The new physics implication for the recent Belle II observation of $B^+ \to K^+ \nu \bar{\nu}$

- X.G. He, XDM, G. Valencia, 2209.05223
- X.G. He, XDM, G. Valencia, 2309.12741
- X.G. He, XDM, M. A. Schmidt, G. Valencia, R. R. Volkas, 2403.12485

- 华南师范大学
 - 马小东
- 第五届粒子物理前沿研讨会
 - 2024.04.12-04.16, 深圳

- Introduction
- New contribution to $B^+ \to K^+ \nu \bar{\nu}$ from heavy mediator
- New decay modes involving new light states
- A viable scalar DM model
- Summary

- SM uncertainty is well-controlled, mainly from hadronic form factor
- SM prediction: $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})_{SM} = (4.43 \pm 0.31) \times 10^{-6}$
- $b \rightarrow s + \text{missing}$ are cleanest modes to search for new physics

 $B \rightarrow K^{(*)} \nu \bar{\nu} in the SM$

Tree-level contribution is forbidden, suppressed by GIM mechanism at loop-level

2301.06990 [hep-ph]

Recent Belle II result

Inclusive Tag analysis (ITA) more sensitive

- Combination: $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})_{exp} = (2.3 \pm 0.7) \times 10^{-5}$
- Combine Belle II 2021 data, $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})^{\text{ave}}_{\text{exp}} = (1.3 \pm 0.4) \times 10^{-5}$
- 2.7 σ higher than SM prediction \Rightarrow New physics possibility

Hadronic Tag analysis (HTA) more conventional

Belle-II Collaboration 2311.14647

Experimental results vs SM prediction

$$R_{K}^{\nu\nu} = \frac{\mathscr{B}(B^{+} \to K^{+}\nu\bar{\nu})_{exp}}{\mathscr{B}(B^{+} \to K^{+}\nu\bar{\nu})_{SM}} = 5.3 \pm 1.7.$$
$$R_{K^{*}}^{\nu\nu} = \frac{\mathscr{B}(B \to K^{*}\nu\bar{\nu})}{\mathscr{B}(B \to K^{*}\nu\bar{\nu})_{SM}} \leq 2.7 \text{ or } 1.9.$$

• 2.7 \leftarrow combination of the charged and neutral modes

• 1.9
$$\Leftarrow \mathscr{B}(B^0 \to K^{0*} \nu \bar{\nu}) \le 1.8 \times 10^{-5}$$

The predictions for the charged and neutral modes are the same in many models

Ratios of experimental observation over SM prediction could bypass NP hidden in CKM

(90% CL)Belle, 1702.03224

NP implication

- * New contributions to $B \rightarrow K^{(*)} + \nu \bar{\nu}$
 - Lepton flavor universality (LFU): same coupling to $\nu_e \bar{\nu}_e, \nu_\mu \bar{\nu}_\mu, \nu_\tau \bar{\nu}_\tau$,

 - Lepton flavor conservation without universality: different coupling to $\nu_e \bar{\nu}_e, \nu_\mu \bar{\nu}_\mu, \nu_\tau \bar{\nu}_\tau$, • Lepton flavor violation (LFV): $\nu_i \bar{\nu}_i$ with $i \neq j$ are open

* New invisible particles in the final state

- Sterile neutrino-like particle : $B \rightarrow K^{(*)} + \nu N, B \rightarrow K^{(*)} + N\overline{N}$ • 2-body with dark scalar: $B \rightarrow K^{(*)} + \phi(S)[X]$
- DM/ dark sector particles: $B \rightarrow K^{(*)} + DM + DM$

New heavy mediators in the tree/loop, or new invisible particles in the final state

 $\bigstar B \to K^{(*)} + \nu_i \bar{\nu}_i$

- P. Athron, R. Martinez, C. Sierra, 2308.13426
- L. Allwicher, D. Becirevic, G. Piazza, S. Rosauro-Alcaraz, O. Sumensari, 2309.02246
- R. Bause, H. Gisbert, G. Hiller, 2309.00075
- X.G. He, **XDM**, G. Valencia, 2309.12741
- C.H. Chen, C.W. Chiang, 2309.12904, 2403.02897
- F.Z. Chen, Q.Y. Wen, F.R. Xu, 2401.11552

$\bigstar B \to K^{(*)} + \nu N, B \to K^{(*)} + N\bar{N}$

- T. Felkl, A. Giri, R. Mohanta, M. A. Schmidt, 2309.02940
- X.G. He, XDM, G. Valencia, 2309.12741
- H. K. Dreiner, J. Y. Gunther, Z. S. Wang, 2309.03727

$B \rightarrow K^{(*)} + DM + DM$

- X.G. He, XDM, G. Valencia, 2209.05223, 2309.12741
- X.G. He, XDM, M. A. Schmidt, G. Valencia, R. R. Volkas, 2403.12485

$\bigstar B \to K^{(*)} + \phi(S)[X]$

- M. Abdughani, Y. Reyimuaji. 2309.03706
- A. Berezhnoy, D. Melikhov, 2309.17191
- A. Datta, D. Marfatia, 2310.15136
- A. Datta, D. Marfatia, L. Mukherjee, 2310.15136
- W. Altmannshofer, A. Crivellin, H. Haigh, G. Inguglia, J. M. Camalich, 2311.14629
- E. Gabrielli, L. Marzola, K. Müürsepp, M. Raidal, 2402.05901
- T. Li, Z.N. Qian, M. A. Schmidt, M. Yuan, 2402.14232
- B.F. Hou, X.Q. Li, M. Shen, Y.D. Yang, X.B. Yuan, 2402.19208
- D. Marzocca, M. Nardecchia, A. Stanzione, C. Toni 2404.06533
- P. D. Bolton, S. Fajfer, J. F. Kamenik, M. Novoa-Brunet 2403.13887

- D. Mckeen, J. N. Ng, D. Tuckler, 2312.00982
- K. Fridell, M. Ghosh, T. Okui, K. Tobioka, 2312.12507
- S.Y. Ho, J. Kim, P. Ko, 2401.10112

EFT vs model interpretation

***** EFTs

- SMEFT, ν SMEFT
- LEFT
- DMEFT

 $\mathcal{O}_{lq}^{(1)} = (\bar{L}\gamma^{\mu}L)(\bar{Q}\gamma_{\mu}Q)$ $\mathcal{O}_{la}^{(3)} = (\bar{L}\sigma^{I}\gamma^{\mu}L)(\bar{Q}\sigma^{I}\gamma_{\mu}Q)$ $\mathcal{O}_{ld} = (\bar{L}\gamma^{\mu}L)(\bar{d}\gamma_{\mu}d)$

B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek, 1008.4884

***** UV models

- Non-universal U(1)' models: $U(1)_{L_{\mu}-L_{\tau'}}$ etc
- Leptoquarks: $S_0(\bar{3},1,1/3)$, $\tilde{S}_{1/2}(3,2,1/6)$, $S_1(\bar{3},3,1/3)$, $V_{1/2}(\bar{3},2,5/6)$, $V_1(3,3,2/3)$
- R-parity violating SUSY,
- Scalar mediator coupling to DM particles,
- DM models ullet

 $\mathcal{O}^{QN} = (\bar{Q}\gamma_{\mu}Q)(\bar{N}\gamma^{\mu}N)$ $\mathcal{O}^{dN} = (\bar{d}\gamma_{\mu}d)(\bar{N}\gamma^{\mu}N)$ $\mathcal{O}^{LNQd} = (\bar{L}^{\alpha}N)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}d)$ $\mathcal{O}^{LNQd,\mathrm{T}} = (\bar{L}^{\alpha}\sigma_{\mu\nu}N)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}\sigma^{\mu\nu}d)$

Y. Liao, XDM, 1612.04527

Other related modes or anomalies

* Modes give strong constraints

- • R_K, R_{K^*} in $b \to s\ell^+\ell^-, \ell^- = e, \mu$
- Neutral meson mixing: $B_s \bar{B}_s, B_d \bar{B}_s$
- $\bullet B_{s} \to \mu^{+}\mu^{-}$
- $B \rightarrow K^* + inv$.
- $\bullet B_{\rm s} \to inv$.

* Other anomalies could be also included:

- The excess of electron-like events in the MiniBoone
- Muon g-2

$$\bar{B}_d, K^0 - \bar{K}^0$$

- Strong interplay with $B \rightarrow K + inv$. Can be used to test some scenarios in the future measurements

• $R(D), R(D^*)$ anomalies in $b \to c\tau\nu$: $R_D/R_D^{SM} = 1.19(10), R_{D^*}/R_{D^*}^{SM} = 1.15(5)$ HFAG & HFLAV, 2206.07501

New contributions to $b \rightarrow s \nu \bar{\nu}$ with heavy new mediators

The starting point is the WEF or LEFT:

$$\mathcal{H}_{\rm NP} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_{ij} \left(C_L^{ij} \mathcal{O}_L^{ij} + C_R^{ij} \mathcal{O}_R^{ij} \right) + \text{h.c.}, \qquad \begin{array}{l} \mathcal{O}_L^{ij} = (\bar{s}\gamma_\mu P_L d) (\bar{\nu}_i \gamma^\mu P_L d)$$

The

$$\mathcal{H}_{\rm NP} = -\frac{4G_F}{\sqrt{2}} V_{lb} V_{ls}^{\star} \frac{e^2}{16\pi^2} \sum_{ij} \left(C_L^{ij} \mathcal{O}_L^{ij} + C_R^{ij} \mathcal{O}_R^{ij} \right) + \text{ h.c.}, \qquad \mathcal{O}_L^{ij} = (\bar{s}\gamma_{\mu} P_L d) (\bar{\nu}_i \gamma^{\mu} H_L d) (\bar{\nu}_i \gamma^{$$

$$R_{K}^{\nu\nu} - R_{K^{*}}^{\nu\nu} = 2(1+\eta) \left| \frac{C_{LSM}}{3 |C_{LSM}|^{2}} \sum_{i} \operatorname{Re}\left(C_{R}^{ii}\right) + \frac{1}{3 |C_{LSM}|^{2}} \sum_{ij} \operatorname{Re}\left(C_{L}^{ij}C_{R}^{*ij}\right) \right|$$

C_L^{ij} alone cannot satisfy both 3.8 $\leq R_K^{\nu\nu} \leq 7$ and $R_{K^*}^{\nu\nu} \leq 2.7(1.9)$

Models with only $S_0(\bar{3},1,1/3)$, $S_1(\bar{3},3,1/3)$, $V_1(3,3,2/3)$ are incompatible

Leptoquark models

$$\mathscr{L}_{S} = \lambda_{LS_{0}} \overline{Q^{c}} i\tau_{2} L S_{0}^{\dagger} + \lambda_{L\widetilde{S}_{1/2}} \overline{d} L \widetilde{S}_{1/2}^{\dagger} + \lambda_{LS_{1}} \overline{Q^{c}} i\tau_{2} \vec{\tau} \cdot \overrightarrow{S}_{1}^{\dagger} L + \text{ h. c.},$$

$$\mathscr{L}_{V} = \lambda_{LV_{1/2}} \overline{d^{c}} \gamma_{\mu} L V_{1/2}^{\dagger \mu} + \lambda_{LV_{1}} \overline{Q} \gamma_{\mu} \vec{\tau} \cdot \overrightarrow{V}_{1}^{\dagger \mu} L + \text{ h. c.},$$

The case with large $C_R^{\tau\tau}$ is the only viable solution

FLU violation

The WCs $C_R^{\tau\tau}$ and $C_R^{\mu\tau}$ generated by $\tilde{S}_{1/2}$ or $V_{1/2}$ imply large rates for other B decay modes

New decay modes with sterile neutrinos

$$\mathcal{O}_{L}^{'ij} = (\bar{s}\gamma_{\mu}P_{L}d)(\bar{\nu}_{i}\gamma^{\mu}P_{R}\nu_{j})$$
$$\mathcal{O}_{R}^{'ij} = (\bar{s}\gamma_{\mu}P_{R}d)(\bar{\nu}_{i}\gamma^{\mu}P_{R}\nu_{j})$$

$$R_{K}^{\nu\nu} = 1 + \frac{1}{3 |C_{LSM}|^{2}} \sum_{ij} |C_{L}^{'ij} + C_{R}^{'ij}|^{2},$$

$$R_{K^{*}}^{\nu\nu} = 1 + \frac{1}{3 |C_{LSM}|^{2}} \sum_{ij} \left(|C_{L}^{'ij}|^{2} + |C_{R}^{'ij}|^{2} \right) - \frac{2\eta}{3 |C_{LSM}|^{2}} \sum_{ij} \operatorname{Re}$$

Both $C_L^{'ij} \neq 0$ and $C_R^{'ij} \neq 0$ are needed to deviate from $R_K^{\nu\nu} = R_{K^*}^{\nu\nu}$

* The (X) stands for the interactions vanishes for "real" field

$b \rightarrow s + DM + DM$ in LEFT framework

Vector DM case

- $\mathcal{O}_{aX}^{S,sb} = (\overline{s}b)(X_{\mu}^{\dagger}X^{\mu}),$
- $\mathcal{O}_{qX1}^{T,sb} = \frac{i}{2} (\overline{s}\sigma^{\mu\nu}b) (X_{\mu}^{\dagger}X_{\nu} X_{\nu}^{\dagger}X_{\mu}), (\times)$
- $\mathcal{O}_{aX2}^{T,sb} = \frac{1}{2} (\bar{s}\sigma^{\mu\nu}\gamma_5 b) (X_{\mu}^{\dagger}X_{\nu} X_{\nu}^{\dagger}X_{\mu}), (\times)$
- $\mathcal{O}_{aX2}^{V,sb} = (\bar{s}\gamma_{\mu}b)\partial_{\nu}(X^{\mu\dagger}X^{\nu} + X^{\nu\dagger}X^{\mu}),$
- $\mathcal{O}_{aX3}^{V,sb} = (\bar{s}\gamma_{\mu}b)(X_{\rho}^{\dagger}\overleftrightarrow{\partial}_{\nu}X_{\sigma})\epsilon^{\mu\nu\rho\sigma},$
- $\mathcal{O}_{aX4}^{V,sb} = (\bar{s}\gamma^{\mu}b)(X_{\nu}^{\dagger}i\overleftrightarrow{\partial}_{\mu}X^{\nu}), (\times)$
- $\mathcal{O}_{aX5}^{V,sb} = (\bar{s}\gamma_{\mu}b)i\partial_{\nu}(X^{\mu\dagger}X^{\nu} X^{\nu\dagger}X^{\mu}), (\times)$
- $\mathcal{O}_{\alpha X 6}^{V, sb} = (\bar{s} \gamma_{\mu} b) i \partial_{\nu} (X_{\rho}^{\dagger} X_{\sigma}) \epsilon^{\mu \nu \rho \sigma} . (\times)$

$b \rightarrow s + DM + DM$ in LEFT framework

Scalar DM case

Fermion DM case

Vector DM case

Signal region: $\eta(BDT2) > 0.92$

- Excess between 3-7 GeV^2
- Not conclusive due to coarse binning choice, dictated from experimental resolution

The q² distribution

Most sensitive region: $\eta(BDT2) > 0.98$

Elisa Manoni's Talk @CERN EP seminar, 2023

Scalar and fermion DM cases

The vector current operators with scalar or vector DM particles with masses in the hundreds of MeV can match the anomaly. All cases in vector DM case cannot match !

Influence of experimental efficiency

 \mathbb{Z}_2 symmetry: odd of new particles

 $\mathcal{L}_{\texttt{kinetic}}^{\texttt{NP}} = \bar{Q}i D \!\!\!/ Q - m_Q \bar{Q}Q + \bar{D}^{\dagger}$ $\mathcal{L}_{\mathtt{Yukawa}}^{\mathtt{NP}} = y_q^p \bar{q}_{Lp} Q_R \phi + y_d^p \bar{D}_L d_{Rp}$ $V_{\rm potential}^{\rm NP} = \frac{1}{4} \lambda_{\phi} \phi^4 + \frac{1}{2} \kappa \, \phi^2 H^{\dagger} H \; , \label{eq:Vpotential}$

Scalar DM model

SM + a real scalar ϕ (DM)+ two vector-like quarks Q (q_I) , $D(d_R)$

$$p_{i} D D - m_D \overline{D}D + rac{1}{2} \partial_\mu \phi \partial^\mu \phi - rac{1}{2} m_\phi^2 \phi^2
onumber \ _p \phi - y_1 \overline{Q}_L D_R H - y_2 \overline{Q}_R D_L H + ext{h.c.} ,$$

Dominant ones

 $B \rightarrow K + \phi \phi$

 $m_{\phi} \,[\text{GeV}]$

Belle II anomaly:

 $C_{d\phi}^{S,sb} \sim (3-8)/(10^5 \,\mathrm{TeV})$

Signal selection efficiency impact:

 $\omega(m) = \frac{\sum_{i} \tilde{\Gamma}_{i,\text{SM}} \epsilon_{i}}{\sum_{i} \tilde{\Gamma}_{i,\text{NP}}(m) \epsilon_{i}}$

DM relic density

- Neglect Higgs portal coupling $(h \rightarrow inv)$
- Thermal freeze-out mechanism
- Neglect $C_{u\phi}^{S,uu}, y_{q,d}^d$
- $500 \,\mathrm{MeV} < m_{\phi} < 900 \,\mathrm{MeV}$
- Main channels: $\phi \phi \to K^+ K^-, K^0 \bar{K}^0, \eta \eta$
- $\langle \sigma v \rangle \simeq 2.4 \times 10^{-26} \frac{\text{cm}^3 \text{s}^{-1}}{(\hbar c)^2 c} = 2.2 \times 10^{-9} \,\text{GeV}^{-2}$

ChPT $\mathscr{L}_{\phi P} \ni -\sqrt{2}BF_0 \operatorname{tr} \left[p\Phi\right] - B\operatorname{tr} \left[s\Phi^2\right] + \mathcal{O}(\phi^2 P^3)$

$$\begin{split} \left\langle \sigma v(\phi \phi \to K^+ K^-, K^0 \bar{K}^0) \right\rangle &= \frac{B^2 |C_{d\phi}^{S,ss}|^2 \eta(x, z_K)}{64 \pi m_{\phi}^2} ,\\ \left\langle \sigma v(\phi \phi \to \eta \eta) \right\rangle &= \frac{B^2 |C_{d\phi}^{S,ss}|^2 \eta(x, z_\eta)}{72 \pi m_{\phi}^2} , \end{split}$$

A large 10^3 hierarchy is required between the strange and bottom couplings

- 2. Sub-GeV scale DM also is safe for direct detection;

DM indirect detection constraints is negligible \Leftarrow loop induced $\phi^2 F_{\mu\nu}F^{\mu\nu}$

Other constraints or implications

$$B \to X_s \gamma : O_{d\gamma}^{ij} = \bar{d}_i \sigma^{\mu\nu} P_R d_j F_{\mu\nu}$$

• $B_{s} - B_{s}$: has no contribution at dim-6 order

• $B \to \text{inv: Indued by } \mathcal{O}_{d\phi}^{P,sb}$ with $\mathscr{B}(B_s \to \phi\phi) \sim 4 \times 10^{-5}$

• $D^0 \to \text{inv}, D^0 \to \pi^0 + \text{inv}: C_{u\phi}^{S(P),uc} | /m_c \leq 2.06(0.25) / \text{TeV}^2$

LHC search for vector-like quarks: > 1.5 TeV by ATLAS and CMS

2310.13043 [hep-ph] $\mathscr{B}(B_s \to \text{inv}) < 5.4 \times 10^{-4}$

1611.09455 [hep-ex].

2112.14236 [hep-ex].

 $\mathscr{B}(D^0 \to \text{inv}) < 9.4 \times 10^{-5}$

 $\mathscr{B}(D^0 \to \pi^0 \nu \bar{\nu}) < 2.1 \times 10^{-4}$

2212.05263 [hep-ex]. 2209.07327 [hep-ex].

$$y_{q}^{i} \equiv |y_{q}^{i}| e^{-i\alpha_{i}}, \quad y_{d}^{i} \equiv |y_{d}^{i}| e^{-i\beta_{i}}$$

$$a_{s} + \beta_{s} = \rho, \quad \alpha_{b} + \beta_{b} + \rho \equiv \theta$$

$$|y_{d}^{b}|/|y_{d}^{s}| \equiv r_{d}, \quad |y_{q}^{b}|/|y_{q}^{s}| \equiv r_{q}.$$

$$e^{S(s,s)} \approx \frac{|y_{q}^{s}||y_{d}^{s}|y_{1}v}{\sqrt{2}m_{Q}m_{D}} \left[1 + e^{i2\rho}\right],$$

$$C_{d\phi}^{S(P),sb} \approx \frac{|y_{q}^{s}||y_{d}^{s}|y_{1}v}{\sqrt{2}m_{Q}m_{D}} \left[r_{d} \pm r_{q}e^{i\theta}\right].$$

$$m_{Q} = m_{D} = 3 \text{ TeV}$$

$$|y_{d}^{s}| = |y_{q}^{s}| = 2$$

$$0.0$$

Conclusion

- Several scenarios that could accommodate the recent Belle II anomaly are discussed, including heavy mediators and new decay modes;
- For heavy mediator case, the viable explanations are mediators that couple only to tau-flavors and/or LFV ones;
- For new light states, a viable scalar DM model is proposed to explain the anomaly and DM relic density;
- $B \rightarrow K^* + inv$., $B_s \rightarrow inv$. and other rare B decay modes can be simultaneously to probe or constrain those NP scenarios;
- The future significantly improved data from Belle II can be expected to shed light on this anomaly.

Thank you for your time!