

Heavy flavor spectroscopy study at LHCb

Liupan An (安刘攀) On behalf of the LHCb collaboration

Peking University (北京大学)

第七届强子谱和强子结构研讨会@电子科技大学,2024.04.26

Introduction

~Au

Hadron spectroscopy: a main tool to probe QCD at low-energy regime

 Λ_{OCD}

~250

~150

heavy quarks bring advances both experimentally and theoretically

~1400 ~4200

exotic hadrons

2024/4/27

Liupan An

The LHCb detector

>LHCb is a single-arm forward region spectrometer covering $2 < \eta < 5$, dedicated to heavy flavor physics at the Large Hadron Collider

2024/4/

LHCb Physics today

CERN LHCC 98-4 LHCC /P4 20 February 1998

LHCb

Technical Proposal

A Large Hadron Collider Beauty Experiment for Precision Measurements of CP Violation and Rare Decays

Decay	Visible	Offline
Modes	Br. fraction	Reconstr.
$B_d^0 \rightarrow \pi^+\pi^- + tag$	0.7×10^{-5}	6.9 k
${ m B}^0_{ m d} ightarrow { m K}^+ \pi^-$	1.5×10^{-5}	$33 \mathrm{k}$
$B_d^0 \rightarrow \rho^+ \pi^- + tag$	1.8×10^{-5}	551
$B_d^0 \rightarrow J/\psi K_S + tag$	$3.6 imes 10^{-5}$	$56 \mathrm{k}$
$B_d^{\overline{0}} \rightarrow \overline{D}{}^0 K^{*0}$	$3.3 imes 10^{-7}$	337
${ m B}_{ m d}^{ m \bar 0} ightarrow { m K}^{*0} \gamma$	$3.2 imes 10^{-5}$	26 k
$B_s^0 \rightarrow D_s^- \pi^+ + tag$	1.2×10^{-4}	$35 \mathrm{k}$
$B_s^0 \rightarrow D_s^- K^+ + tag$	8.1×10^{-6}	$2.1 \mathrm{k}$
$B_s^0 \to J/\psi \phi + tag$	$5.4 imes 10^{-5}$	44 k

Most cited LHCb physics results today:

- 1. **Pentaquark** in $J/\psi p$
- 2. Test of lepton universality in $B \to K \ell^+ \ell^-$ (R_K)
- 3. Test of lepton universality in $B \rightarrow D\ell$ (R_D)
- 4. Angular analysis in $B \rightarrow K \pi \pi$
- 5. $B_s^0 \rightarrow \mu\mu$
- 6. Ξ_{cc} baryon
- 7. resonant character of Z(4430) tetraquark
- 8. X(3872) quantum numbers
- 9. charm production cross-section
- 10. CP violation in charm
- 11. beauty production cross-section
- 12. fully charmed tetraquark in double J/ψ
- 13. doubly charmed tetraquark
- 14. b-hadron production fractions
- 15. charm hadron spectroscopy

By Giacomo Graziani

G. Graziani slide 3 2024/4/27

Hadrons observed at LHCb

Selected new measurements

Conventional hadrons

Excited states:

- ✓ Observation of $\Xi_b^{-/0**} \to \Xi_b^{-/0} \pi^+ \pi^-$ [PRL 131 (2023) 171901]
- ✓ Observation of new $\Omega_c^0 \to \Xi_c^+ K^-$ [PRL 131 (2023) 131902]

Decay properties:

- ✓ Observation of $B_c^+ \rightarrow J/\psi \pi^+ \pi^0$ [arXiv:2402.05523]
- ✓ Study of $B_c^+ \rightarrow \chi_c \pi^+$ decays [JHEP 02 (2024) 173]
- ✓ Observation of $\Lambda_b^0 \rightarrow D^+ D^- \Lambda$ [arXiv: 2403.03586]

Exotic hadrons

- Search for prompt production of pentaquarks in open charm final states [arXiv: 2404.07131]
- ✓ Modification of $\chi_{c1}(3872)$ production in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV [arXiv: 2402.14975]
- ✓ First measurement of $J/\psi\phi$ production in pp collisions with no additional activity [LHCb-PAPER-2023-043] in preparation

Conventional hadrons

-- Excited states

✓ Observation of $\Xi_b^{-/0**} \to \Xi_b^{-/0} \pi^+ \pi^-$ [PRL 131 (2023) 171901] ✓ Observation of new $\Omega_c^0 \to \Xi_c^+ K^-$ [PRL 131 (2023) 131902]

Singly-heavy baryons

[PRD 92 (2015) 114029]

3300

8/30

3200

 $m(\Xi_c^+K^-)$ [MeV]

Missing resonances problem in baryon physics

 \Rightarrow heavy quark-light diquark Q[qq] model is widely used to describe Qqq systems

 \checkmark λ-mode: low-lying states well established for most species \checkmark ρ-mode: no firm assignment yet

of observed excited states

2024/4/27

Liupan An

3000

3100

✓ Consistent with naïve expectation for $1P J_{[qq]}^P = 0^+ (1/2)^-, (3/2)^-$ doublet 2024/4/27 Liupan An 9/30

U D	Scivat		$C \rightarrow \Box_C \Lambda$	Jibo He
≻Using full 9 fb ⁻¹	Run1+Rur	12 LHCb data		[PRL 131 (2023) 131902]
$egin{aligned} & \Omega_c(z) & \Omega_$	$3065)^{0} \rightarrow \Xi_{c}^{+}(\rightarrow \Xi_{c}^{+}\gamma)$ $3090)^{0} \rightarrow \Xi_{c}^{+}(\rightarrow \Xi_{c}^{+}\gamma)$ $3119)^{0} \rightarrow \Xi_{c}^{+}(\rightarrow \Xi_{c}^{+}\gamma)$ $3185)^{0} \rightarrow \Xi_{c}^{+}K^{-}$ $3327)^{0} \rightarrow \Xi_{c}^{+}K^{-}$	$ \begin{array}{rcl} \mathcal{K}^{-} & \cdots & \mathcal{Q}_{c}(3000)^{0} \rightarrow \mathcal{Z}_{c}^{+}K^{-} \\ \mathcal{K}^{-} & \cdots & \mathcal{Q}_{c}(3050)^{0} \rightarrow \mathcal{Z}_{c}^{+}K^{-} \\ \mathcal{K}^{-} & \cdots & \mathcal{Q}_{c}(3065)^{0} \rightarrow \mathcal{Z}_{c}^{+}K^{-} \\ \cdots & \mathcal{Q}_{c}(3090)^{0} \rightarrow \mathcal{Z}_{c}^{+}K^{-} \\ \cdots & \mathcal{Q}_{c}(3119)^{0} \rightarrow \mathcal{Z}_{c}^{+}K^{-} \end{array} $	 → Data → Combinatorial background → Total fit 	
Candidates (5 MeV)		LHCb 3.3 fb^{-1} (a) 14 12 12 10 14 12 10 10 14 12 10	LHCb 5.7 fb ⁻¹ (b) 3100 3200 3300 3400 3	500
	Resonance	$\frac{m(\mathbf{Z}_{c}\mathbf{K})[WeV]}{m(MeV)}$	Γ (MeV)	
 ✓ Most precise mass and width measurement 	$\begin{array}{c} \Omega_c(3000)^0\\ \Omega_c(3050)^0\\ \Omega_c(3065)^0\\ \Omega_c(3090)^0\\ \Omega_c(3119)^0 \end{array}$	$3000.44 \pm 0.07 \stackrel{+0.07}{_{-0.13}} \pm 0.23$ $3050.18 \pm 0.04 \stackrel{+0.06}{_{-0.07}} \pm 0.23$ $3065.63 \pm 0.06 \stackrel{+0.06}{_{-0.06}} \pm 0.23$ $3090.16 \pm 0.11 \stackrel{+0.06}{_{-0.10}} \pm 0.23$ $3118.98 \pm 0.12 \stackrel{+0.09}{_{-0.23}} \pm 0.23$	$\begin{array}{c} 3.83 \pm 0.23 \stackrel{+1.59}{_{-0.29}} \\ 0.67 \pm 0.17 \stackrel{+0.64}{_{-0.72}} \\ < 1.8 \mathrm{MeV}, 95\% \mathrm{C.L.} \\ 3.79 \pm 0.20 \stackrel{+0.38}{_{-0.47}} \\ 8.48 \pm 0.44 \stackrel{+0.61}{_{-1.62}} \\ 0.60 \pm 0.63 \stackrel{+0.90}{_{-1.05}} \end{array}$	
✓ Two new states:	$\Omega_c(3185)^0 \ \Omega_c(3327)^0$	$\begin{array}{c} 3185.1 \pm 1.7 \ \substack{+7.4 \\ -0.9} \pm 0.2 \\ 3327.1 \pm 1.2 \ \substack{+0.1 \\ -1.3} \pm 0.2 \end{array}$	$ \frac{2.5 \text{ MeV}, 95\% \text{ C.L.}}{50 \pm 7 \begin{array}{c} +10 \\ -20 \\ 20 \pm 5 \begin{array}{c} +13 \\ -1 \end{array} } $	
2024/4/27		Liupan An		10/30

Zhihao Xu

Conventional hadrons at LHC

https://www.nikhef.nl/~pkoppenb/particles.html

2024/4/27

Conventional hadrons at LHC

Conventional excited hadrons at LHCb

Conventional hadrons

-- Decay properties

✓ Observation of $B_c^+ \to J/\psi \pi^+ \pi^0$ [arXiv:2402.05523]

✓ Study of $B_c^+ \rightarrow \chi_c \pi^+$ decays [JHEP 02 (2024) 173]

✓ Observation of $\Lambda_b^0 \to D^+ D^- \Lambda$ [arXiv: 2403.03586]

Observation of $B_c^+ \rightarrow J/\psi \pi^+ \pi^0$

[arXiv:2402.05523]

First observation of $B_c^+ \rightarrow J/\psi \pi^+ \pi^0$ with significance > 20 σ

Study of $B_c^+ \rightarrow \chi_c \pi^+$

[JHEP 02 (2024) 173]

First observation of $B_c^+ \rightarrow \chi_{c2}\pi^+$ with significance > 7 σ

►Upper limit set on $B_c^+ \rightarrow \chi_{c1} \pi^+$

 $N(\chi_{c2}) = 108 \pm 16$

2024/4/27

Observation of $\Lambda_b^0 \rightarrow D^+ D^- \Lambda$

[arXiv: 2403.03586]

First observation of $\Lambda_b^0 \to D^+ D^- \Lambda$ with significance of 16 σ

 $\checkmark \Lambda$ decay outside VELO

 $N = 19 \pm 5$

 $\checkmark \Lambda$ decay inside VELO

Exotic hadrons

- Search for prompt production of pentaquarks in open charm final states [arXiv: 2404.07131]
- ✓ Modification of $\chi_{c1}(3872)$ production in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV [arXiv: 2402.14975]
- ✓ First measurement of $J/\psi\phi$ production in pp collisions with no additional activity [LHCb-PAPER-2023-043] in preparation

Background for pentaquark study

Proximity of $\Sigma_c^+ \overline{D}{}^0$ and $\Sigma_c^+ \overline{D}{}^{*0}$ thresholds to the peaks suggests they play an important role in the dynamics

➤The observation of new decay modes can shed light on the binding scheme of the exotic hadrons ⇒ search through open charm modes

Search for pentaquarks via open charm

 \succ Inclusive search performed using 5.7 fb⁻¹ data from 2016-2018 [arXiv: 2404.07131]

Reconstruction:
$$\Lambda_c^+ \to pK^-\pi^+, D^- \to K^+\pi^-\pi^-, D^0 \to K^-\pi^+$$

 $\Sigma_c^{++(0)} \to \Lambda_c^+\pi^{+(-)}, D^{*-} \to \overline{D}^0\pi^-$

✓ hidden-charm pentaquarks

 \checkmark doubly-charmed pentaquarks & excited Ξ_{cc}

Hadron 1	Hadron 2	Charge	I_3	Y	С	Limit Set	Hadron 1	Hadron 2	Charge	I_3	Y	С	Limit Set
Λ_c^+	$\overline{D}{}^{0}$	+1	$^{1/_{2}}$	1	0	\checkmark	Λ_c^+	D^0	+1	-1/2	3	2	\checkmark
Λ_c^+	D^{-}	0	-1/2	1	0	\checkmark	Λ_c^+	D^+	+2	1/2	3	2	\checkmark
Λ_c^+	D^{*-}	0	-1/2	1	0	\checkmark	Λ_c^+	D^{*+}	+2	1/2	3	2	\checkmark
Σ_{c}^{++}	$\overline{D}{}^{0}$	+2	$^{3/2}$	1	0	\checkmark	Σ_c^{++}	D^0	+2	1/2	3	2	\times
Σ_{c}^{++}	D^{-}	+1	1/2	1	0	\checkmark	Σ_{c}^{++}	D^+	+3	3/2	3	2	×
Σ_{c}^{++}	D^{*-}	+1	1/2	1	0	×	Σ_{c}^{++}	D^{*+}	+3	3/2	3	2	\times
Σ_{c}^{0}	$\overline{D}{}^{0}$	0	-1/2	1	0	\checkmark	Σ_c^0	D^0	0	-3/2	3	2	\times
Σ_{c}^{0}	D^{-}	-1	-3/2	1	0	\checkmark	Σ_c^0	D^+	+1	-1/2	3	2	×
Σ_c^{0}	D^{*-}	-1	-3/2	1	0	×	Σ_c^{0}	D^{*+}	+1	-1/2	3	2	\times
Σ_{c}^{*++}	$\overline{D}{}^{0}$	+2	$\frac{3}{2}$	1	0	\checkmark	Σ_c^{*++}	D^0	+2	1/2	3	2	\checkmark
Σ_{c}^{*++}	D^{-}	+1	1/2	1	0	\checkmark	Σ_c^{*++}	D^+	+3	3/2	3	2	\checkmark
Σ_{c}^{*++}	D^{*-}	+1	1/2	1	0	\checkmark	Σ_c^{*++}	D^{*+}	+3	3/2	3	2	\times
Σ_{c}^{*0}	$\overline{D}{}^{0}$	0	-1/2	1	0	\checkmark	Σ_c^{*0}	D^0	0	-3/2	3	2	\checkmark
Σ_{c}^{*0}	D^-	-1	-3/2	1	0	\checkmark	Σ_c^{*0}	D^+	+1	-1/2	3	2	\checkmark
Σ_c^{*0}	D^{*-}	-1	-3/2	1	0	\checkmark	Σ_c^{*0}	D^{*+}	+1	-1/2	3	2	\times

*10 modes too statistically limited to set upper limits

Results

No significant signals are found

[arXiv: 2404.07131]

	or limits sot o	$p P = \frac{N_{P_c}}{N_{P_c}}$	$\mathcal{E}_{\Lambda_{\mathcal{C}}^{+}}$	$\sigma(P)$	P_c)× $\mathcal{B}(P_c$ -	$\rightarrow \Lambda_c^+ D(\pi)$	$) \times \mathcal{B}(D)$			
		$M \Lambda - \frac{1}{N_{\Lambda_c^+}} \lambda$	ε _{Pc}	,	0	$r(\Lambda_{\mathcal{C}}^+)$	*Con	nplete l	ist in par	er
Aller Aller Aller		Decay Mode	Width (MeV/c^2)	Signif Local	icance (σ) Corrected	Q -value (MeV/ c^2)	Signal Yield	UL (× 90% CL	(10^{-3}) 95% CL	
⁴ 10 ^{−1}			0	3.59	2.21	225	41.6 ± 12.6	3.95	4.19	
ocal	<u> </u>	$A^+ = D^-$	5	4.01	2.89	225	64.7 ± 17.4	4.43	4.69	
⁻¹ 10 ⁻²		$\Lambda_c \pi^+ D$	10	4.30	3.32	225	87.1 ± 21.6	4.64	4.85	
	36		15	4.50	3.62	225	108.2 ± 25.3	4.72	4.90	
10 ⁻³	50		0	3.36	1.90	257	38.1 ± 12.4	4.28	4.56	
		A + D -	5	3.86	2.71	253	62.1 ± 17.1	4.62	4.83	
10 ⁻⁴	IUCai	$\Lambda_c^+\pi^- D$	10	4.18	3.20	249	83.7 ± 21.2	4.72	4.88	
-	4ơ		15	4.44	3.56	249	103.5 ± 24.6	4.77	4.92	
10 ⁻⁵			0	3.18	1.58	245	41.9 ± 13.7	2.87	3.06	
0 200	400 600	$4 + + \overline{D}0$	5	3.73	2.53	245	67.6 ± 19.2	3.22	3.35	
$m(\Lambda_c^+\pi^+D^-)-m(\Lambda_c^+)$	$T_{c}^{+})-m(\pi^{+})-m(D^{-}) [MeV/c^{2}]$	$\Lambda_c^+\pi^+D^0$	10	4.06	3.06	245	91.6 ± 24.1	3.29	3.39	
~ F	· · · · · · · · · · · · · · · · · · ·		15	4.30	3.42	245	115.0 ± 28.5	3.30	3.40	
(6.5 MeV/c ²) 0.00 0.	Data Total fit Signal	✓ Pseudo	o-expe	rime	nts indi	cate ave	erage nun	nber o	f	

- Pseudo-experiments indicate average number of channels fluctuate above 3 σ is 7 ± 5, so we conclude the results are consistent with background-only
- Known P_c^+ states tested and yields all agree with 0 $\begin{array}{|} P_c(4312)^+ \\ P_c(4440)^+ \\ P_c(4457)^+ \\ P_c(4457)^+ \\ M = 4440 \, \text{MeV}, \Gamma = 10 \, \text{MeV} \\ M = 4440 \, \text{MeV}, \Gamma = 21 \, \text{MeV} \\ M = 4457.3 \, \text{MeV}, \Gamma = 6.4 \, \text{MeV} \\ \end{array}$

2024/4/27

M~4520.69 MeV

200

 $m(\Lambda_{c}^{+}\pi^{+}D^{-}) - m(\Lambda_{c}^{+}) - m(\pi^{+}) - m(D^{-}) [\text{MeV}/c^{2}]$

400

600

Candidates / $(6.5 \,\mathrm{MeV}/c^2)$

40 30

20

ccuud

$\chi_{c1}(3872)$ in hadronic collisions

 $\chi_{c1}(3872)$ in pPb

[arXiv: 2402.14975]

Central exclusive production (CEP)

 $X \text{ in } B^+ \rightarrow J/\psi \phi K^+$

[PRL 127 (2021) 082001]

 $X(2^{-})$				
X(4150)	4.8(8.7)	$4146 \pm 18 \pm 33$	$135\pm28{+59\atop-30}$	$2.0\pm 0.5{}^{+0.8}_{-1.0}$
 $X(1^{-})$				
X(4630)	5.5 (5.7)	$4626 \pm 16 {}^{+}_{-}{}^{18}_{10}$	$174 \pm 27 {}^{+ 134}_{- 73}$	$2.6\pm0.5{}^{+2.9}_{-1.5}$
 All $X(0^+)$				$20 \pm 5 {}^{+ 14}_{- 7}$
X(4500)	20(20)	$4474\pm3\pm3$	$77\pm6{}^{+10}_{-8}$	$5.6 \pm 0.7 {}^{+ 2.4}_{- 0.6}$
X(4700)	$17 \ (18)$	$4694 \pm 4 {}^{+ 16}_{- 3}$	$87\pm8{}^{+16}_{-6}$	$8.9 \pm 1.2 {}^{+ 4.9}_{- 1.4}$
$\mathrm{NR}_{J/\psi\phi}$	4.8(5.7)			$28 \pm 8 {}^{+19}_{-11}$
 All $X(1^+)$				$26 \pm 3 {+ 8 \atop -10}$
X(4140)	$13 \ (16)$	$4118 \pm 11 {}^{+ 19}_{- 36}$	$162 \pm 21 {}^{+ 24}_{- 49}$	$17 \pm 3 {}^{+ 19}_{- 6}$
X(4274)	18(18)	$4294 \pm 4 {}^{+ 3}_{- 6}$	$53\pm5\pm5$	$2.8\pm0.5{}^{+0.8}_{-0.4}$
 X(4685)	15 (15)	$4684 \pm 7 {}^{+13}_{-16}$	$126 \pm 15 {}^{+ 37}_{- 41}$	$7.2 \pm 1.0 {}^{+ 4.0}_{- 2.0}$
 All $Z_{cs}(1^+)$				$25 \pm 5 {}^{+ 11}_{- 12}$
$Z_{cs}(4000)$	$15 \ (16)$	$4003 \pm 6 { + \ 4 \atop - 14}$	$131\pm15\pm26$	$9.4 \pm 2.1 \pm 3.4$
 $Z_{cs}(4220)$	5.9(8.4)	$4216 \pm 24 {}^{+\bar{4}3}_{-30}$	$233 \pm 52 {}^{+ 97}_{- 73}$	$10 \pm 4^{+10}_{-7}$

2024/4/27

✓ Mass & width measurement: slightly higher mass of X(4500)

Parameter (MeV)	This Letter	Ref. [12]	
$M_{\chi_{c1}(4274)}$	$4298 \pm 6 \pm 9$	$4294 \pm 4^{+3}_{-6}$	
$\Gamma_{\chi_{c1}(4274)}$	$92^{+22}_{-18}\pm57$	$53 \pm 5 \pm 5$	
$M_{\chi_{c0}(4500)}$	$4512.5^{+6.0}_{-6.2}\pm 3.0$	$4474 \pm 3 \pm 3$	σ_{χ_c}
$\Gamma_{\chi_{c0}(4500)}$	$65^{+20}_{-16}\pm32$	$77 \pm 6^{+10}_{-8}$	

[PRL 127 (2021) 082001]

✓ Cross-section measurement:

$$\sigma_{\chi_{c1}(4140)} \times \mathcal{B}_{\text{eff}}^{\chi_{c1}(4140)} = (0.85 \pm 0.16 \pm 0.30) \text{ pb},$$

$$\sigma_{\chi_{c1}(4274)} \times \mathcal{B}_{\text{eff}}^{\chi_{c1}(4274)} = (0.77^{+0.14}_{-0.13} \pm 0.18) \text{ pb},$$

$$\sigma_{\chi_{c0}(4500)} \times \mathcal{B}_{\text{eff}}^{\chi_{c0}(4500)} = (0.44^{+0.09}_{-0.08} \pm 0.07) \text{ pb},$$

$$(4685)_{+\chi_{c0}(4700)} \times \mathcal{B}_{\text{eff}}^{\chi_{c1}(4685)_{+\chi_{c0}(4700)}} = (0.14^{+0.07}_{-0.06} \pm 0.06) \text{ pb},$$

$$\sigma_{NR} \times \mathcal{B}_{\text{eff}}^{NR} = (0.46^{+0.25}_{-0.19} \stackrel{+0.21}{_{-0.22}}) \text{ pb},$$

First exotic hadron measurement in CEP!

2024/4/27

Other exotics in CEP

 $\gg X \rightarrow J/\psi J/\psi$: CEP of charmonium pairs studied using 3 fb⁻¹ Run1 data

[J. Phys. G: Nucl. Part. Phys. 41 (2014) 115002]

$$egin{aligned} &\sigma^{J/\psi\,J/\psi} &= 58 \pm 10(\mathrm{stat}) \pm 6(\mathrm{syst})\,\mathrm{pb}, \ &\sigma^{J/\psi\,\psi(2S)} &= 63^{+27}_{-18}(\mathrm{stat}) \pm 10(\mathrm{syst})\,\mathrm{pb}, \ &\sigma^{\psi(2S)\psi(2S)} &< 237\,\mathrm{pb}, \ &\sigma^{\chi_{c0}\chi_{c0}} &< 69\,\mathrm{nb}, \ &\sigma^{\chi_{c1}\chi_{c1}} &< 45\,\mathrm{pb}, \ &\sigma^{\chi_{c2}\chi_{c2}} &< 141\,\mathrm{pb}, \end{aligned}$$

[Science Bulletin 65 (2020) 1983]

$\succ \chi_{c1}(3872)$? Other suggestions?

2024/4/27

Summary and prospects

LHCb keeps making important contributions to spectroscopy study

✓ Exotic heavy hadron:

search for pentaquark in open-charm modes; first measurement of $\chi_{c1}(3872)$ production in *p*Pb; first measurement of exotic hadron in CEP ...

✓ **Conventional heavy hadron:** new \mathcal{Z}_{b}^{**} and Ω_{c}^{**} states and more decays...

➢In Run 3, the upgraded LHCb detector and an improved software-only trigger system are implemented

Back up

$B^+ \rightarrow J/\psi \phi K^+$ amplitude analysis [PRL 127 (2021) 082001]

