

第五届粒子物理前沿研讨会

The Fifth Workshop on Frontiers of Particle Physics

Indirect search for New Physics at LHCb

Jibo HE/何吉波(UCAS)

Introduction

- Flavour-Changing NC
- Flavour-Changing CC

Dark sector

Large Hadron Collider

27 km

CMS

Proton energy: up to 7 TeV (10¹² eV) speed: 0.999999991 c

ATLA

ALICE

Beauty/charm production

- Large production cross-section @ 7 TeV
 - Minibias ~60 mb
 - Charm ~6 mb
 - Beauty $\sim 0.3 \text{ mb c.f. 1nb} @Y(4S)$

Flavour factory!

Predominantly in forward/backward cones

The LHCb experiment

The LHCb trigger (2018)

- LO, Hardware
 - $-p_{\rm T}(\mu_1) \times p_{\rm T}(\mu_2) > (1.5 \, {\rm GeV})^2$
 - $-p_{\rm T}(\mu) > 1.8 \,{\rm GeV}$
 - $-E_{\rm T}(e) > 2.4 \, {\rm GeV}$
 - $-E_{\rm T}(\gamma) > 3.0 {
 m GeV}$
 - $-E_{\rm T}(h) > 3.7 \, {
 m GeV}$
- High Level Trigger
 - Stage1, $p_{\rm T}$, IP
 - Stage2, full selection

The LHCb trigger (Run3)

The turbo stream

LHCb luminosity prospects

- Run-3
 - Luminosity: 7 fb⁻¹ (2024) + 7 fb⁻¹ (2025)
 - Yields, compared to Run 1+2
 - Muon modes ~2
 - Hadronic modes ~4 (2 x 2 due to higher trigger eff.)

Dark photon

W mass

- CDF results demand more measurements at LHC
- Anti-correlation of PDF at GPD/LHCb helps

Intrinsic charm?

- Bound to valence quarks, longer time scales
- Z associted with charm

(2023) 041804] [PRL 131

CKM- γ combination

 Simultaneous determination of CKM-γ & charm mixing parameters

 $- \operatorname{CKM} \gamma = (63.8^{+3.5}_{-3.7})^{\circ}$

LHCb-Conf-2022-003]

- Charm mixing $x = (0.398^{+0.050}_{-0.049})\%$,

Δm. & Δm.

Δm_d

 D^0

 X_{\bullet}

xcluded area has CL > 0.9

-0.5

sin 28

1.0

0.5

0.0

-0.5

-1.0

CPV in mixing

 $\rightarrow \mu^+ \mu^ B_{(S)}$

• Suppressed in SM, could be enhanced by New Physics

LHCb

-9 fb⁻

2

0.6 CMS

0.5

0.1

0

2

3

3

4

5σ

4σ

3σ

2σ

1σ

+Obs

4

 $B(\mathsf{B}^0_{\circ} \rightarrow \mu^+\mu^-)$

5

6

5

6

••••4.4 fb⁻¹

$B_{\rm s}^0 \rightarrow \mu^+ \mu^-$ eff. τ

• B_s^0 mixing \Rightarrow effective τ

$$\tau_{\mu^{+}\mu^{-}} = \frac{\tau_{B_{s}}}{1 - y_{s}^{2}} \left[\frac{1 + 2A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s} + y_{s}^{2}}{1 + A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s}} \right]$$
$$A_{\Delta\Gamma}^{\mu^{+}\mu^{-}} \equiv \frac{R_{H}^{\mu^{+}\mu^{-}} - R_{L}^{\mu^{+}\mu^{-}}}{R_{H}^{\mu^{+}\mu^{-}} + R_{L}^{\mu^{+}\mu^{-}}} \quad A_{\Delta\Gamma} = 1 \text{ in SM}$$
$$y_{s} = \frac{\Delta\Gamma_{s}}{2\Gamma_{s}}$$

 Measured by LHCb, CMS, ALTAS, not-yet sensitive to $A_{\Lambda\Gamma}$

 $au_{\mu\mu} = 2.07 \pm 0.29 \pm 0.03$ ps

 $1.83^{+0.23}_{-0.20} \pm 0.04 \text{ ps}$ [CMS, PLB 842 (2023) 137955] $0.99^{+0.42}_{-0.07} \pm 0.17$ ps [Atlas, Jhep 09 (2023) 199]

 $\rightarrow \mu^+\mu^-$

 ${\cal A}_{\Delta\Gamma}(B_s$

$$B^0 \to K^{*0} \mu^+ \mu^-$$

- "Poster-child" decay of $b \rightarrow s \mu^+ \mu^-$
- Described by $q^2 = m^2(\ell^+\ell^-)$ and $\theta_\ell, \theta_K, \phi$
- Many observables!

$$(\ell^+\ell^-)$$
 and
 $\ell^+\ell^-)$ $\ell^+\ell^-$
 ℓ^-
 μ^+
 K^{*0}
 π^-

$$\frac{1}{\mathrm{d}(\Gamma+\Gamma)/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\Gamma)}{\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1-F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K + \frac{1}{4} (1-F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_\ell - F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi \Big]$$

Branching fraction of $b \rightarrow s \mu^+ \mu^-$

• Pattern of tensions seen, theoretical uncertainty?

Impact of charm loop

- Model of local and nonlocal contributions to extract Wilson co-efficiency [PRL 132 (2024) 131801]
- Model of both 1-(2-) particle amplitudes, whole dimuon region [LHCb-Paper-2024-011, in preparation]

Lepton flavour universality

In SM, three lepton families (e, μ, τ) have identical couplings to the gauge bosons

Lepton flavour universality violation? New Physics!

LFU in $b \rightarrow s\ell^+\ell^-$ decays

before Dec 2022

• Deviations from SM seen by LHCb

LFU in $b \rightarrow s\ell^+\ell^-$ decays

after Dec 2022

• Deviations mostly gone

LFU in $b \rightarrow c \ell \nu$ decays

Deviations from SM seen by Babar/Belle/LHCb

The LHCb upgrade II

30

[CERN-LHCC-2018-027, 2021-012]

Prospects

• LHCb upgrades

(2025: 23 fb⁻¹, Upgrade-II: 300 fb⁻¹)

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins	2				
$\overline{R_K \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)}$	0.1 [274]	0.025	0.036	0.007	_
$R_{K^*} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [275]	0.031	0.032	0.008	_
R_{ϕ},R_{pK},R_{π}		0.08,0.06,0.18	_	0.02, 0.02, 0.05	-
CKM tests					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	-	1°	_
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ [167]	1.5°	1.5°	0.35°	-
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 [606]	0.011	0.005	0.003	-
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad [44]	$14 \mathrm{mrad}$	_	4 mrad	22 mrad [607]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	35 mrad	-	$9 \mathrm{mrad}$	
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad [94]	39 mrad	-	$11 \mathrm{mrad}$	Under study [608]
$a_{ m sl}^s$	$33 imes 10^{-4}$ [211]	$10 imes 10^{-4}$	-	$3 imes 10^{-4}$	
$ V_{ub} / V_{cb} $	6% [201]	3%	1%	1%	-
$B^0_s, B^0 { ightarrow} \mu^+ \mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%	-	10%	21% [609]
$\tau_{B^0 \rightarrow \mu^+ \mu^-}$	22% [264]	8%	-	2%	
$S_{\mu\mu}^{s}$		-	_	0.2	-
$b \to c \ell^- \bar{ u_l} { m LUV} { m studies}$					
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	-
$R(J/\psi)$	0.24 [220]	0.071	-	0.02	-
Charm					
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [610]	$1.7 imes 10^{-4}$	$5.4 imes10^{-4}$	$3.0 imes 10^{-5}$	_
$A_{\Gamma} \ (pprox x \sin \phi)$	$2.8 imes 10^{-4}$ [240]	$4.3 imes10^{-5}$	$3.5 imes10^{-4}$	$1.0 imes 10^{-5}$	_
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [228]	$3.2 imes 10^{-4}$	$4.6 imes10^{-4}$	$8.0 imes 10^{-5}$	-
$x \sin \phi$ from multibody decays		$(K3\pi) 4.0 \times 10^{-5}$	$(K_{\rm s}^0\pi\pi) \ 1.2 \times 10^{-4}$	$(K3\pi) 8.0 \times 10^{-6}$	-

Summary

- Many interesting results from LHCb
 - Electroweak, A', W mass, intrinsic charm
 - CP Violation, CKM triangle, ϕ_s , γ , ΔA_{CP}
 - Flavour anomalies, $b \to s\mu^+\mu^-$ BR, P'_5 , $\mathcal{R}_{K^{(*0)}}$, $\mathcal{R}_{D^{(*)}}$, to be confirmed or refuted with more data
- With LHCb upgrade (50 fb⁻¹) & upgrade-II (300 fb⁻¹), much more will be done
- Your continued and strong supports appreciated!
 - Form factors, non-form-factor contributions
 - New observables?