

# Study of properties of $\Upsilon(10753)$ on Belle II experiment

## 第七届强子谱与强子结构会议



殷俊旱 南开大学







### $\Upsilon(10753)$ — discovery and studies







- A dip in the  $R_b$  distribution near 10.75 GeV
- Fit to dressed cross section of  $b\bar{b}$  with three BWs.

"The results from these fits may change dramatically by including more information on each exclusive mode."



#### K-matrix Analysis of $e^+e^-$ Annihilation in the Bottomonium Region

N. Hüsken,<sup>1,2</sup> R.E. Mitchell,<sup>1</sup> and E.S. Swanson<sup>3</sup>

*Phys.Rev.D* 106 (2022) 9, 094013



Coupled channel analysis of high energy s poles:  $\Upsilon(4S)$ ,  $\Upsilon(10753)$ ,  $\Upsilon(5S)$ ,  $\Upsilon(6S)$ .

#### Coupled channel analysis of high energy scan data using the K-matrix formalism shows four



|                                       | ::::::      |
|---------------------------------------|-------------|
|                                       |             |
|                                       | -           |
| $Z_{b}(10)$                           | <u>650)</u> |
| · · · · · · · · · · · · · · · · · · · |             |
| Z <sub>b</sub> (10                    | 610)        |
|                                       | -           |
|                                       |             |
|                                       |             |
|                                       | 1           |
| (1D)                                  | -           |
| <u> </u>                              |             |
|                                       |             |
|                                       | -           |
|                                       |             |
|                                       |             |
|                                       | 1           |
|                                       | -           |
|                                       |             |
|                                       | ]           |
|                                       | -           |
|                                       |             |
|                                       |             |
| 1-                                    | +           |

#### Bottomonium?

Phys. Rev. D 101, 014020 (2020) Phys. Lett. B 803, 135340 (2020) Eur. Phys. J. C 80, 59 (2020) Phys. Rev. D 102, 014036 (2020) Prog. Part. Nucl. Phys. 117, 103845 (2021) Phys. Rev. D 104, 034036 (2021) Phys. Rev. D 105, 074007 (2022) etc...

#### Hybrid?

Phys. Rept. 873, 1 (2020) Phys. Rev. D 104, 034019 (2021) etc...

#### Tetraquark?

Phys. Lett. B 802, 135217 (2020) Chin. Phys. C 43, 123102 (2019) Phys. Rev. D 103, 074507 (2021) Phys. Rev. D 107, 094515 (2023) etc...

### **Unique data**

- Largest bottomonium data sample  $\bullet$
- - Fill the gaps in Belle Scan data



### Confirmation of $\Upsilon(10753)$ on Belle II

• Full reconstruction of  $\pi^+\pi^-\Upsilon(nS)$ , n = 1,2,3, where  $\Upsilon(nS) \to \mu^+\mu^-$ .

 $\Delta M = M(\pi \pi \mu \mu) - M(\mu \mu)$ 



ISR  $\Upsilon(2S, 3S) \rightarrow \Upsilon(1S)\pi^+\pi^-$ 

Belle-II preliminary, arxiv:2401.12021

## Fit with three coherent BW, convoluting a Gaussian modeling energy spread:

$$\sigma \propto |\sum_{i}^{3} \frac{\sqrt{12\pi\Gamma_{i}\mathcal{B}_{i}}}{s - M_{i} + iM_{i}\Gamma_{i}} \cdot \sqrt{\frac{f(\sqrt{s})}{f(M_{i})}} e^{i\phi_{i}}|^{2} \otimes G(0,\delta E)$$

All parameters are free, except  $\delta E = 0.0056 \text{ GeV}$ 

Parameters of 
$$\Upsilon(10753)$$
:  
 $M = 10756.6 \pm 2.7_{(stat.)} \pm 0.8_{(syst.)} \text{ MeV}/c^2$   
 $\Gamma = 29.0 \pm 8.8_{(stat.)} \pm 1.2_{(syst.)} \text{ MeV}$ 

Agree with previous Belle measurement. Improve uncertainties ~2 times smaller

resonance mass (MeV/ $c^2$ ) width (MeV) $\Upsilon(5S)$ 10884.7 ± 1.238.7 ± 3.7 $\Upsilon(6S)$ 10995.5 ± 4.234.6 ± 8.6



### **Relative ratios**

#### Relative ratios of the Born cross section at the resonance peak.





Castella. et. al. Phys. Rev. D 104, 034019 (2021)

Bai. et. al. Phys. Rev. D 105, 074007 (2022)

No significant  $\Upsilon(10753) \rightarrow \pi \pi \Upsilon(3S)$ 







### In the case of $\Upsilon(10753) \rightarrow \pi \pi \Upsilon(1S)$





## Intermediate state $-\Upsilon(10753) \rightarrow \pi Z_b$

#### Belle-II preliminary, arxiv:2401.12021



• No Evidence of  $Z_b(10610/10650)$ .

Upper limits estimated at 90 % C.L. Ο using Bayesian method.

| Mode                 | $N_{Z_{b1}}$                 | $N_{Z_{b1}}^{\mathrm{UL}}$ | $\sigma_{Z_{b1}}$ (pb)          | $\sigma_{Z_{b1}}^{\mathrm{UL}}$ (pb) | $N_{Z_{b2}}^{ m UL}$       | $N_{Z_{b2}}$ | $\sigma_{Z_{b2}}$ (pb)        | $\sigma_{Z_l}^{\mathrm{U}}$ |
|----------------------|------------------------------|----------------------------|---------------------------------|--------------------------------------|----------------------------|--------------|-------------------------------|-----------------------------|
| 10.745 G             | eV                           |                            |                                 |                                      |                            |              |                               |                             |
| $\pi \Upsilon(1S)$   | $0.0\substack{+1.6 \\ -0.0}$ | < 4.9                      | $0.00\substack{+0.04\\-0.00}$   | < 0.13                               | _                          | _            | _                             |                             |
| $\pi \Upsilon(2S)$   | $5.8^{+5.9}_{-4.6}$          | < 13.8                     | $0.06\substack{+0.06\\-0.05}$   | < 0.14                               | —                          | _            | —                             |                             |
| $10.805 \mathrm{~G}$ | eV                           |                            |                                 |                                      |                            |              |                               |                             |
| $\pi \Upsilon(1S)$   | $2.5^{+2.4}_{-1.6}$          | < 5.2                      | $0.21\substack{+0.20 \\ -0.13}$ | < 0.43                               | $0.0\substack{+0.7\\-0.0}$ | < 5.8        | $0.00\substack{+0.03\\-0.00}$ | <                           |
| $\pi \Upsilon(2S)$   | $5.2^{+3.8}_{-3.0}$          | < 12.3                     | $0.15\substack{+0.11 \\ -0.09}$ | < 0.35                               | $0.0\substack{+0.8\\-0.0}$ | < 6.0        | $0.00\substack{+0.04\-0.00}$  | <                           |
|                      |                              |                            |                                 |                                      |                            |              |                               |                             |



## **Observation of** $\Upsilon(10753) \rightarrow \omega \chi_{hI}$

[PRL 130, 091902 (2023)]



- Reconstruct  $\omega \to \pi^+ \pi^- \pi^0$ ,  $\chi_{hI} \to \gamma \Upsilon(1S)$
- Clear  $\omega \chi_{bJ}$  signals at  $\sqrt{s} = 10.745$  and 10.805 GeV
- 2D fit to  $M(\pi^+\pi^-\pi^0)$  vs.  $M(\gamma\Upsilon(1S))$

| Channel          | √ <i>s</i> (GeV) | σ <sup>(UL)</sup><br>Born (pb) |                           |
|------------------|------------------|--------------------------------|---------------------------|
| ωχ <sub>b1</sub> | 10 745           | $68.9^{+13.7}_{-13.5}$         | $3.6^{+0.7}_{-0.7}\pm0.4$ |
| ωχ <sub>b2</sub> | 10.745           | $27.6^{+11.6}_{-10.0}$         | $2.8^{+1.2}_{-1.0}\pm0.5$ |
| ωχ <sub>b1</sub> | 10.905           | $15.0^{+6.8}_{-6.2}$           | 1.6 @90% C.L.             |
| ωχ <sub>b2</sub> | 10.805           | $3.3^{+5.3}_{-3.8}$            | 1.5 @90% C.L.             |

The total  $\chi_{bJ}$  signal significances are 11.5 $\sigma$  and 5.2 $\sigma$  at  $\sqrt{s}$  = 10.745 and 10.805 GeV

20

10







#### [PRL 130, 091902 (2023)]



- $\Gamma_{ee} \times B[Y(10750) \rightarrow \omega \chi_{b2}(1P)] = \frac{(0.53 \pm 0.40 \pm 0.15) eV}{(1.22 \pm 0.40 \pm 0.15) eV}$  $(1.32 \pm 0.44 \pm 0.53)eV$

**Combined analysis with Belle data coming soon** 









#### Measured ratios:

$$\frac{B[Y(10750) \rightarrow \omega \chi_{b1}(1P)]}{B[Y(10750) \rightarrow \omega \chi_{b2}(1P)]} = 1.3 \pm 0.6$$

 $\frac{B[Y(10750) \rightarrow \omega \chi_{b0}(1P)]}{B[Y(10750) \rightarrow \omega \chi_{b2}(1P)]} < 7 \quad (private \ extrapolation)$ 

[PRL 130, 091902 (2023)]





### Search for $\Upsilon(10753) \rightarrow \omega \eta_b, \omega \chi_{b0}$

#### [Wang, Chin. Phys. C 43, 123102 (2019)]

| Mode                 | $\mathcal{B}(4q)$ (%)           | $\mathcal{B}(b\overline{b})$ (%) |
|----------------------|---------------------------------|----------------------------------|
| $B\overline{B}$      | $39.3\substack{+38.7 \\ -22.9}$ | 21.3                             |
| $B\overline{B}^*$    | $\sim 0.2$                      | 14.3                             |
| $B^*\overline{B}^*$  | $52.3\substack{+54.9\\-31.7}$   | 64.1                             |
| $B_s \overline{B}_s$ | -                               | 0.3                              |
| $\omega \eta_b$      | $7.9^{+14.0}_{-5.0}$            | -                                |
| $f_0(1370)\Upsilon$  | $0.2\substack{+0.6 \\ -0.2}$    | -                                |
| $\omega \Upsilon$    | $\sim 0$                        | -                                |

#### Strategy:

- $\rightarrow$  Reconstruct  $\omega$
- $\rightarrow$  Measure its recoil mass

No convenient reconstruction decay channels for  $\eta_b(1S)$ 







 $\sigma_{\rm B}(e^+e^- \to \eta_b(1S)\omega) < 2.5\,{\rm pb}$ 

#### [arxiv:2312.13043]

#### Compatible with S-D mixed



### Measurement of $e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)}, B^{(*)}_{S}\bar{B}^{(*)}_{S}$





### Summary

- Suggestive of a conventional bottomonium state 0
- More analyses are ongoing: 0
  - $\Upsilon(10753) \rightarrow K^+ K^- \Upsilon(nS)$ 0
  - $\Upsilon(10753) \rightarrow \eta(\eta')\Upsilon(nS)$ 0

• 
$$\Upsilon(10753) \rightarrow \gamma \chi_{bJ}$$

- 0 . . .
- Up to 79% branching fraction is missing<sub>[1]</sub>. Where are they? 0
- Belle II has collected 424/fb data, including ~380/fb  $\Upsilon(4S)$ . 0
  - More results other than  $\Upsilon(10753)$  will come out. 0
- Long shutdown has finished, is accumulating more data. Ο
  - More data, more new results Ο



[1]Phys.Rev.D 106 (2022) 9, 094013



## BACK UP



### $\Upsilon(10753)$ — discovery and studies







- A dip in the  $R_b$  distribution near 10.75 GeV
- Fit to dressed cross section of  $b\bar{b}$  with three BWs.

"The results from these fits may change dramatically by including more information on each exclusive mode."



#### K-matrix Analysis of $e^+e^-$ Annihilation in the Bottomonium Region

N. Hüsken,<sup>1,2</sup> R.E. Mitchell,<sup>1</sup> and E.S. Swanson<sup>3</sup>

*Phys.Rev.D* 106 (2022) 9, 094013





| _   |   |   |   |   |   |   |   |   |   |   |   | _ |   |   |   |   |   |   |   |                  |   | _ |   | _ |   |   |   |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|------------------|---|---|---|---|---|---|---|
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   |   |
| :   | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | ; | : | :                | : | : | : | : | : | : | : |
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   | - |
|     |   |   |   |   |   |   |   |   |   |   | 2 | Z | 2 | Ь | ( | - | 1 | ( | ) | 6                | 5 | Ę | 5 | C | ) | ) | - |
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | , |   |                  |   |   |   |   | ļ |   |   |
|     |   | - |   |   |   |   | - |   |   |   | ž | 2 |   | Б | ( | - | 1 | ( | ) | (                | 3 | ] |   | C | ) | ) |   |
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   |   |
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   |   |
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   |   |
| r , | 1 |   | 1 |   | ) | ) |   |   |   |   |   |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   |   |
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   |   |
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   |   |
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   |   |
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   |   |
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   |   |
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   |   |
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   |   |
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   |   |
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   |   |
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   | - |
| _   |   | _ | _ |   |   |   |   |   |   |   |   |   |   |   |   | 1 |   |   |   | $\left  \right $ |   |   |   |   |   | _ |   |
|     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | L |   |   |                  |   |   |   |   |   |   |   |

#### Bottomonium?

Phys. Rev. D 101, 014020 (2020) Phys. Lett. B 803, 135340 (2020) Eur. Phys. J. C 80, 59 (2020) Phys. Rev. D 102, 014036 (2020) Prog. Part. Nucl. Phys. 117, 103845 (2021) Phys. Rev. D 104, 034036 (2021) Phys. Rev. D 105, 074007 (2022) etc...

#### Hybrid?

Phys. Rept. 873, 1 (2020) Phys. Rev. D 104, 034019 (2021) etc...

#### Tetraquark?

Phys. Lett. B 802, 135217 (2020) Chin. Phys. C 43, 123102 (2019) Phys. Rev. D 103, 074507 (2021) Phys. Rev. D 107, 094515 (2023) etc...

*Y*(4230)

Two close peaks observed in the cross sections for  $e^+e^- \rightarrow \pi^+\pi^- J/\psi$  by BESIII and  $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS)$  by Belle. May suggest similar nature.



•  $Y(4230) \rightarrow \gamma X(3872)$  and  $Y(4230) \rightarrow \omega \chi_{c0}$  were observed by BESIII.

- Expect the  $\Upsilon(10753)$  state to decay into  $X_{h}\gamma$ .
- Should be more easily to be found in  $\omega \Upsilon(1S)$  than  $\pi \pi \Upsilon(1S)$  [Eur.Phys.J.C 74 (2014) 9, 3063]



 $\Upsilon(10753)$ 





### Suppress background with $\omega$ -Dalitz plot.









 $\sigma_{\text{Born}}^{\text{up}}$  < 8.7 pb, comparable to the UL obtained before (11.3 pb)

Signal yields:  $(1.2 \pm 1.4 \pm 0.9) \times 10^3 = \sigma_{Born} = (2.6 \pm 3.1 \pm 2.0) \text{ pb}$ 

### Measurement of $e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)}$



- $\bullet$ poles:  $\Upsilon(4S)$ ,  $\Upsilon(10753)$ ,  $\Upsilon(5S)$ ,  $\Upsilon(6S)$ .
- Need more data to fill the gaps.  $\bullet$



Coupled channel analysis of high energy scan data using the K-matrix formalism shows four

### $\Upsilon(10753) \rightarrow \omega \chi_{bJ}$

 $Y(10750) \rightarrow \omega \chi_b$  in the conventional [Y.S. Li, et al., PRD 104, 034036 (2021)]

$$\begin{split} \mathcal{B}[\Upsilon(10753) &\to \chi_{b0}\omega] &= (0.73-6.94) \times 10^{-3}, \\ \mathcal{B}[\Upsilon(10753) &\to \chi_{b1}\omega] &= (0.25-2.16) \times 10^{-3}, \\ \mathcal{B}[\Upsilon(10753) &\to \chi_{b2}\omega] &= (1.08-11.5) \times 10^{-3}. \end{split}$$

$$R_{12} = \frac{\mathcal{B}[\Upsilon(10753) \to \chi_{b1}\omega]}{\mathcal{B}[\Upsilon(10753) \to \chi_{b2}\omega]} = (0.18-0.22)$$
$$R_{02} = \frac{\mathcal{B}[\Upsilon(10753) \to \chi_{b0}\omega]}{\mathcal{B}[\Upsilon(10753) \to \chi_{b2}\omega]} = (0.55-0.63)$$

#### Sizable branching fractions

#### $Y(10750) \rightarrow \omega \chi_{b}$ in the conventional quarkonium model (S-D mixing state)



### Search for $X_h \to \omega \Upsilon(1S)$ in $e^+e^- \to \gamma \omega \Upsilon(1S)$

[PRL 130, 091902 (2023)]



- No significant X<sub>b</sub> signal is observed.
- The peaks are the reflections of  $e^+e^- \rightarrow \omega \chi_{bI}$ .

| Upper limits at                                                                                                                     | $\sqrt{\mathrm{s}}$ (GeV)                              | 10.653               | 10. <b>701</b>       | 10.745       | 10.805               |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------|----------------------|--------------|----------------------|
| 90% C.L. on $(0^+ 0^ ) X V_{0})$                                                                                                    | $m(X_b) = 10.6 \text{ GeV/c}^2$                        | 0.45                 | 0.33                 | 0.10         | 0.14                 |
| $\sigma_{\rm B}(e^{-}e^{-} \rightarrow \gamma \Lambda_{\rm b})$<br>$\mathcal{B}(X_{\rm b} \rightarrow \omega \Upsilon(1S))$<br>(pb) | m(X <sub>b</sub> ) = (10.45, 10.65) GeV/c <sup>2</sup> | (0.14 <i>,</i> 0.54) | (0.25 <i>,</i> 0.84) | (0.06, 0.14) | (0.08 <i>,</i> 0.36) |

From simulated events with  $m(X_b) = 10.6 \text{ GeV/c}^2$ The yield is fixed at the upper limit at 90% C.L.



