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Pulsar and PTA
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@ Pulsars are highly magnetized, rotating neutron stars that emit regular pulses of
electromagnetic radiation.

o GWs can cause tiny distortion in spacetime inducing variations in the time of arrivals (ToAs).

@ A pulsar timing array (PTA) pursues to detect nHz GWs by regularly monitoring ToAs from
an array of the ultra rotational stable millisecond pulsars.
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The stochastic signal in PTAs
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SIGWs can explain the PTA signal.
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Figure 2. Bayes factors for the model comparisons between the new-physics interpretations of the signal considered in this
work and the interpretation in terms of SMBHBs alone. Blue points are for the new physics alone, and red points are for the
new physics in combination with the SMBHB signal. We also plot the error bars of all Bayes factors, which we obtain following
the bootstrapping method outlined in Section 3.2. In most cases, however, these error bars are small and not visible.
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Scalar-Induced Gravitational Waves (SIGWs)

o Primordial perturbations can be generated by quantum fluctuations during inflation.

@ Metric perturbation in Newtonian gauge
h o
ds? = a° {7(1 +2¢)dn® + [(1 —2¢)d; + ?”] dx'dxf} , 1)

where ¢ = ¢(1) and hj = hgjz) are the scalar and tensor perturbations, respectively.

@ Primordial scalar perturbation can be the source of SIGWs, as well as primordial black holes

(PBHs).
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What is primordial black hole?

What is primordial black hole?

The concept was first proposed in 1971 by Stephen Hawking, who introduced the idea that black
holes may exist that are smaller than stellar mass, and are thus not formed by stellar gravitational
collapse. A primordial black hole is a hypothetical type of black hole formed during the
high-density, in-homogeneous phase of the early Universe.

Motivations

@ a perfect candidate for dark matter
@ to provide seeds for super-massive BHs
@ to provide seeds for cosmic structures

@ to account for LVK events
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PBH formation

@ PBHs can be formed in the early universe by gravitational

collapse of primordial density perturbations. N >
..~~~ Primordial
¢ Perturbation

@ PBH mass can span many orders

t t
M ~—=n~|—|M, 2
PBH ™~ = (1 ) ) (2)
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Non-Gaussianity

@ The local-type non-Gaussian curvature perturbations:
R(%) = Ra(X) + Fxw (RG(X) — (REG(X))) - 3)

@ The effective curvature power spectrum

oo IV pp(uk)Pr(vk
PNCG = Pr (k) + F2,, dv/ du % (4)
0 [1—v]| 2utv
@ The energy density of GWs:
[1+v]|
Qaw (k) = / dv/ duT PRC (vk)PRC (uk), (5)

where the transfer function 7 = T (u, v) is given by
T(u,v) -3 [4v2 - (V= + 1)2]2 (v +u® — 3)2
’ 1024v8u8
3—(v+u)? 2
2 2
X{[(v +u —3)In(’m —4vu (6)

+72 (v2+u273)2@(v+ufﬁ)}.
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Non-Gaussianity
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Figure: An illustration of the impact of the non-Gaussianity parameter Fxi, on the probability distribution of
the curvature perturbation R. Notably, non-Gaussianity induces a skew in the distribution. A positive FnL,
extends the tail of the probability distribution for R > 0, thereby elevating the likelihood of R > R and
consequently leading to increased production of PBHs. Conversely, a negative Fni, diminishes the PBH

production.
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Non-Gaussianity

o Power spectrum:

A In2(k/k*))
Pr(k) = exp [ — . 7
R(K) = e (<L ™)
@ The PBH mass fraction at formation time
RE(Re) Rg(Re)
f G fo| ——< . F 0,
1) <¢<T>> e ( 2<Ra>) A

B(M) = e v (®)

erf G(Re) —erf G(Re) ; Fni, < 0,

2(R%) 2(Rg)
with
+ 1 2 /12
RER) = = (1% /1 +4FWR +4F (R%) ). (9)
2FnL

@ The total abundance of PBHs in the dark matter at present

Q e *,r 3/4 * -1 M —1/2
prHzﬂ:ﬂxmf’/ dinm (£ )/ (&= (—) B(M).
Qcpm —oo 10.75 10.75 Mg

(10)
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Muc

logso(f+/Hz)

logsolFu|

logso(f+/Hz) logao|Frc|

o |Fni| S 13.9

o —13.9 < Fni, < —0.1 when further requiring fppg S 1.
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Implications

@ The constraints on Fyr, have significant implications for Multi-field inflation models.

@ For instance, adiabatic curvaton models predict that

5 5 5m 5
fo = 2F 2 11
T3 T4 e 3 (1)

where rp = 3pcurvaton/(3Pcurvaton + 4Pradiation) represents the ”curvaton decay fraction”
at the time of curvaton decay.

@ Our constraint |Fni,| < 13.9 implies
m 2 0.05 (95%), (12)
and the further constraint that Fyp, < —0.1 yields
m 2 0.62 (95%), (13)

indicating that the curvaton field has a non-negligible energy density when it decays.

o Our findings, therefore, pave the way to constrain inflation models with PTAs.
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Equation of state of the early Universe

@ The observed spectrum of SIGW per In k today is

4

) s
Qaw oh? ~1.62 x 107° ( 2,0k ) (g*’(T“‘)) (g*s(Trh)) ’ Qaw,n-  (14)

4.18 x 10—° 106.75 106.75

The SIGW spectrum for the scales k 2 kyy, is

K )7%/0 d / T T P (ku)Pre (), (15)

Qaw,rh = (
kin 1—v|

where b = (1 — 3w)/(1 + 3w). And Qaw h o (k/kn)? when k < k.

@ The primordial power spectrum:

n2 *
Pr(k) = <2 oxp (- TULE)) (16)
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Implications

o Reheating temperature T, < 0.2GeV.

o w < 0 is excluded at 95% confidence level.

w = 1/3 is consistent with the PTA data.
@ w peaks at around 0.6.

@ Since during the oscillation of inflaton, w = ’;% for an power-law potential V(¢) x ¢P,
then, the constraint on w implies a $® bottom of the inflationary potential.
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Overcoming excessive PBH production
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The speed of SIGW

@ The SIGW spectrum:

Qaw (k) = / dv/ AuT (u, v, cg) Pe (vk) P (uk). a7

@ The transfer function 7:

2
3 [4v2 - (v2 -2+ 1)2] (v2 +u? - 3c§)2

1024v8u8
2
> - 4vu:| (18)

3 2 _ + 2
(v +u® — 3c§) In ( s — (viu)
+ a2 (V24 u? — 3c§)2 O(v+u-— \/§cg)}.

T(u,v,cg) =

1

3¢z — (v — u)?

@ The primordial power spectrum:

n2 *
Pr(k) = <2 o (~TULE)) (19)
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Results and Implications

® ¢z 2 0.61 at a 95% credible interval.

@ ¢g = 1 is consistent with the PTA data.
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Results and Implications

The frequency-dependent GW propagation speed

f2 f2 f2 /2
Cg(f)=|:1+t:2;21/1+2(16§)f;2:| . (20)
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Conclusions

@ PTAs are opening a new window in the nHz band.

o SIGWs can explain recent PTA signal.
@ PTA can explore the nature of the early Universe through SIGWs, including

o the non-Gaussianity of curvature perturbation
Lang Liu, Zu-Cheng Chen', Qing-Guo Huang', 2307.01102 PRDL

o the equation of state of the early Universe
Lang Liu, Zu-Cheng Chent, Qing-Guo HuangT, 2307.14911 JCAP

o the sound speed of the early Universe
Lang Liu, You WuT, Zu-Cheng Chen®, 2310.16500 JcAP

sound speed resonance
Jia-Heng Jin, Zu-Cheng Chen, Zhu Yi, Zhi-Qiang You, Lang LiuT, You wu' 2307.08687 saCP

parametric amplification in Higgs inflation
Zhu Yi, Zhi-Qiang You, You Wu, Zu-Cheng Chen' , Lang LiuT, 2308.14688

the speed of SIGW
Zu-Cheng Chen, Jun Li, Lang LiuT, Zhu Yi 2401.09818

the initial condition of curvature perturbation
Zu-Cheng Chen, Lang LiuT 2402.16781
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Thank you for your attention!
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