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1. Background

@ Higher-order radiative corrections are more important,
with the increasing precision of measurements at the
future colliders: GLIC, ILC, CEPC, FCC, HL-LHC - - -

@ One-loop Feynman integrals are well known analytically
in the time-space dimension D = 4 — 2e.
However, how to perform analytically multi-loop Feynman
integrals is still a challenge.

@ Considering Feynman integrals as the generalized
hypergeometric functions, one finds that the
D—module of a Feynman diagram is isomorphic to
Gel’fand-Kapranov-Zelevinsky (GKZ) D—module.
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2. Relevant research

@ Hypergeometric functions of some Feynman integrals are
obtained from Mellin-Barnes representations.

Feng, Chang, Chen, Gu, Zhang, NPB 927(2018)516 [arXiv:1706.08201]
Feng, Chang, Chen, Zhang, NPB 940(2019)130 [arXiv:1809.00295]
Gu, Zhang, CPC 43(2019)083102 [arXiv:1811.10429]

Gu, Zhang, Feng, IJMPA 35(2020)2050089.

@ Using GKZ hypergeometric system, we can obtain the
fundamental solution systems of Feynman integrals.

Feng, Chang, Chen, Zhang, NPB 953(2020)114952, [arXiv:1912.01726]
Feng, Zhang, Chang, PRD 106(2022)116025 [arXiv: 2206.04224]
Feng, Zhang, Dong, Zhou, EPJC 83(2023)314 [arXiv:2209.15194].
Zhang, Feng, JHEP 05(2023)075 [arXiv: 2303.02795].

Zhang, Feng, [arXiv: 2403.13025].
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3. Generally strategy

Hypergeometric function method: Evaluating Feynman
integrals as hypergeometric functions.

Steps: (1) we write out the GKZ hypergeometric systems
satisfied by the Feynman integrals on general compact
manifold or proper Grassmannian manifold G, .

(2) fundamental solution systems are constructed in
neighborhoods of regular singularities of the GKZ
hypergeometric systems. The combination coefficients can
be determined from Feynman integrals with some special
kinematic parameters.
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m, q,

£
S

@ Feynman integral of the 3-loop vacuum diagram with 4
propagates is written as
U = ( A2 )6—35’ dq, d°q, d"q,
) K (2m)P (2m)P (2m)P
o 1
(g7 —m})(a; —m3)((q, + 4, + q,)*> — m3) (g5 — m3)
@ Zhang, Feng, GKZ hypergeometric systems of the three-loop vacuum
Feynman integrals, JHEP 05 (2023) 075 [arXiv:,2303.02795].
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@ Through Mellin-Barnes transformation

(AiE) 7 oo 3 .
G / ds,ds,ds, [ T](~m2) T (=s)T (0 +5)] 1y . 2.2)
—I100 1:1
where
IfI
_ / qul qu2 qu3 |
= (27T)D (27T)D (27T)D (q12)1+S1 (q?)l-i-b‘z ((ql + q, + q3)2)1+x3 (q% _ mf)

(2.3)
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ll. 3-loop vacuum on compact manifold

@ Mellin-Barnes representation of the Feynman integral:

-4 2 3D j 3
—im drAi N6 [T m2\ s,
P p— 6( ) / dsldszds3[H<m’2> F(—si)}
Lm

(27i)3 (47) m?2 —ico Pl

X[Hr(g—l—s] (3 - D+Z 4—7+ s) . (2.4)
i=1

@ Itis well known that negative integers and zero are simple
poles of the function I'(z). As all s, contours are closed to
the right in corresponding complex planes, one finds that
the analytic expression of the the three-loop vacuum
integral can be written as the linear combination of
generalized hypergeometric functions.
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(a, "’ Z Z Z Ay X102 (2.6)

n,=0n,=0 ny =0

3 3
[a, + >-n)l(a, + > n)
i=1 i=1

A = . 2.7

nts D (b, + n,)D(b, + n,)T (b, + n,) 27)
where x, = m?/m?, a = (a,,a,) and b = (b, b,,b,) with
3D D

al:3—D,a2:4—7,b1:b2:b3:2—§. (28)
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@ We can define auxiliary function
,(a, b ‘ X, u, v) = u’v’"%7T,(a, b ’ X) . (2.9)
Through Miller’s transformation,

19uj<1>4(a, b ‘ X, u, v) =a®,(a, b ‘ X, U, V),
9, ®,(a, b ‘ x,u,v)= (b —1)0,(a, b ‘ x, u, v), (2.10)

which naturally induces the notion of GKZ hypergeometric
system. Euler operators: v, = xkaxk.
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@ Through the transformation

! S (2.11)

Y
Mluzvk

5= 0 Lk = Vi Zsqu

J

we have GKZ hypergeometric system for the integral

A, 0,0, =B,®, (2.12)
10000 1 1 1
01000 1 1 1

A, =001 00 -1 0 o0 |,
00010 0 -1 0
00001 0 0 -1

T _
I =@, . 9,),

—1,b,—1). (2.13)
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ll. 3-loop vacuum on compact manifold

@ Defining the combined variables
e (2.14)
4% 4% %42,

we write the solutions as

(HZ )904 15 ¥2s ¥3) - (2.15)

Here @’ = (a,, a,, ---, o) denotes a sequence of
complex number such that
A,-d=B8B,, (2.16)
namely,
o t+o,+o, o, =—a,, o,+a +a,+o=—a,,

a,—o,=b -1, a,—a,=b,—-1, o;—a,=b,—1.(2.17)
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ll. 3-loop vacuum integrals

@ Correspondingly the dual matrix A, of A, is
-1 -1 1 0 0 1 0 O
A= -1 -1 010 0 1 0 |. (218)
-1 -1 0 0 1 0 0 1

The row vectors of the matrix A, induce the integer
sublattice B which can be used to construct the formal
solutions in hypergeometric series.

@ We denote the submatrix composed of the first, third, and

fourth column vectors of the dual matrix of Eq. (2.18) as
A, e

-1 1 0
A= -1 0 1 |. (2.19)
-1 0 0
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ll. 3-loop vacuum on compact manifold

Taking 3 row vectors of the matrix B,,, as the basis of
integer lattice, one constructs the GKZ hypergeometric
series solutions in parameter space through choosing the
sets of column indices 7,  [1,8] (i = 1,--- , 8) which are
consistent with the basis of integer lattice B, .

14/32
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@ We take the set of column indices I, = [2,5,6,7,8], i.e. the
implement J, = [1,8]\ I, = [1, 3,4]. The choice on the set
of indices implies the exponent numbers o, = a,, = o, = 0.
Through Eq. (2.17), one can have

o, =a,—a,, g =b +b,+b, —a, -3,
a=1-b,a,=1-b,, 0 =b,+b,—a, —2. (2.21)

6
Combined with Eq. (2.8), we can have

D D D

s= 5 = —1.(2.22)

8
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@ According the basis of integer lattice B,,,, the
hypergeometric series solution can be written as

o0 = T Y S S e ()" (2)"(2)"

n,=0n,=0 ny =0 Vs Vs

U(5 +n +n, +n)0(1 +n, +n,+n,)
nI!n2!n3!F(% + nl)F(% + nz)F(% +n,)

Here, the convergent region is

¢ (a,m) =

[134]

(2.23)

E[134] = {0 20y YO <yl il < ysls ol < [ys]},(2.24)

which shows that <I>E1131] (a, 7) is in neighborhood of regular
singularity oo.
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ll. 3-loop vacuum on compact manifold

@ In a similar way, we can obtain other seven hypergeometric
solutions which are consistent with the basis of integer
lattice B,,,, and the convergent region is also =, , .

1347
@ The above eight hypergeometric series solutions @fl"; (o, 2)
whose convergent region is =, can constitute a

fundamental solution system.

@ Multiplying one of the row vectors of the matrix B ,, by -1,
the induced integer matrix can also be chosen as a basis of
the integer lattice space of certain hypergeometric series.

]

17/32
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@ Taking 3 row vectors of the following matrix as the basis of
integer lattice,

B, =diag(—1,1,1) B,

13
-1 -1 00 1 0 0 1
=l o 0 10 -1 1 0 -1 |,(2.25)

o 0 0 1 -1 0 1 -1

one obtains eight hypergeometric series solutions
<I>g) (a,z) (i=1,---,8) similarly. The convergent region is

34]

—_

Sy = {00 v W)l <L nl <L Iyl <1}, (2.26)

which shows that <I>[(I’24] (o, 7) are in neighborhood of regular

singularity 0 and can constitute a fundamental solution
system.
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ll. 3-loop vacuum on compact manifold

@ Taking 3 row vectors of the following matrix as the basis of
integer lattice,

B ., =diag(l,-1,1) B,
1 1 0O 0 -1 0 0 -1
=0 0 -1 0 1 -1 0 1 , (2.27)
o 0o 0o 1 -1 0 1 -1
one obtains eight hypergeometric series solutions

@ff) (o,2) (i=1,---,8) similarly. The convergent region is

34]

Esy = {00 20 v <Inls Il <Inls sl <[}, (2.28)

which shows that <I>[(24] (o, 7) are in neighborhood of regular
singularity co and can constitute a fundamental solution
system.
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ll. 3-loop vacuum on compact manifold

@ Taking 3 row vectors of the following matrix as the basis of
integer lattice,

)
1 1 o 0 -1 0 0 -1
=10 01 0 -1 1 0 -1 |],(29
0 00 -1 1 0 -1 1
one obtains eight hypergeometric series solutions

@ff)- (o,2) (i=1,---,8) similarly. The convergent region is

34)

Esy = {00 20 v <Inls il <Inls sl < Ivl} ,(2.30)

which shows that <I>[(1’21] (o, 7) are in neighborhood of regular

singularity co and can constitute a fundamental solution
system.
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ll. 3-loop vacuum integrals

@ 3-loop vacuum with 4 massive propagates
CPU i9-13th, 64GB: FeynGKZ ~ 1 s, FIESTA ~ 50 s

sumLim = 15;
ParameterSub = {De > 4-2:0.001, €+ 0.001, a;+ 1,

a9 1,335 1, 2,51, m0.01,m »0.02, m 10, m-0.04};
Numericalsum[SeriesSolution, ParameterSub, SunLin];
Numerical result = -7.5628 x 16°

Time Taken 1.16336 seconds

| FIESTAEvaluate[MomentumRep, LoopMomenta, InvariantList, ParameterSub];

FIESTA Value = -7.56285 x 16°

Time Taken 53.2344 seconds

@ 3-loop vacuum with 5 massive propagates
CPU i9-13th, 64GB: FeynGKZ ~ 120 s, FIESTA ~ 600 s

sumLim = 15;
Parametersub = {De »4-20.001, €-0.001, a,+1, 3,1, 33 7/8,
2,23/4, 3551, My +0.1, M+ 5, My 0.3, my 0.3, ms »100) ;
i , SumLim, lel - True] ;

NumericalSum[

Infae]:=
Numerical result - 1.42136x 107
Inf4é]

Time Taken 120.792 seconds

FIESTAEvaluate( Loop!

FIESTA Value - 1.42136x 167
Time Taken 623.497 seconds
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4-loop vacuum, arXiv: 2403.13025

@ 4-loop vacuum with 6 propagates Type A: 3 massive
CPU i9-13th, 64GB: FeynGKZ ~ 0.1 s, FIESTA~ 1500 s

b= (De>4-20.001, € >0.001, a; >1, a1, a3 1,

1, 351, m 50.01, m50.1, mg > 10};

[seri 5 sumLim] ;
Numerical result = 1.2624x16'
Time Taken 0.59761 secon ds

b= (De>4-2:0.001, € 50.001, a1, 2,51, a3 1,
s 351, m50.01, m 0.1,
ate( L Invariantlist, 15

FIESTAE:

FIESTA Value = 1.26241x10™

Time Taken 1525.73 seconds

@ 4-loop vacuum with 7 propagates Type B: 3 massive
CPU i9-13th, 64GB: FeynGKZ ~ 0.1 s, FIESTA~ 6000 s

SumLin = 155

b= {De~4-2:0.001, € >0.001, a; > 1, 3,1, 23 >9/10,
521, 3621, 8,51, My 50.01, my50.1, My 510}

» SumLin] ;

Numerical result = 1.43756x10°

Time Taken 0.094408 secon ds.

SumLim = 15;
ParameterSub = (D >4 -20.001, € »0.001, a; » 1, a+1, a3 »9/10,
2is1, 8501, 821, 271, m 20,01, m 0.1, m 10}
L Invariantlist, 15

FIESTA Value - 1.43754x10°

Time Taken 6370.08 seconds
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1-loop self-energy: m* = 0, m> # 0

@ Adopting Feynman parametric representation

202 [ dPq |
2 2\ 2
AlSE(p ’O’mz) - <ARE) / (27T)D qZ((q +p)2 _ mg)

2-D/2
2= )< ) y " 2127251 4+ 1, — 1)
ey R e

2-D/2
D oo
(2 — z)< RE) / 3 )t]D/z 227P5(t, +1, 4+ 1,) 3.1)

(=)D (4m)P/2 (1,p? + m2)2-D72
with homogeneous coordinate 7, = —1, volume element of
projective space w,(t) = t,dt,dt, — t,dt dt, + t,dt dt,.

@ Feng, Zhang, Chang, Feynman integrals of Grassmannians, PRD 106
(2022) 116025 [arXiv: 2206.04224].
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. 02 2
1-loop self-energy: m: = 0, m; # 0

@ The integral
P2227D5(t 41, +1,)
A 2’07 2 / £ 2 1 2 3
ISE(p mz) X w%( ) (t3p2 4 t2m§>2_D/2

can be embedded in the subvariety of the Grassmannian
G, ;, with splitting local coordinates as

1 0 O 1 0
AO=1 0 1 0 1 m® |. 32
0 O 1 1 pf
@ first row: ¢, second row: ¢,, third row: ,,

first column: t?/z—z, second column: 22, third column:
12 = 1, fourth column represents the function 6(z, + 1, +1,),

fith column: (z, ;t, + 2,1, + 2, 5t,)P/*7% = (t,m* + 1,p*)P/?72.

9

24/32



lll. Feynman integrals on Grassmannian

lll. Feynman integrals on Grassmannian

. 02 2
1-loop self-energy: m: = 0, m; # 0

P25 (1 41, +-1,)
2 2 1 2 3
AISE(p 707 mZ) O( /w3 (t) l ([3p§ + lzmg)z_D/z ’

satisfies the following GKZ-system
{191,1 + 7‘91,4}A155 =-A

{193,3 + 193,4 + 193,5 }A]SE =—Ag, q91,1ALYE = (

ISE 1 {192,2 +192,4 + 192,5 }AISE = _AISE )
D
2
A {1925 +19%5}A155 =

- Z)A]SE ) 192,2A1SE (
D
193,3A155 =0, {191,4 + 192,4 + "93,4 }AISE = 5

Exponent matrix:

D D
72 0 0 1-3 0
0 2—D 0 Q,, Q, ,
0 0 0 a, Qs
D
Q,, +o,; =D =3, g, toy = Loy ta, = 2 2, Qs T s =7

(3.3)

) 1SE

- Z)AISE .
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. 02 2
1-loop self-energy: m: = 0, m; # 0

@ Dual space of the GKZ-system: 3 x 5 matrix (0,,,|E{") with
EW = 1 -1 . (3.5)

e Integer lattice (0, ,|nE!!) (n > 0) is compatible with two
choices of the exponents. Through

D D
Gyt =D=3 o, ta,; =—1, a,to,= 5 2, a5ty = 37 2,
the first choice is written as
D
a,, =0, 0,,=D-3, a,, = £} -2, a,,=1- 7 (3.6)
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. 02 2
1-loop self-energy: m: = 0, m; # 0

1 0 0 1 0
Splitting local coordinates: AD = 0 1 0 1 mz
o o 1 1 p
0 0
Integer lattice (0,,, E(l)) nE3<1> = n —n
—n n
L2 0 0 1-2 0
Exponent matrix: 0 2-D 0 0 D -3
) \ 0 0 -2 1-2
Hypergeometric function:
> I—a,, +n)
(1) Qs a” O‘?i+ ) 3,4 2\—n/ 2\n
w{1»2=3} ( (P Z F + o, + )P(l + a, s ¥+ n) (mz) (P )
N - 1 D/2 —T(3 - D +n) ( ) 7
(m2)? Z ) (3.7)
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. 02 2
1-loop self-energy: m: = 0, m; # 0

e Forinteger lattice (0, , nE!") (n > 0), second choice is

written as
D
a, =0, o, = 5—1, Qa5 = 5—27 o
@ Adopting integer lattice and the corresponding exponents

matrices, we obtain hypergeometric function as
2 2 2
will;}@ 0, m;)
o

+n)'(—a,, +n)
~ Qs 2 3,5 — s 3,4 ) (p2)"
() Z —i—a“—l—n)l“(l—i-ais—i-n)( 2) ")

w=—1. (38

n

S ZZF _zm(mz) - 3.9
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1-loop self-energy: m* = 0, m> # 0
e Forinteger lattice (0, | —nE"Y) (n > 0), two possibilities:

D D

a,;=0,0a,,=D-3, a,, =1 — 2 s = 5_2; (3.10)
D
=0, =5 =2 0= —La;=-1. (311)

@ Adopting integer lattice and exponents matrices, we obtain
two linear independent hypergeometric functions as

e I'(3—D+n) m2\n
3 2 2 2\D/2-2 .
U, 07 0 md) ~ ()P Y SE S (P 312
n=0
(4) 2 2y (m) 5 m;
¢{1,2,3}(p s 07 m2) pz i F(% —|—I’l) <p2> (313)
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. 02 2
1-loop self-energy: m: = 0, m; # 0

@ det(Al), 1) =1, G, splitting local coordinates

AW = 0o 1 0 1 m . (3.14)

Convergent regions: |1/x| < 1, |x| < 1 (x = m?/p*). Neighborhoods: x = oo, 0.
@ det(A) ) =p? G,. splitting local coordinates

{1,2,5}
1 0 1 0
o N\ n m 315
(A{112y5}) .\ - 0 1 _177 1—[7 0 . ( . )
o 0 L2

Convergent regions: |1/(1 —1/x)]<1,]1—-1/x| < 1. Neighborhoods: x=0, 1.
() det(Aiﬁ)gj}) —m? det(Ailz); 4}) =1, det(AElz)M}) -,
1
det(A'), ) =m3.
@ 24 fundamental solutions
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V. Summary

® Using Mellin-Barnes representation and Miller’s transformation, we
derive GKZ hypergeometric systems of Feynman integrals on
compact manifold. In the neighborhoods of origin 0 including
infinity co, we can obtain analytical hypergeometric solutions
through GKZ-systems. One can see that evaluating Feynman
integrals by hypergeometric function method is efficiency .

@ Feynman integrals also can be taken as functions on the
subvarieties of Grassmannians through homogenizing the
parametric representation. The GKZ-systems can be obtained in
splitting local coordinates. Fundamental solution systems can be
obtained in neighborhoods of all possible regular singularities.
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