

Macroscopic States as Dark Matter Candidates

Sida Lu (卢思达)

@SYSU Shenzhen, 04/13/2024

based on: 1810.04360, w/ Yang Bai and Andrew J. Long 2111.10360, 2208.12290, 2312.13378, w/ Yang Bai and Nicholas Orlofsky

DM Zoo

DM Zoo

PBHs

See Prof. Sai Wang's and Prof. Ke-Pan Xie's talks this morning and Zeng Zhenmin's talk later for discussions on PBHs

DM Zoo

PBHs

- + Axion Stars
- + Dark Quark Nuggets
- + Q-balls

See Prof. Hong Zhang's talk tomorrow for a discussion (possibly) on axion stars

MDMs from Phase Transitions

PHYSICAL REVIEW D

VOLUME 30, NUMBER 2

15 JULY 1984

Cosmic separation of phases

Edward Witten* Institute for Advanced Study, Princeton, New Jersey 08540 (Received 9 April 1984)

A <u>first-order QCD phase transition</u> that occurred reversibly in the early universe would lead to a surprisingly rich cosmological scenario. Although observable consequences would not necessarily survive, it is at least conceivable that the phase transition would concentrate most of the quark excess in dense, invisible quark nuggets, providing an explanation for the dark matter in terms of QCD effects only. This possibility is viable only if quark matter has energy per baryon less than 938 MeV. Two related issues are considered in appendices: the possibility that neutron stars generate a quark-matter component of cosmic rays, and the possibility that the QCD phase transition may have produced a detectable gravitational signal.

MDMs from Phase Transitions

PHYSICAL REVIEW D

VOLUME 30, NUMBER 2

15 JULY 1984

Cosmic separation of phases

Edward Witten* Institute for Advanced Study, Princeton, New Jersey 08540 (Received 9 April 1984)

Q: quarks H: hadrons QN: quark nuggets

Trapped in the False Vacuum

- Some particles in the unbroken phase may not be energetic enough to tunnel through
 - Bubble wall velocity
 - Mass of the corresponding state in the broken phase

Balancing the Vacuum Pressure

 Pressure from the true vacuum is countered by the Fermi degeneracy pressure

* From thermal dynamics:

$$n = g \frac{\mu^3}{6\pi^2} \quad \rho = g \frac{\mu^4}{8\pi^2} + B \quad P = g \frac{\mu^4}{24\pi^2} - B$$
$$g = 2N_d N_f \qquad n_{\mathsf{B}_d, \mathsf{nug}} = \frac{1}{N_d} n = N_f \frac{\mu^3}{3\pi^2}$$

* The bag parameter: $B \sim \Lambda_d^4$

QCD is Upsetting...

...While the Dark Sector is Still Fine

- * A direct FOPT from a scalar potential
- Or being lazy and just copy the QCD into the dark sector (but have light dark quarks s.t. FOPT can happen)

$$\mathcal{L}_{dQCD} = \sum_{i=1}^{N_f} \left[\bar{\psi}_i i \gamma^{\mu} D_{\mu} \psi_i - m_{\psi_i} \, \bar{\psi}_i \psi_i \right] - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu\,a}$$

The "dark quark nuggets"

[Bai, Long, SL, 1810.04360]

Size and Mass

$$V_{\text{nug}} = \frac{n_{\mathsf{B}_d} f_{\mathsf{B}_d,\text{nug}}}{n_{\text{nug}} n_{\mathsf{B}_d,\text{nug}}}$$

Cosmic dark baryon number density

$$n_{\mathsf{B}_d}(t_c) = Y_{\mathsf{B}_d} s(t_c), \quad s = (2\pi^2/45) g_{*S} T_{\gamma,c}^3$$

dark baryon asymmetry

Fraction of dark baryon number carried by DQN

$$f_{B_d} = \frac{N_{B_d} N_d}{N_f} \frac{\sqrt{2\pi}}{3\zeta(3)} \left(\frac{m_{B_d}}{T_c}\right)^{3/2} e^{-m_{B_d}/T_c}, \quad f_{B_d, \text{nug}} \approx 1 - f_{B_d}$$

$$V_{\text{nug}} = \frac{n_{\mathsf{B}_d} f_{\mathsf{B}_d,\text{nug}}}{n_{\text{nug}} n_{\mathsf{B}_d,\text{nug}}}$$

* Cosmic DQN number density

$$\begin{split} n_{\mathrm{nug}}(t_c) &\approx n_{\mathrm{nucleation}}(t_c) = \left(2.1 \times 10^{14}\right) \left(\frac{\tilde{\sigma}}{0.1}\right)^{-9/2} H(t_c)^3 \\ \text{nugget number comparable} \\ \tilde{\sigma} &\equiv \sigma/(B^{2/3}T_c^{1/3}) \\ \text{to nucleation sites} \end{split}$$

➡ bubble nucleation rate

$$\gamma \approx \zeta T^4 \left(\frac{S_3}{2\pi T}\right)^{3/2} e^{-S_3/T}$$

fraction of space in the unbroken phase

$$f_{\text{unbroken}}(t) = \exp\left[-\frac{4\pi}{3}\int_{t_c}^t dt' \,\beta_{\mathbf{w}}^3 \,(t-t')^3 \,\gamma(t')
ight]$$

number density of nucleation sites

$$n_{\text{nucleartion}} = \int_{t_c}^{\infty} dt' \gamma(t') f_{\text{unbroken}}(t')$$

See Kawana, Lu, Xie 2206.09923 for an *ab initio* calculation on n_{nug}

[Fuller, Mathews, Alcock, Phys.Rev.D 37 (1988) 1380]

R and **M** at the Correct Abundance

* Combining the ingredients before

(for $N_f = N_d = 3$)

R and **M** at the Correct Abundance

* Combining the ingredients before

$$M_{\rm nug} \simeq (2.1 \times 10^{11} \text{ g}) \left(\frac{T_c}{0.1 \text{ GeV}}\right)^{-3} \left(\frac{\tilde{\sigma}}{0.1}\right)^{9/2}$$

(for $N_f = N_d = 3$)

Non-topological Solitons

- Stable macroscopic states may also exist in a scalar theory
 - ➡ A (global) symmetry to protect the stability
 - ➡ A scalar potential providing an attractive force
- [See Lee and Pang, Phys. Rept. 221 (1992) 251-350 for a review]
- * Let's use Q-ball with a global U(1) as an example
 - → Let $\Phi = \phi(r) e^{-i\omega t} / \sqrt{2}$
 - From the Lagrangian we immediately have

$$\frac{d^2\phi}{dr^2} + \frac{2}{r}\frac{d\phi}{dr} + \omega^2\phi - \frac{dU'}{d\phi} = 0$$

effective potential

$$V_{\rm eff} = U - \frac{1}{2}\omega^2\phi^2$$

→ By defining an effective potential, the EOM has a Newtonian interpretation if we take $r \rightarrow t, \phi \rightarrow x$

Non-topological Solitons

* A particle moving along -V

- There must be a local minimum and a local maxima
- The local maxima must be greater than zero
- The larger ω , the smaller charge for the Q-ball (and vice) versa)

Some Q-ball Examples

 At the renormalizable level, Q-balls should involve at least two fields

$$V(S,\phi) = \frac{1}{4}\lambda_{\phi}(|\phi|^2 - v^2)^2 + \frac{1}{4}\lambda_{\phi S}|S|^2|\phi|^2 + \lambda_S|S|^4 + m_{S,0}^2|S|^2$$

Some Q-ball Examples

- At the renormalizable level, Q-balls should involve at least two fields
 - → sth fancy: a non-topological soliton w/ a topological charge
 - the "Q-monopole-ball"

[Bai, SL, Orlofsky, 2111.10360]

➡ Consider gauged SU(2) × global U(1), SU(2)->U(1)

Solitosynthesis

- So far we are assuming that the relic abundance to be completely determined by the phase transition
- * Late universe evolution could change the story

$$\begin{array}{rcl} S + S^{\dagger} & \leftrightarrow & \phi + \phi^{\dagger} \ , \\ (Q) + S & \leftrightarrow & (Q+1) + X \ , \\ (Q) + S^{\dagger} & \leftrightarrow & (Q-1) + X \ , \\ (Q_{\min}) + S^{\dagger} & \leftrightarrow & \underbrace{S + S + \dots + S}_{Q_{\min} - 1} + X \ . \\ (Q_{1}) + (Q_{2}) & \leftrightarrow & (Q_{1} + Q_{2}) + X \ , \\ (Q_{1}) + (-Q_{2}) & \leftrightarrow & \begin{cases} (Q_{1} - Q_{2}) + X & \text{for } Q_{1} - Q_{2} \ge Q_{\min} \ , \\ \underbrace{S + S + \dots + S}_{Q_{1} - Q_{2}} + X & \text{for } Q_{\min} > Q_{1} - Q_{2} \ge 0 \ . \end{cases}$$

[K. Griest, E. Kolb, *Phys.Rev.D* 40 (1989) 3231]

Q-ball Charge Domination

- Assuming certain amount of asymmetry within the dark sector
 - In equilibrium and with a reasonable* M(Q) vs. Q, the binding energy will push the Q charges into larger Q-balls

*Say $M \propto Q^p$, "reasonable" means p<1

The Freeze-out of the System

Write down all the Boltzmann equations

$$\begin{split} \dot{n}_{Q} + 3Hn_{Q} &= -\delta_{Q,Q_{\min}}(\sigma v_{\mathrm{rel}})_{Q_{\min}} \left(n_{Q_{\min}}n_{S^{\dagger}} - n_{Q_{\min}}^{\mathrm{eq}} n_{S^{\dagger}}^{\mathrm{eq}} \left(\frac{n_{S}}{n_{S}^{\mathrm{eq}}} \right)^{Q_{\min}-1} \right) \\ &- (1 - \delta_{Q,Q_{\max}})(\sigma v_{\mathrm{rel}})_{Q} \left(n_{Q}n_{S} - n_{Q}^{\mathrm{eq}} n_{S}^{\mathrm{eq}} \left(\frac{n_{Q+1}}{n_{Q+1}^{\mathrm{eq}}} \right) \right) \\ &+ (1 - \delta_{Q,Q_{\min}})(\sigma v_{\mathrm{rel}})_{Q-1} \left(n_{Q-1}n_{S} - n_{Q-1}^{\mathrm{eq}} n_{S}^{\mathrm{eq}} \left(\frac{n_{Q}}{n_{Q}^{\mathrm{eq}}} \right) \right) \\ &- (1 - \delta_{Q,Q_{\min}})(\sigma v_{\mathrm{rel}})_{Q} \left(n_{Q}n_{S^{\dagger}} - n_{Q}^{\mathrm{eq}} n_{S^{\dagger}}^{\mathrm{eq}} \left(\frac{n_{Q-1}}{n_{Q-1}^{\mathrm{eq}}} \right) \right) \\ &+ (1 - \delta_{Q,Q_{\max}})(\sigma v_{\mathrm{rel}})_{Q+1} \left(n_{Q+1}n_{S^{\dagger}} - n_{Q+1}^{\mathrm{eq}} n_{S^{\dagger}}^{\mathrm{eq}} \left(\frac{n_{Q}}{n_{Q}^{\mathrm{eq}}} \right) \right) \end{split}$$

Summing over all Qs to determine T_F

$$\dot{n}_{\rm NTS} + 3Hn_{\rm NTS} = -\sigma v(Q_{\rm min}) \left(n_{Q_{\rm min}} n_{\bar{\phi}} - n_{Q_{\rm min}}^{\rm eq} n_{\bar{\phi}}^{\rm eq} \left(\frac{n_{\phi}}{n_{\phi}^{\rm eq}} \right)^{Q_{\rm min}-1} \right)$$

 $\Rightarrow Hn_{\rm NTS} \sim \sigma v(Q_{\rm min}) n_{Q_{\rm min}} n_{\bar{\phi}} \mid_{T=T_F}$

The Freeze-out of the System

* Compare with numerics

The Parameter Space

* For solitons to be relevant, we require $T_D > T_F$

Equating the two temperature gives the boundary of solitosynthesis

$$\log \eta = \frac{m_S + m_{Q_{\min}}}{m_{Q_{\min}}} \log \left[\frac{2}{c_{\gamma}} \left(\frac{m_S}{2\pi T_F} \right)^{\frac{3}{2}} \right] + \frac{m_S}{m_{Q_{\min}}} \log \left[\frac{\pi g_*^{1/2} c_{\gamma} T_F^{1/2}}{\sqrt{90} Q_{\max} M_{\text{pl}} (\sigma v_{\text{rol}})_{Q_{\min}}} \left(\frac{4\pi^2 T_F}{m_S m_{Q_{\min}}} \right)^{\frac{3}{2}} \right]$$

$$= \frac{10^{-1} 0^{-2}}{10^{-3} 0^{-4} 0$$

Gravitational Waves at Formation

• **GW spectrum:** $\Omega_{gw} h^2 = \Omega_{\phi} h^2 + \Omega_{sw} h^2 + \Omega_{turb} h^2$

[Caprini+, 1512.06239]

MDMs Being More Attractive

Using the dark quark nuggets as an example

$$\mathcal{L}_{dQCD} = \sum_{i=1}^{N_f} \left[\bar{\psi}_i i \gamma^{\mu} D_{\mu} \psi_i - m_{\psi_i} \, \bar{\psi}_i \psi_i \right] - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu\,a}$$

* Adding an additional attraction between the MDMs

$$\mathcal{L}_{\text{Yukawa}} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \sum_{i} (m_{\psi_{i}} + y_{i} \phi) \,\overline{\psi}_{i} \,\psi_{i} - V_{0}(\phi) \,, \quad V_{0}(\phi) = \frac{1}{2} m_{\text{med}}^{2} \phi^{2}$$

→ In the massless mediator limit $\alpha = y^2 q_1 q_2 / (4\pi G m_1 m_2)$

$$F = -G'm_1m_2/r^2, \quad G' = (1-\alpha)G \equiv \beta G$$
$$\omega^2 = \frac{G'm}{a^3}, \quad E = -\frac{G'm^2\eta}{2a} \qquad e^2 = 1 + \frac{2EL^2}{G'^2m^5\eta^3}$$

* MDMs may form binaries in the early universe

[Bai, SL, Orlofsky, 2312.13378]

* Energy emission from the binary is different now

Energy emission through GW portal

$$\langle \dot{E}_{\rm GW} \rangle = \frac{32GG'^3 \eta^2 m^5}{5a^5 (1-e^2)^{7/2}} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4 \right)$$

Energy emission through the dark force portal via dipole

$$\langle \dot{E}_{\rm DF} \rangle = \frac{G G'^2}{12\pi} \eta^2 m^4 \left(\frac{gq_1}{\sqrt{G}m_1} - \frac{gq_2}{\sqrt{G}m_2} \right)^2 \frac{1}{a^4} \frac{2+e^2}{(1-e^2)^{5/2}}$$

• charge separation from a parity violating bubble

[Kharzeev, Zhitnitsky, 0706.1026]

• (possibly large) fermion flavor fluctuation at formation

$$m = m_1 + m_2, \quad \eta = \frac{m_1 m_2}{m^2}$$

The GW energy spectrum of the binary

→ GW frequency is related to orbital frequency: $f_{\rm GW,s} = \omega/\pi$

$$\begin{aligned} \frac{dE_{\rm GW}}{df_{\rm GW,s}} &= \frac{\dot{E}_{\rm GW}}{\dot{f}_{\rm GW,s}} = \frac{\pi \dot{E}_{\rm GW}}{\dot{\omega}} = \frac{\pi \dot{E}_{\rm GW}}{-\frac{3\sqrt{2}}{G'm^{5/2}\eta^{3/2}}\sqrt{-E}\dot{E}} \\ \dot{E} &= \dot{E}_{\rm GW} + \dot{E}_{\rm DF} \\ & \text{same mass, opposite charge} \\ \frac{dE_{\rm GW}}{df_{\rm GW,s}} &= \frac{\pi \sqrt{a} \left(37e^4 + 292e^2 + 96\right) G'^{3/2} M_{\rm obj}^{5/2}}{3\sqrt{2} \left(10 a(1-e^2)(2+e^2)(\beta-1) + (37e^4 + 292e^2 + 96) G' M_{\rm obj}\right)} \\ \hline \\ \mathbf{DF \ portal} \qquad \mathbf{GW \ portal} \end{aligned}$$

➡ Without the dark force

$$\frac{dE_{\rm GW}}{df_{\rm GW,s}} \propto \sqrt{a} \propto f_{\rm GW,s}^{-1/3}$$

 The GW emission spectrum of the binary is changed

SGWB from Dark Binaries

* Convolution over cosmic history

➡ For primordial black holes (gravity only)

$$\Omega_{\rm GW}(f_{\rm GW}) = \frac{f_{\rm GW}}{\rho_c} \int_0^{z_{\rm sup}} dz \frac{R(z)}{(1+z)H(z)} \frac{dE_{\rm GW}}{df_{\rm GW,s}} ((1+z)f_{\rm GW})$$

 With additional interactions, orbital geometry becomes extremely important

$$\Omega_{\rm GW}(f_{\rm GW}) = \frac{f_{\rm GW}}{\rho_c} \int_{\sqrt{1-c_2^2}}^{e_{0,\max}} de_0 \int d\tau \frac{n_{\rm obj}}{4} \mathcal{P}(\tau, e_0) \frac{dE_{\rm GW}}{df_{\rm GW,s}} \left[(1+z(t))f_{\rm GW} \right]$$

orbital eccentricity merger lifetime, related to

semi-major axis

30

Spectral Shape

* A two- or three-stage power-law spectrum

Sensitivity at Experiments

•eesa

THE SPECTRUM OF GRAVITATIONAL WAVES

➡ Consider SKA, LISA, BBO and LIGO-Virgo (HLV)

Sensitivity at Experiments

 $\rho_{\rm th} = 1, T_{\rm obs} = 20 \text{ yr (SKA)}/1 \text{ yr (others)}$

Complications from the Model

* The Yukawa sector

$$\mathcal{L}_{dQCD} = \sum_{i=1}^{N_f} \left[\bar{\psi}_i i \gamma^{\mu} D_{\mu} \psi_i - m_{\psi_i} \,\bar{\psi}_i \psi_i \right] - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu\,a}$$
$$\mathcal{L}_{Yukawa} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \sum_i (m_{\psi_i} + y_i \,\phi) \,\bar{\psi}_i \,\psi_i - V_0(\phi) \,, \quad V_0(\phi) = \frac{1}{2} m_{med}^2 \phi^2$$

* Finite density effect

$$V_1 = g \frac{1}{2\pi^2} \int_0^{k_F} dk \, k^2 \, \sqrt{k^2 + (m_\psi + y \, \phi)^2} \approx \frac{g}{8\pi^2} \, \mu^2 \, \left[\mu^2 - (m_\psi + y \, \phi)^2\right]$$

The mediator becomes heavy inside: a screening effect!

Complications from the Model

* Requiring the dark force range to cover the MDM

 $|m_{\rm in}|R < 1$

$$\Rightarrow y < 2^{19/12} 3^{-7/12} \pi^{5/6} g^{-1/4} \Lambda_d^{1/3} M^{-1/3} = (2 \times 10^{-19}) \left(\frac{\Lambda_d}{1 \,\text{GeV}}\right)^{1/3} \left(\frac{M_{\odot}}{M}\right)^{1/3}$$
$$\alpha = \frac{3 \, g \, y^2 \, m_{\psi}^2}{128 \pi^3 \, G \, \Lambda_d^4} \lesssim (0.02) \left(\frac{m_{\psi}/\Lambda_d}{0.5}\right)^2 \left(\frac{1 \,\text{GeV}}{\Lambda_d}\right)^{4/3} \left(\frac{M_{\odot}}{M}\right)^{2/3}$$

- DF may not be arbitrarily strong for MDM
- Model dependent

Conclusions

- MDMs can be naturally formed from cosmic phase transitions. Later evolution may also be important in determining their properties
- Candidates can come from either fermionic or bosonic theories
- Unique phenomenologies. E.g. with addition attractive interactions, the SGWB from binary MDMs is distinctive from the gravity-only case

Backup

Lensing

More on the Screening

The scalar field with the effective potential

$$\partial_r^2 \phi + \frac{2}{r} \partial_r \phi = \frac{\partial V_{\text{eff}}(\phi)}{\partial \phi}$$
$$V_{\text{eff}}(\phi) = -a \phi \Theta(R-r) + \frac{1}{2} \left[m_{\text{in}}^2 \Theta(R-r) + m_{\text{med}}^2 \Theta(r-R) \right] \phi^2$$

The solution

$$\phi_{\text{out}} = c_1 e^{-m_{\text{med}} r}, \quad \phi_{\text{in}} = a/m_{\text{in}}^2 + c_2 (e^{-m_{\text{in}} r} - e^{m_{\text{in}} r})/r$$
$$\frac{q_{\text{eff}} y}{4\pi} = c_1 = a \frac{e^{m_{\text{med}} R} [m_{\text{in}} R \cosh(m_{\text{in}} R) - \sinh(m_{\text{in}} R)]}{m_{\text{in}}^2 [m_{\text{med}} \sinh(m_{\text{in}} R) + m_{\text{in}} \cosh(m_{\text{in}} R)]}$$

$$m_{\text{med}}R \ll 1, \ m_{\text{in}}R \ll 1 \Longrightarrow c_1 = a R^3/3$$

 $m_{\text{med}}R \ll 1, \ m_{\text{in}}R \gg 1 \Longrightarrow c_1 = a \frac{R^3}{(m_{\text{in}}R)^2}$

* The GW energy spectrum of the binary

→ Small a_0 or e_0

The Merger Rate

The merger rate depends on the geometry of the binary and its nearest neighbor

$$R(x,y) = \frac{1}{2} \frac{n_{\rm obj}}{2} P = \frac{1}{2} \frac{3H_0^2}{8\pi G} \frac{f\,\Omega_{\rm DM}}{2M_{\rm obj}} P(x,y)$$

x: comoving distance between the binary

y: comoving distance to the nearest neighbor

f: fraction of the binaries among all DM

Assuming random formation

$$P(x,y) \, dx \, dy = \frac{9x^2 y^2}{\bar{x}^6} e^{-(y/\bar{x})^3} \, dx \, dy$$

In terms of the orbital parameters

$$a_0 = \frac{c_1}{\beta} \frac{1}{f} \frac{x^4}{\bar{x}^3}, b_0 = c_2 \left(\frac{x}{y}\right)^3 a_0, e_0 = \sqrt{1 - \left(\frac{b_0}{a_0}\right)^2}.$$

 $\bar{x} = \frac{1}{1 + z_{\rm eq}} \left(\frac{8\pi G M_{\rm obj}}{3H_0^2 f \,\Omega_{\rm DM}} \right)^{1/3}$

[loka, Chiba, Tanaka, Nakamura, astro-ph/9807018]

V

Constraints from N_{eff}

* Counting contributions from only before the CMB

Amplitude of that part is ~10^{3.5} smaller compared with the full spectrum for the GW

Constraints from N_{eff}

* Counting contributions from only before the CMB

➡ DF emission is not a huge issue either

DF Mediator Mass

* Typical distance

$$\bar{x} = \frac{1}{1 + z_{\rm eq}} \left(\frac{8\pi G M_{\rm obj}}{3H_0^2 f \,\Omega_{\rm DM}} \right)^{1/3} \approx 0.1 \,\mathrm{pc} \left(\frac{M_{\rm obj}}{M_{\odot}} \right)^{1/3} \left(\frac{1}{f} \right)^{1/3} \sim (6 \times 10^{-23} \,\mathrm{eV})^{-1} \left(\frac{M_{\rm obj}}{M_{\odot}} \right)^{1/3} \left(\frac{1}{f} \right)^{1/3}$$

Cosmological constraints from bullet clusters

[Bogorad, Graham, Ramani, 2311.07648]

Scalar and Vector Emission

 Emission through vector or scalar takes the same form in the massless mediator limit

$$\begin{split} \langle \dot{E}_S \rangle &= \frac{1}{3} \eta^2 m^2 \omega^4 r^2 g_S(m_S, e) (\tilde{q}_1 - \tilde{q}_2)^2, \\ \langle \dot{E}_V \rangle &= \frac{2}{3} \eta^2 m^2 \omega^4 r^2 g_V(m_V, e) (\tilde{q}_1 - \tilde{q}_2)^2, \\ g_S(m_S, e) &= \sum_{n=1}^{\infty} 2n^2 \left[\mathcal{J}_n'^2(ne) + \left(\frac{1 - e^2}{e^2}\right) \mathcal{J}_n^2(ne) \right] \times \left[1 - \left(\frac{m_S}{n\omega}\right)^2 \right]^{3/2}, \\ g_V(m_V, e) &= \sum_{n=1}^{\infty} 2n^2 \left[\mathcal{J}_n'^2(ne) + \left(\frac{1 - e^2}{e^2}\right) \mathcal{J}_n^2(ne) \right] \times \left[1 - \left(\frac{m_V}{n\omega}\right)^2 \right]^{1/2} \left[1 + \frac{1}{2} \left(\frac{m_V}{n\omega}\right)^2 \right], \end{split}$$

[Krause, Kloor, Fischbach, 1994] [Alexander, McDonough, Sims, Yunes, 1808.05286]

Higher Harmonics

- With an eccentric orbit, the binary should emit GW at all harmonics of the orbital frequency
 - We are effectively assuming all energy are emitted through the n=2 channel
 - ➡ To account for the other modes

$$\begin{split} \frac{dE_{\rm GW}}{dt} &= \frac{32GG'^3\eta^2 m^5}{5a^5} \frac{1 + \frac{73}{24}e^2 + \frac{37}{96}e^4}{(1 - e^2)^{7/2}} = \frac{32GG'^3\eta^2 m^5}{5a^5} \sum_n g(n, e) \,, \\ g(n, e) &= \frac{n^4}{32} \Bigg\{ \left[J_{n-2}(ne) - 2eJ_{n-1}(ne) + \frac{2}{n} J_n(ne) + 2eJ_{n+1}(ne) - J_{n+2}(ne) \right]^2 \\ &+ (1 - e^2) \left[J_{n-2}(ne) - 2eJ_n(ne) + J_{n+2}(ne) \right]^2 + \frac{4}{3n^2} J_n^2(ne) \Bigg\} \,, \end{split}$$

[Peters and Mathews, Phys. Rev. 131 (1963) 435-439] [Enoki, Nagashima, astro-ph/0609377]

Higher Harmonics

* The following calculation is straight-forward

$$\begin{split} \frac{d^2 E_{\rm GW}}{dt \, df_{\rm GW,s}} &= \frac{32 G G'^3 \eta^2 m^5}{5 a^5} \sum_n g(n,e) \delta(f_{\rm GW,s} - nf_{\rm orb}) \,, \\ \frac{d E_{\rm GW}}{df_{\rm GW,s}} &= \sum_n \int dt \frac{32 G G'^3 \eta^2 m^5}{5 a^5} g(n,e) \delta(f_{\rm GW,s} - nf_{\rm orb}) \\ &= \sum_n \int \frac{de}{de/dt} \frac{32 G G'^3 \eta^2 m^5}{5 a^5} g(n,e) \delta(f_{\rm GW,s} - nf_{\rm orb}) \\ &= \sum_n \int de \frac{32 G G'^3 \eta^2 m^5}{5 a^5} \frac{a^3 (1 - e^2)^{3/2}}{4 e G^2 (\mathcal{G} - 1) \mathcal{G} M_{\rm obj}^2} \frac{g(n,e)}{n} \delta(f_{\rm orb} - f_{\rm GW,s}/n) \\ &= \sum_n \frac{32 G G'^3 \eta^2 m^5}{5 a^5} \frac{a^3 (1 - e^2)^{3/2}}{4 e G^2 (\mathcal{G} - 1) \mathcal{G} M_{\rm obj}^2} \frac{g(n,e)}{n} \frac{1}{\left|\frac{df_{\rm orb}}{de}\right|_{e=e_n}} \\ &= \sum_n \left(\frac{E_{\rm GW}}{df_{\rm GW,s}}\right)_n \,, \end{split}$$

Higher Harmonics

Sensitivity at Experiments

 Signal-to-noise ratio for multiple detectors where cross-correlation can be performed

$$\varrho^2 = n_{\rm det} T_{\rm obs} \int df_{\rm GW} \left(\frac{\Omega_{\rm GW}}{\Omega_{\rm noise}}\right)^2$$

[Schmitz, 2002.04615]

- n_det=2 for cross-correlation, and 1 for auto-correlation (if applicable)
- Nontrivial noise subtraction is required for auto-correlation
 - TDI interfereometry?

[Smith and Caldwell, 1908.00546]