Quantum Simulations and Quantum Devices

N-phonon bundle emission via the anti-Stokes process

Xin-You Lü School of physics, HUST, Wuhan xinyoulu@hust.edu.cn

Collaborators

Prof. Ying Wu **RIKEN**

Prof. Franco Nori

Qian Bin

UW

HUST

Prof. Fabrice P. Laussy

Outline

1) Background-bundle emission

2) Anti-Stokes resonance induced Super Rabi oscillation

3) N-phonon bundle emission with high purity

4) Conclusions

Single photon emission

Single photon emission

Applications in quantum information science

J. L. O'Brien, A. Furusawa and J. Vučković, Nature Photonics 3, 687–695 (2009)

Purcell effect enhancing emission rate

M. D. Eisaman et al., Rev. Sci. Instrum. 82, 071101 (2011)

Purcell effect enhancing emission rate

$$F_p = \frac{3}{4\pi^2} \left(\frac{\lambda_{free}}{n}\right)^3 \left(\frac{Q}{V}\right) \qquad \lambda_{\frac{1}{2}}$$

 λ_{free} : Wavelength Q: Quality factor n: Refractive index V: Mode volume

Density of final states

Cavity: $\rho_c = \frac{1}{\Delta \nu V}$

Free space: $\rho_f = \frac{8\pi n^3 \nu^2}{c^3}$

Fermi's golden rule

$$\rho_c/\rho_f = \frac{c^3}{8\pi n^3 \nu^2} \frac{Q}{\nu V} = \frac{1}{8\pi} \left(\frac{\lambda_{free}}{n}\right)^3 \left(\frac{Q}{V}\right)$$

M. D. Eisaman et al., Rev. Sci. Instrum. 82, 071101 (2011)

From single-photon emission to N-photon bundle emission

C. S. Munoz et al., Nat. Photonics 8, 550 (2014); Y. Chang et al., Phys. Rev. Lett. 117, 203602 (2016)

From single-photon emission to N-photon bundle emission

Expanding Glauber's theory by replacing the **photon** with **bundle** of N photons

$$g_N^{(n)}(t_1, \dots, t_n) = \frac{\langle \mathcal{T}_{-}\{\prod_{i=1}^n a^{\dagger N}(t_i)\} \mathcal{T}_{+}\{\prod_{i=1}^n a^N(t_i)\}\rangle}{\prod_{i=1}^n \langle a^{\dagger N} a^N \rangle(t_i)} \quad \mathcal{T}_{ex} \gg \mathcal{T}_{in}$$

 $g_N^{(2)}(\tau) = \frac{\langle a^{\dagger N}(0)a^{\dagger N}(\tau)a^N(\tau)a^N(0)\rangle}{\langle (a^{\dagger N}a^N)(0)\rangle\langle (a^{\dagger N}a^N)(\tau)\rangle}$

C. S. Munoz et al., Nat. Photonics 8, 550 (2014); Y. Chang et al., Phys. Rev. Lett. 117, 203602 (2016)

From single-photon emission to N-photon bundle emission

Expanding Glauber's theory by replacing the **photon** with **bundle** of N photons

$$g_{N}^{(n)}(t_{1},...,t_{n}) = \frac{\langle \mathcal{T}_{-}\{\prod_{i=1}^{n} a^{\dagger N}(t_{i})\} \mathcal{T}_{+}\{\prod_{i=1}^{n} a^{N}(t_{i})\}\rangle}{\prod_{i=1}^{n} \langle a^{\dagger N} a^{N} \rangle(t_{i})} \qquad \mathcal{T}_{ex} \gg \mathcal{T}_{in}$$

$$g_{N}^{(2)}(\tau) = \frac{\langle a^{\dagger N}(0)a^{\dagger N}(\tau)a^{N}(\tau)a^{N}(0)\rangle}{\langle (a^{\dagger N}a^{N})(\tau) \rangle} \qquad \stackrel{N=1}{\longrightarrow} g^{(2)}(\tau) = \frac{\langle a^{\dagger}(0)a^{\dagger}(\tau)a(\tau)a(0)\rangle}{\langle (a^{\dagger a})(\tau) \rangle\langle (a^{\dagger a})(\tau) \rangle}$$

C. S. Munoz et al., Nat. Photonics 8, 550 (2014); Y. Chang et al., Phys. Rev. Lett. 117, 203602 (2016)

 $H = \omega_a a^{\dagger} a + \omega_{\sigma} \sigma^{\dagger} \sigma + g(a^{\dagger} \sigma + \sigma^{\dagger} a) + \Omega(\sigma^{\dagger} e^{-i\omega_L} + \sigma e^{i\omega_L})$

N-photon bundle emission-antibunching in bad-cavity limit

 $H = g_p a_p^{\dagger} |g\rangle \langle e| + \Omega_s |m_2\rangle \langle m_1| + g_s a_s^{\dagger} (|m_2\rangle \langle e| + |g\rangle \langle m_1|) + H.c.$

Y. Chang, A. G.-Tudela, C. S. Muñoz, C. N.-Benlloch, and T. Shi, Phys. Rev. Lett. 117, 203602 (2016)

N-photon bundle emission-antibunching in bad-cavity limit

Y. Chang, A. G.-Tudela, C. S. Muñoz, C. N.-Benlloch, and T. Shi, Phys. Rev. Lett. 117, 203602 (2016)

From photon to phonon

On-Chip Communication

C. Kuzyk and H. L. Wang, Phys. Rev. X 8, 041027 (2018)

Phonon-photon Hybrid networks

M. J. A. Schuetz et al., Phys. Rev. X 5, 031031 (2015); G. Calajó et al., Phys. Rev. A 99, 053852 (2019)

Sensing and imaging

Nanophononic devices

H. Han et al., *Phys. Rev. Lett.* 114, 145501 (2015); *A. J. Kent et al.*, *Phys. Rev. Lett.* 96, 215504 (2006); *R. Xie et al.*, *Adv. Funct. Mater.* 21, 1602 (2011); *C. W. Chang et al.*, *Science* 314, 1121 (2006)

Outline

1) Background-bundle emission

2) Anti-Stokes resonance induced Super Rabi oscillation

3) N-phonon bundle emission with high purity

4) Conclusions

N-phonon Bundle Emission via the Anti-Stokes Process

 $H = \omega_b b^{\dagger} b + \omega_\sigma \sigma^+ \sigma + \lambda \sigma^+ \sigma (b^{\dagger} + b) + \Omega(e^{i\omega_L t} \sigma + h.c.)$

Q. Bin, Xin-You Lü*, F. P. Laussy, F. Nori, and Y. Wu*, arXiv:1907.12714

N-phonon Bundle Emission via the Anti-Stokes Process

 $H = \omega_b b^{\dagger} b + \omega_\sigma \sigma^+ \sigma + \lambda \sigma^+ \sigma (b^{\dagger} + b) + \Omega(e^{i\omega_L t} \sigma + h.c.)$

Anti-Stokes resonance \implies Super Rabi oscillation $|0,\downarrow\rangle \leftrightarrow |n,\uparrow\rangle$

Q. Bin, Xin-You Lü*, F. P. Laussy, F. Nori, and Y. Wu*, arXiv:1907.12714

N-phonon associated Anti-Stokes resonances

 $|n,\nu\rangle, |\tilde{n},c\rangle = D^{\dagger}|n,c\rangle$ $D = \exp[(\lambda/\omega_b)\sigma^{\dagger}\sigma(b^{\dagger}-b)]$ $\tilde{\omega}_{\sigma} = \omega_{\sigma} - \lambda^2/\omega_b$

N-phonon associated Anti-Stokes resonances

Super-Rabi Oscillations

Different from the JC regime

 $H = \omega_b b^{\dagger} b + \omega_{\sigma} \sigma^+ \sigma + \lambda \sigma^+ \sigma (b^{\dagger} + b) + \Omega(e^{i\omega_L t} \sigma + h.c.)$ $H = \omega_b b^{\dagger} b + \omega_{\sigma} \sigma^+ \sigma + g(b^{\dagger} \sigma + b\sigma^+) + \Omega(e^{i\omega_L t} \sigma + h.c.)$

Super Rabi Oscillation

Proper Dissipation Channel N-phonon bundle emission

Outline

1) Background-bundle emission

2) Anti-Stokes resonance induced Super Rabi oscillation

3) N-phonon bundle emission with high purity

4) Conclusions

Dissipation dynamics with master equation

$$\frac{d\rho}{dt} = -i[H,\rho] + \kappa \mathcal{L}[b] + \gamma \mathcal{L}[\sigma]$$

 $\mathcal{L}[O] = (2O\rho O^{\dagger} - \rho O^{\dagger} O - O^{\dagger} O \rho)/2$

Cavity decay rate: κ

QD decay rate: γ

Dissipation dynamics with master equation

$$\frac{d\rho}{dt} = -i[H,\rho] + \kappa \mathcal{L}[b] + \gamma \mathcal{L}[\sigma] \qquad \text{Cavity decay rate: } \kappa$$

$$\mathcal{L}[O] = (2O\rho O^{\dagger} - \rho O^{\dagger} O - O^{\dagger} O \rho)/2$$

Time

 $au_{in} \sim 1/\kappa \quad au_{ex} \sim 1/\gamma \quad \kappa \gg \gamma$

QD decay rate:
$$\gamma$$

$$g^{(n)} = \frac{\langle b^{\dagger n} b^n \rangle}{\langle b^{\dagger} b \rangle^n}$$

$$g_N^{(n)}(t_1, ..., t_n) = \frac{\langle \mathcal{T}_{-} \{ \Pi_{i=1}^n b^{\dagger N}(t_i) \} \mathcal{T}_{+} \{ \Pi_{i=1}^n b^N(t_i) \} \rangle}{\prod_{i=1}^n \langle b^{\dagger N} b^N \rangle(t_i)}$$

Bundles of strongly correlated phonons

 $g^{(n)} = \frac{\langle b^{\dagger n} b^n \rangle}{\langle b^{\dagger} b \rangle^n}$

Strong bunching at *n*-phonon associated anti-Stokes resonances (a) $\Delta = -n\omega_b$ (b) $\Delta = \Delta_n(\lambda)$ (c) $\Delta = \Delta_n(\Omega)$

Bundles of strongly correlated phonons

 $=rac{\langle b^{\dagger n}b^n
angle}{\langle b^{\dagger}b
angle^n}$

is robust to varying system parameters

Strong bunching at *n*-phonon associated anti-Stokes resonances

(a)
$$\Delta = -n\omega_b$$
 (b) $\Delta = \Delta_n(\lambda)$ (c) $\Delta = \Delta_n(\Omega)$

Statistic characteristics of emitted *n*-phonon bundles

Valid regime: $\tau > 1/\kappa$

Statistic characteristics of emitted *n*-phonon bundles

Valid regime: $\tau > 1/\kappa$

Bunching $\xrightarrow{\gamma}$ Uncorrelated $\xrightarrow{\gamma}$ Antibunching

Statistic characteristics of emitted *n*-phonon bundles

Valid regime: $\tau > 1/\kappa$

Two-phonon laser

Bunching $\xrightarrow{\gamma}$ Uncorrelated $\xrightarrow{\gamma}$ Antibunching $g^{(2)}(\tau) \approx 1, g^{(3)}(\tau_1, \tau_2) \approx 1$

N-phonon bundle emission- dynamics trajectories

 $c_1|0,\nu\rangle + c_2|n,c\rangle$

Single cascade-emission process of two-phonon

Initially: $P_2 > 30\%, P_1 < 0.1\%$

 $\tau_{in} < 1/\kappa < \tau_{ex} \approx 1/\gamma$

Emit a first phonon: $P_1 \approx 1$ $au_{in} < 1/\kappa$ Emit the second phonon: $P_{0c} \approx 1$

Photon emission QD flip $|0,c\rangle \rightarrow |0,\nu\rangle$

Optical heralded two-phonon bundle emission Two-phonon emission rates $\approx 1.8 \times 10^9/s$

Increasing λ can enhance (decrease) the Π_3 (Π_2) by enhancing the highorder phonon sideband processes.

The purity is less robust for larger *n* $\Pi_4 > 95\%$, $\Pi_5 > 80\%$ with feasible experimental parameter

The mechanism deciding high purity for large *n*

Anti-Stokes resonances

Frequency differences between the n and (n+1)-phonon resonances are almost independent of n

Even for large *n*, the optimum pumping frequency can be well resolved when $\omega_b \gg \kappa, \gamma$

Electron-phonon coupling

The mechanism of previous work

JC coupling

Frequency differences between the *n* and (n+1)photon resonances becomes small as increasing *n*

The mechanism of previous work

Frequency differences between the *n* and (*n*+1) photon resonances becomes small as increasing *n* Advantages and applications of our work

The mechanism of anti-Stokes processes

Expands the theory of *n*-quanta bundle emission Broadens the family of anti-Stokes processes Advantages and applications of our work

The mechanism of anti-Stokes processes

Expands the theory of *n*-quanta bundle emission

Broadens the family of anti-Stokes processes

Mixed phonon-photon emission

Optical heralded phonon laser/guns

On chip quantum communications and metrology

Acknowledgments

国家重点研发计划-量子调控与量子信息

QuTiP http://qutip.org/

Quantum Toolbox in Python

Xin-You thanks Dr. Carlos Sánchez Muñoz

Fabrice P. Laussy thanks Dr. E. del Valle

Franco Nori thanks

RIKEN-AIST Challenge Research Fund

Conclusions

- We introduced the basic knowledge of *n*-photon bundle emission.
- We proposed *n*-phonon bundle emission via anti-Stokes process.
- ➤ We discussed the purity of *n*-phonon bundle emission and the corresponding applications.

Thanks for your attention!

