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Quantum Simulations

If you want to make a simulation of nature, 
you’d better make it quantum mechanical, 
and by golly it’s a wonderful problem, 
because it does not look so easy. 

---Richard Feynman, 1982

-conceptual perspectives -computational perspectives 

Ø Novel order and phenomena  

Ø Unconventional couplings

Ø Unprecedented functionality 

Ø Precise phase diagram computation

Ø Solving difficult problems 

Ø Assisting material/drug design  



Optimal Quantum Simulations

q Minimizing simulation time 

q Precise calibration of the platform 

q Improving the robustness against noise 

Using quantum simulations for computational purposes 

Fundamentally related to computational complexity 

To make best use of quantum “advantage” or “supremacy”



Towards Universal Quantum Simulations
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New physics beyond!!



Quantum Adiabatic Doping

Reference: Jian Lin, Jue Nan, Yuchen Luo, Xiaopeng Li, PRL XXX, XXXX (2019) 



Maglev trains 

M. Greiner et al., Nature (2017)
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Numerical Challenge: 

Atomic Simulations: 

• Exponential Hilbert space and sign problem; Quantum Monte Carlo simulations fail    
• Gapless excitations; Tensor network methods not efficient 

• Cooling, Heating problem, finite lifetime, 
calibration error, non-universal 

Rabl, Daley, Cirac, Zoller, Phys. Rev. Lett (2003) 
Greif, Esslinger et al., Science 340, 1307 (2013)
Hart, Hulet et al., Nature 519, 211 (2015)
Mazurenko, Greiner et al., Nature 545, 462 (2017)  

Status of OLE



Adiabatic doping with incommensurate
optical lattices

Band insulator with large gap

Intermediate incommensurate lattice

Doped lattice
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Filling: (𝟐𝝂)	particle per site 

[Jian Lin, Jue Nan, Xingcan Yao, Xiaopeng Li, PRL XXX, XXXX (2019)]

Half-filling/commensurate case: Trebst, Schollwock, Troyer, Zoller, PRL 96, 250402



Reaching adiabaticity in 1d
[Jian Lin, Jue Nan, Xingcan Yao, Xiaopeng Li, PRL XXX, XXXX (2019)]



Reaching adiabaticity in 1d
[Jian Lin, Jue Nan, Xingcan Yao, Xiaopeng Li, PRL XXX, XXXX (2019)]
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Reaching adiabaticity in 2d
[Jian Lin, Jue Nan, Xingcan Yao, Xiaopeng Li, PRL XXX, XXXX (2019)]
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Interaction comes to rescue
[Jian Lin, Jue Nan, Xingcan Yao, Xiaopeng Li, PRL XXX, XXXX (2019)]

Interactions make the adiabatic evolution much more efficient
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Killing localization leads to an exponential speed up in the quantum simulation



Machine Learning Quantum Algorithms 

Reference: Jian Lin, Zhong Yuan Lai, Xiaopeng Li, arXiv 1812.10797 (2018) 



Recent advances in deep learning

Image/Speech 
Recognition 

Language 
Translation 

Game/Strategy 
making 

2012
-Beat All Other Image 
Classification Methods 

2014

2016

2016

2019

-Human-level Image 
Classification

-Human-level Translator 
on Isolated Sentences 

-Superhuman in Go

-Human-level in Strategy 
Game



Motivation: automated algorithm design 
v Algorithm configuration

v Algorithm selection 

• SATzilla (Portfolio-based algorithm selection for SAT) 
[Lin Xu, F. Hutter, H.H. Hoos, K. Leyton-Brown, J. Artificial Intelligence (2007)]

• Claspfolio (Portolio-based answer-set programming solver )
[H. Hoos, M. Lindauer, T. Schaub, arXiv: 1405.1520 (2014)]

• SATEinstein (Portfolio-based algorithm configuration for SAT) 
[A.R. Khudabukhsch et al., In Proc. IJCAI, 517-524 (2009) ]

• Hydra (Automatically configuring algorithms for portfolio-based selection)
[L. Xu et al., AAAI conference on artificial intelligence (2010)]

• ISAC (Instance specific algorithm configuration) 
[S. Kadioglu et al., ECAI 751-756 (2010)]

Our goal 
AutoQA for development of quantum application design with less expert knowledge 

Super Human intelligence algorithm design? 



In adiabatic quantum computing, the Hamiltonian can be written as a 
time-dependent combination of initial and final Hamiltonians, 

Quantum Adiabatic Algorithm

𝐻 = 𝑠(𝑡/𝑇)𝐻A + (1 − 𝑠(𝑡/𝑇))𝐻B

Under this framework, the 
quantum algorithm design 
corresponds to the optimization 
of the Hamiltonian path
(auto algorithm configuration) 

Different choices for the 
path could lead to algorithms 
having dramatically different 
performance and even in the 
complexity scaling.

𝑠(𝑡/𝑇)
path

References: Farhi, E. et al. Science 292, 472–475 (2001); Roland, J. et al., Phys. Rev. A 65, 042308 (2002) 



Example: Grover Search
Problem: search x which satisfies a certain criterion, say f(x) = 1

But a linear quantum adiabatic algorithm has O(N) complexity 

𝑈C ⟩𝑥 ⟩𝑦 = | ⟩𝑥 | ⟩𝑦⨁𝑓(𝑥)Oracle: 

*figure from website



Reinforcement-learning adiabatic algorithm

The form of the path :

𝑠
𝑡
𝑇 =

𝑡
𝑇 + ∑

JK*

L
𝑏(J)sin(

𝑚𝜋𝑡
𝑇 )

AI agent exploration:

𝑎(R)(𝐛) = 𝐛

[𝑎(&JU*)(𝐛)]W = 𝑏W − Δ𝛿JW,

[𝑎(&J)(𝐛)]W = 𝑏W + Δ𝛿JW

𝑚 ≥ 1

Take actions to path state Sample problem instances and average 
over certain number of instances

Problems of our interest: hard to solve, but easy to check, e.g., Grover search, 3-SAT

Reward:
problem solved1

0 problem unsolved

[Jian Lin, Zhong Yuan Lai, Xiaopeng Li, arXiv 1812.10797 (2018)]



Modified reinforcement learning

Action choose processing
𝜖-greedy strategy

Agent with probability 
𝜖

1 − 𝜖

choose corresponding action with max Q 

choose action randomly 

Modified simulation annealing

Acceptance probability function:

𝑃(𝑒, 𝑇) = exp(
𝑒
𝑇
)

𝑒 =
𝑄(𝐛b|𝑎b, 𝑏c + ΔR) − 𝑄(𝐛|𝑎)

ΔR
∗ Δ, Δ ∈ [0,0.01]

[Jian Lin, Zhong Yuan Lai, Xiaopeng Li, arXiv 1812.10797 (2018)]



Performance on Grover search

Easy Grover Search 
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Roland, J. et al., Phys. Rev. A 65, 042308 (2002) 



Results for Grover search

Easy Grover Search
[Jian Lin, Zhong Yuan Lai, Xiaopeng Li, arXiv: 1812.10797 (2018)]

𝑡/𝑇



[Jian Lin, Zhong Yuan Lai, Xiaopeng Li, arXiv: 1812.10797 (2018)]

Performance on Hard Grover search
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[Jian Lin, Zhong Yuan Lai, Xiaopeng Li, arXiv: 1812.10797 (2018)]

Scalability



3-SAT problem 

Formal definition:

𝐶 = 𝑥*⋁𝑥&⋁𝑥j , ¬𝑥*⋁𝑥&⋁𝑥j , or …

Question: 
Can you color the teddy bears such 
that every alien is holding at least 
one blue hand? 

Ø All SAT problems 

Ø Max-Cut problem 

Ø Travel salesman problem 

Ø …
To demonstrate near-term 
quantum supremacy? 

Hamiltonian encoding: 

A sequence to satisfy 𝐶*⋀𝐶&⋀𝐶j⋀𝐶m⋀Co…

[*from https://math.stackexchange.com ]



Performance on 3-SAT 

3-SAT Problem
[Jian Lin, Zhong Yuan Lai, Xiaopeng Li, arXiv: 1812.10797 (2018)]

RL-design

Linear



Summary & Outlook

Ø Quantum adiabatic doping with incommensurate optical 
lattices 

Ø Machine learning enabled automated quantum algorithm 
design (many open questions) 

Ø Application of algorithm design to quantum simulations

!"#$[& ' ]

Adiabatic Path Update 

Success

Reward
Learning AgentAQC

Jian Lin, Jue Nan et al., PRL XXX, XXXX (2019)  Jian Lin, Zhong-Yuan Lai et al., arXiv: 1812.10797 (2019)  


