

Relativistic three-body scattering and the $D^0D^{*+} - D^+D^{*0}$ system

Xu Zhang(张旭) Institute of Theoretical physics

Based on : Xu Zhang, arXiv : 2402.02151

第七届强子谱和强子结构研讨会 4月29,2024 成都

Outlines

- Relativistic three-body scattering
- ♦ The $D^0D^{*+} D^+D^{*0}$ scattering
- ♣ Analytic structure of the $D^0D^{*+} D^+D^{*0}$ scattering amplitude
- ★ The $D^0 D^0 \pi^+$ decay and the pole position

Three-body interaction

- Three-body bound state
 - Triton ${}^{3}H$
 - K⁻pp bound state
- Three-body decay
 - $\pi_1(1600) \rightarrow 3\pi$
 - $a_1(1260) \rightarrow 3\pi$
 - $a_1(1420) \xrightarrow{?} K\overline{K}\pi$
- Other three-body processes
 e.g. Λ(1405) in *Kd* scattering

Relativistic three-body scattering

Two-body subsystem interaction

R. Aaron at al., PR 174, 2022 (1968). R. Aaron et al., Modern three-hadron physics, 1977.

Three-body interaction

where $\tau = \frac{1}{\sigma - m^2 - \Sigma(\sigma) + i\varepsilon}$, *V* is the Bonn potential.

Relativistic three-body scattering

✤ Three-body interaction

R. Aaron at al., PR 174, 2022 (1968).R. Aaron et al., Modern three-hadron physics, 1977.

Unitarity relation

$$i\left[M^{\dagger}-M\right]=M^{\dagger}M$$

$$\Sigma \sim \int_0^\infty cof. \frac{k^2 dk}{\sigma - [\varpi_D(k) + \varpi_\pi(k)]^2 + i\varepsilon}$$

Multi-Riemann sheet

$$T(s,p',p) = V(s,p',p) + \int_0^{\Lambda} \frac{k^2 dk}{(2\pi)^3 2\varpi(k)} V(s,p',k) \tau(\sigma_k) T(s,k,p)$$

Two-body unitarity cut
Three-body unitarity cut

Relativistic three-body scattering

 $\begin{array}{l} p \rightarrow p \; e^{-i\theta} \\ p' \rightarrow p' \; e^{-i\theta} \end{array}$

W. Glockle, PRC 18, 564 (1978).

The analytic region is extended to the unphysical region.

DD^{*} scattering

* π -exchange

Three-body cut

PRD 105, 014024 (2022).

L. Qiu, C. Gong, and Q. Zhao, PRD 109, 076016 (2024).

J.-Z. Wang, Z.-Y. Lin, and S.-L. Zhu, PRD 109, L071505 (2024).

M. Schmidt, M. Jansen, and H. W. Hammer, PRD 98, 014032 (2018).

DD^{*} scattering

Scattering equation $T(s, p', p) = V(s, p', p) + \int_{0}^{\Lambda} \frac{k^{2} dk}{(2\pi)^{3} 2\varpi(k)} V(s, p', k) \tau(\sigma_{k}) T(s, k, p)$ $\sigma_{k} = s - 2\sqrt{s}\omega_{D}(k) + m_{D}^{2}$

The interaction potential (including the π,σ , ρ and $\omega\text{-exchange}$).

The isospin factors

	Туре-А			Туре-В				
	$ ho^0$	$ ho^\pm$	ω	$ ho^0$	$ ho^\pm$	ω	π^0	π^{\pm}
$1 \rightarrow 1$	1 / 2		1 / 2		1			1
2→ 2	1/2		-1/2		T			1
1→ 2		-1		-1/2		1/2	-1/2	

Analytic continuation

- ✤ Self-energy
 - First Riemann sheet

$$\Sigma \sim \int_0^\infty cof. \ \frac{k^2 \ dk}{\sigma - [\varpi_D(k) + \ \varpi_\pi(k) \]^2 + i\varepsilon}$$

Integral contour

 $\sqrt{\sigma} = (m_D + m_\pi) + r e^{i\theta}$

Analytic continuation

D^{*+} pole position

Analytic continuation

$$T(s,p',p) = V(s,p',p) + \int_0^{\Lambda} \frac{k^2 dk}{(2\pi)^3 2\varpi(k)} V(s,p',k) \tau(\sigma_k) T(s,k,p)$$

- \clubsuit Across the three-body cuts
- Contour mapped in the $\sqrt{\sigma}$ plane.

• The cut structure in complex \sqrt{s} plane

• The cut structure after contour deformation

Solution for real momentum

Three-body singularities

X. Zhang, H.-L. Fu, F.-K. Guo, and H.-W. Hammer, PRC 108, 044304

$$V \sim \int_{-1}^{1} \frac{dx}{\sqrt{s} - [\omega_D(p') + \omega_D(p) + \omega_\pi(q)] + i\varepsilon} \longrightarrow \text{Zero}$$
$$x = \vec{p} \ \vec{p}'/pp'$$

Contour deformation

E. Schmid, H. Ziegelmann, The Quantum Mechanical Three-Body Problem

Three-body $D^0 D^0 \pi^+$ dacay

The mass distribution

$$\frac{d\Gamma(\sqrt{s})}{d\sqrt{s}} = \int \frac{1}{(2\pi)^5} \frac{1}{16s} \left(\frac{1}{3} \sum_{\Lambda} |\sum_{\lambda} M_{\Lambda\lambda}(\vec{q}_1, \vec{q}_2, \vec{q}_3)|^2 \right) q_3^* q_1 dm_{23} d\Omega_3^* d\Omega_1$$

Decay amplitude

$$M_{\Lambda\lambda}(\vec{q}_1, \vec{q}_2, \vec{q}_3) = \frac{\mathcal{F}}{\sqrt{2}} \left[\sqrt{\frac{3}{4\pi}} D_{\Lambda\lambda}^{1*}(\phi_1, \theta_1, 0) M_L(q_1) U_{L\lambda} v_\lambda(\vec{q}_2, \vec{q}_3) + \vec{q}_1 \leftrightarrow \vec{q}_2 \right]$$

\diamond Short-distance interaction is absorbed into \mathcal{F} .

Numerical results

Cut off Λ and the pole positions from fitting of the $D^0D^0\pi^+$ line shape obtained by the LHCb Collaboration.

Scheme	$\chi^2/d. o. f$	∕l GeV	$\sqrt{s_{pole}^{thr}}$ keV
Ι	18.11/(20-1) = 0.95	0.4551 ± 0.0018	$-332^{+37}_{-36} - i(18 \pm 1)$
II	14.47/(20-1) = 0.76	0.3701 ± 0.0017	$-351^{+37}_{-35} - i(28 \pm 1)$

Fitting results of the $D^0D^0\pi^+$ line shapes before (left panel) and after (right panel) convolution with the energy resolution function.

Summary

- ✤ The analytic continuation of the coupled-channel $D^0D^{*+} D^+D^{*0}$ scattering amplitude is studied.
- * The π -exchange term has a signification on the pole position of the T_{cc}^+ . Including the π -exchange term, the width of T_{cc}^+ will be increased by a factor of 1.5.
- ★ We will extend our framework to calculate $3\pi K\overline{K}\pi$ coupled system.

Thank you for your attention!