pi$	0	0	0	0	$^{-2}$	$\sqrt{2}$
-	$\frac{1}{\sqrt{2}}(\bar{K}^*K - K^*\bar{K})$	0	0	0	0	$\sqrt{2}$	$^{-1}$

Table 4: C_{ij} coefficients in isospin base for S = 0, I = 1. The first column indicates the

严茂俊 (ITP, CAS)

第七届强子谱与强子结构会议

$a_1: \rho \pi - K^* \overline{K}$ scattering in $I^G J^{PC} = 1^{-1} 1^{++}$ sector

 $q_{max} = 800$ and 1000 MeV. $z_r[\text{MeV}] = 986.47 + i93.60 (-+)$ and 1368.12 + i109.41(--). Right: Inclusion of K^* width in evaluating T_{21} .

$\overline{K^*\bar{K}} - f_0(980)\pi$ scattering in $I^G J^{PC} = 1^{-1} 1^{++}$ sector

$\overline{b_1: \ K^*ar{K} - \phi}\pi$ scattering in $I^G J^{PC} = 1^+ 1^{+-}$ sector

• Pole: (1324.76 + i55.0) MeV

•
$$\mathcal{M} = V_p T_{K^*\bar{K}, K^*\bar{K}}, \frac{dN}{dw} = |\mathcal{M}|^2 \frac{|k_1|}{8\pi w}$$

• $(M_R, \Gamma) = (1380,91)$ A. Woss et al, PRD100(2019)5,054506

 $| \rightarrow |$

$\overline{\left\{\omega\pi,\phi\pi,\rho\eta,K^*ar{K} ight\}}$ scattering in $I^G J^{PC} = 1^+ 1^{+-}$ sector

Peaks appear in $\phi\pi$ and $\omega\pi$ invariant mass distribution, the latter of which does not fulfill TS.

Isoscalar $|\bar{s}\bar{s}ud\rangle$ and K^*K scattering

T_{ss} in QCD sum rule and quark models

• $|ar{ss}ud
angle$ predicted with mass from 1350 to 1600 ${
m MeV}$, Y. Cui et al,

PRD73(2006);W.L. Wang et al, J.Phys.G34(2007);Q.X. Gao et al, J.Phys.G39(2012); .

 T_{ss} in LO ChPT

•
$$|\bar{s}\bar{s}ud\rangle = \frac{1}{\sqrt{2}} |K^{*+}K^0\rangle - \frac{1}{\sqrt{2}} |K^{*0}K^+\rangle$$
, with $C_{ij}^{I=0} = 0$.

T_{ss} in LO ChPT and axial-vector meson exchange

• Axial-vector meson exchange: $\mathcal{L}=g_{a_1}a_{1,\mu}K^{*,\mu}\bar{K}$. M.J. Yan et al, PRD104(2021)

•
$$g_{a_1} \simeq \mathcal{O}(5000 \,\mathrm{MeV}), \ V^{a_1} \simeq \mathcal{O}\left(\frac{g_{a_1}^2}{m_{a_1}^2}\right).$$

- $|V^{a_1}| \sim |V^{I=1}_{\kappa^*\bar{\kappa}}|/10$, too weak to bind.
- W/O additional dynamic, no T_{ss} around K^*K threshold.

Summary

- Besides the TS, there is a virtual pole in $K^*\bar{K}$ scattering in $I^G J^{PC} = 1^{-1++}$ sector.
- If $a_1(1420)$ were a molecular state, there is a dip in $\rho\pi$ invariant mass distribution that differes from TS.
- The peak in $\phi\pi$ invariant mass distribution could be a $b_1(1400)$ that generates a peak in $\omega\pi$ invariant mass distribution as well. This state is a flavor partner of $Z_c(3900)$.
- T_{ss} is hard to bind in isoscalar K^*K scattering.
- The near threshold virtual pole mainly determines the enhancement of lineshape.
- "Poles OR TS" to "Poles AND TS".

Summary

- Besides the TS, there is a virtual pole in $K^*\bar{K}$ scattering in $I^G J^{PC} = 1^{-1++}$ sector.
- If $a_1(1420)$ were a molecular state, there is a dip in $\rho\pi$ invariant mass distribution that differes from TS.
- The peak in $\phi\pi$ invariant mass distribution could be a $b_1(1400)$ that generates a peak in $\omega\pi$ invariant mass distribution as well. This state is a flavor partner of $Z_c(3900)$.
- T_{ss} is hard to bind in isoscalar K^*K scattering.
- The near threshold virtual pole mainly determines the enhancement of lineshape.
- "Poles OR TS" to "Poles AND TS".

Thanks!

Backup: $K^*\overline{K}$ scattering in $I^G J^{PC} = 1^{-1^{++}}$ sector

In the single channel scattering W/O modification on $V_{ij},$ $P_{a_1}=346.41\,{\rm MeV^{1/2}}.$

严茂俊 (ITP, CAS)

第七届强子谱与强子结构会议

Backup: $K^* \overline{K}$ scattering in $I^G J^{PC} = 0^{+} 1^{++}$ sector

$$\mathcal{M}_{f_{1}} = \stackrel{\circ}{P}_{K^{*}\bar{K}}^{f_{1}} + \stackrel{\circ}{P}_{K^{*}\bar{K}}^{f_{1}} \tilde{G}_{K^{*}\bar{K}} T_{f_{1}} = P_{K^{*}\bar{K}}^{f_{1}} \tilde{G}_{K^{*}\bar{K}} T_{f_{1}},$$

$$\frac{dN_{f_{1}}}{dM_{K^{*}\bar{K}}} = |\mathcal{M}_{f_{1}}|^{2} \frac{\left|\vec{k}_{K^{*}}\right|}{8\pi M_{K^{*}\bar{K}}}.$$

Backup: $\{\rho\pi, \omega\eta, K^*\bar{K}, \phi\eta\}$ scattering in h_1 spectrum

$$\mathcal{M}_{h_{1}} = \overset{\circ}{P}_{K^{*}\bar{K}}^{h_{1}} + \overset{\circ}{P}_{K^{*}\bar{K}}^{h_{1}} \tilde{G}_{K^{*}\bar{K}} T_{h_{1}} = P_{K^{*}\bar{K}}^{h_{1}} \tilde{G}_{K^{*}\bar{K}} T_{h_{1}}.$$
$$\frac{dN_{h_{1}}}{dM_{K^{*}\bar{K}}} = |\mathcal{M}_{h_{1}}|^{2} \frac{\left|\vec{k}_{K^{*}}\right|}{8\pi M_{K^{*}\bar{K}}}.$$

Backup: $\{K^*\pi, \rho K\}$ scattering in $IJ^P = \frac{1}{2}1^+$ sector

The lower pole is much smaller than the higher one in $|T_{ii}|$.

Backup: Left-hand-cut in $f_1(1285)$ spectrum

$$\tilde{V}_{\eta}^{S} = \frac{g_{\eta}^{2}m_{\eta}^{2}}{4|\vec{q}|^{2}}\mathrm{Log}\left[\frac{u-2\vec{q}^{2}}{u+2\vec{q}^{2}}\right] = \frac{g_{\eta}^{2}m_{\eta}^{2}}{4|\vec{q}|^{2}}\mathrm{Log}\left[\frac{\Delta\tilde{u}}{\Delta u}\right]$$

