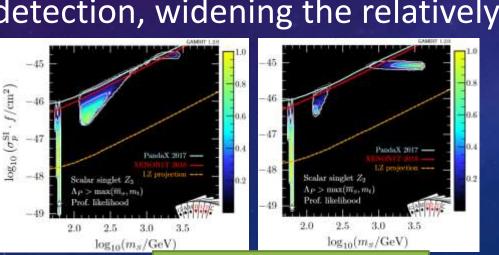

# MATTER ASYMMETRY GENESIS IN THE $Z_3$ DM-COMPANION MODEL

ZHAOFENG KANG(康召丰),华中科技大学(HUST) THE 5<sup>TH</sup> WORKSHOP ON FRONTIERS OF PARTICLE PHYSICS, 2024/04/15,深圳

BASED ON THREE WORKS IN COLLABORATION WITH JUN GUO(郭俊), SHAOLONG CHEN(陈绍龙) & PENG ZHANG(张鹏)

# OUTLINE

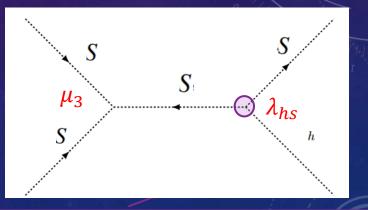



# $Z_3$ SYMMETRIC DM-COMPANION MODEL

#### $\blacklozenge$ The simplest $Z_3$ DM model: a complex scalar DM with Higgs portal

$$V_{\mathbb{Z}_{3}} = \mu_{H}^{2} |H|^{2} + \frac{1}{2} \lambda_{h} |H|^{4} + \lambda_{hs} S^{\dagger} S |H|^{2} + \mu_{s}^{2} S^{\dagger} S \not$$
  
+  $\lambda_{s} (S^{\dagger} S)^{2} + \frac{\mu_{3}}{2} (S^{3} + S^{\dagger 3}),$ 

- New-1: Semi-annihilation  $SS \rightarrow Sh$
- New-2: Alleviate the constraint of DM direct detection, widening the relatively light region



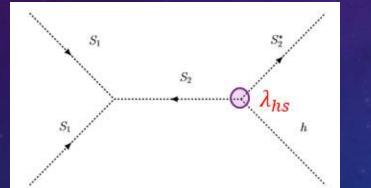

From GAMBIT. EPJC 2018

> The usual Higgs portal is still necessary, but  $\lambda_{hs}$  can be smaller by increasing  $\mu_3$ 

> Can we have more fun?E.g., to Improve the embarrassing situation of WIMP DM?

 $S \to \exp\left(i\frac{2\pi}{3}\right)S$ 




# $Z_3$ SYMMETRIC DM-COMPANION MODEL

J. Guo, Z. Kang and P. Zhang, PLB (2022)

#### A new way to untie WIMP DM freeze-out & DM-nucleon scatter

#### • DM with a $Z_3$ -symmetric companion

 $-\mathcal{L}_{Z_3} \supset m_1^2 S_1 S_1^* + m_2^2 S_2 S_2^* + \lambda_{1h} |S_1|^2 |H|^2 + \lambda_{2h} |S_2|^2 |H|^2 \\ + \left(\frac{A_1 S_1^3}{3} + \frac{A_2 S_2^3}{3} + \frac{1}{2} A_{12} S_1^2 S_2 + \frac{1}{2} A_{21} S_1 S_2^2 + c.c\right),$ 

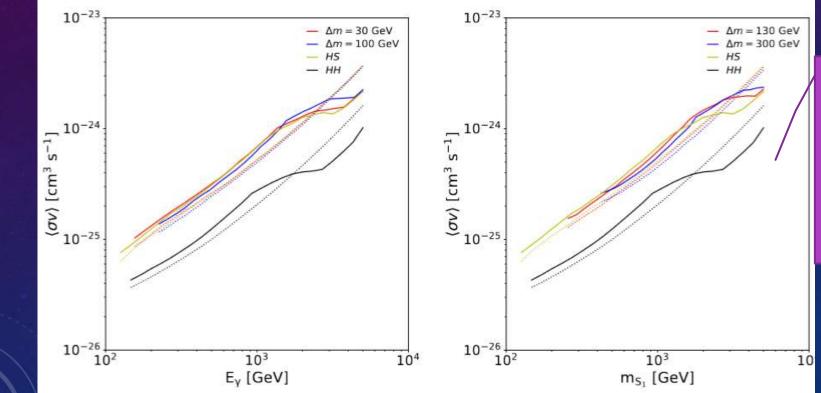


- > If extend the original model by one more copy of DM  $S_1$ , then this DM companion  $S_2$  furnishes the symmetric portal to SM
- Now the Higgs portal for DM can/should be turned off, by hand
- > To allow DM semi-annihilate away, we require the window:  $m_{S_2} + m_h < 2m_{S_1} < 2m_{S_2}$

The idea can be implemented in any  $Z_N$ model for N > 2

• Fermionic  $Z_3$  DM has no DM Higgs portal!

 $\begin{aligned} -\mathcal{L}_{Z_3} \supset + m_S^2 |S|^2 + M_{\Psi} \bar{\Psi} \Psi + \lambda_{sh} |S|^2 |H|^2 \\ + \left( \frac{A_s}{3} S^3 + \lambda_L \overline{\Psi^C} P_L \Psi S + \lambda_R \overline{\Psi^C} P_R \Psi S + c.c. \right), \end{aligned}$ 


Due to the accidental  $Z_2$  for fermion, companion is also stable in this model

## FUNS WITH $Z_3$ DARK MATTER MODELS

J. Guo, & Z. Kang, to appear

#### Highly hidden in the sky?

• Cosmic ray signal via on/off shell Higgs bosons:  $S_1S_1 \rightarrow S_2(\rightarrow S_1h) + h$ 




The 14&6-year FRMI-LAT data cannot yield meaningful constraint in the heavy region
 in the deep coannihilation region, this signal rate may be highly suppressed

#### Maximally asymmetric visible world

• asymmetry to save the world

Were in a symmetric early universe, the nucleon-antinucleon large annihilation rate would lead to negligible matter fraction

• a tiny asymmetry at  $T \gtrsim 1$ GeV to prevent over-annihilation:



Origin of asymmetry in BSM & Sakharov's 3 conditions (1967)

- B violation
- C & CP violation
- out-of-equilibrium (freeze-out, first order phase transition)



#### Andrei Sakharov

May 21, 1921 - December 14, 1989

SL Chen, ZK Liu, Z. Kang and P. Zhang, to appear

#### Connect to dark matter? idea traced back to asymmetric dark matter

- Asymmetry first generated in the dark matter, carrying generalized B/L number
- Translated to the visible sector via proper operators, e.g., DM<sup>2</sup>
- Related to but different than the models where DM directly annihilates into L/B to produce matter asymmetry

◆ Natural dark Sakharov's 3 conditions in semi-annihilation models
 ● dark matter number (not self-conjugate by Z<sub>N≥3</sub>) & its violation (S<sup>3</sup> term)
 ● CP violation: readily & safely present in the dark sector
 ● WIMP freeze out from the plasma departures from equilibrium

SL Chen, ZK Liu, Z. Kang and P. Zhang, to appear

A lepton portal extension to the DM-companion model

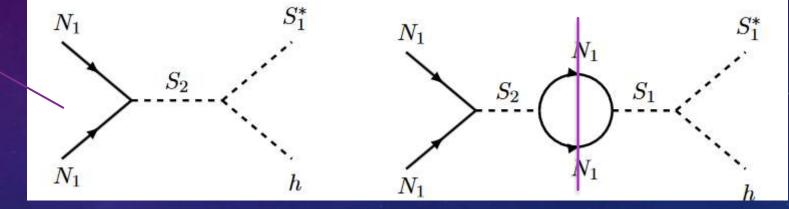
• an extra doublet scalar companion  $\eta$ 

$$-\mathcal{L}_{extra} \supset + y_{ij}\overline{L_{Li}}\tilde{\eta}\Psi_{Rj} + \lambda_{\eta}H^{\dagger}H\eta^{\dagger}\eta + g\eta^{\dagger}HS + m_{\eta}^{2}\eta^{\dagger}\eta,$$

The portal generalize lepton number to dark sector

A ``derivation" to the two-loop neutrino mass model by E. Ma

| Fileds                                                            | SU(2) | $U(1)_Y$ | $Z_3$ |
|-------------------------------------------------------------------|-------|----------|-------|
| H                                                                 | 2     | 1/2      | 1     |
| $L_L$                                                             | 2     | -1/2     | 1     |
| $\Psi^i_{R,L}$                                                    | 1     | 0        | w     |
| $\eta = \begin{pmatrix} \eta^{\dagger} \\ \eta^{0} \end{pmatrix}$ | 2     | 1/2      | w     |
| S                                                                 | 1     | 0        | W     |


•  $S - \eta^0$  mixture  $\rightarrow$  neutrino + DM, transferring DM asymmetry to leptons • Further transfers to baryon asymmetry? Depends on DM! see later

SL Chen, ZK Liu, Z. Kang and P. Zhang, to appear

#### Non-zero CP-violation parameter thanks to thermal motion

#### tree-loop interference

A resonant pole is needed for multi-TeV scale DM



• Zero CP violation in the static limit: initial & loop particles are the same

$$\epsilon = \frac{|M|^2_{N_1N_1 \to S_1^*h} - |M|^2_{\overline{N_1N_1} \to S_1h}}{|M|^2_{N_1N_1 \to S_1^*h} + |M|^2_{\overline{N_1N_1} \to S_1h}} = -\frac{Im[\lambda_0^*\lambda_1]}{4\pi|\lambda_0|^2} \frac{\sqrt{s(s - 4m^2_{N_1})}(s - 2m^2_{N_1})}{(s - m^2_{S_2})m^2_{N_1}}$$

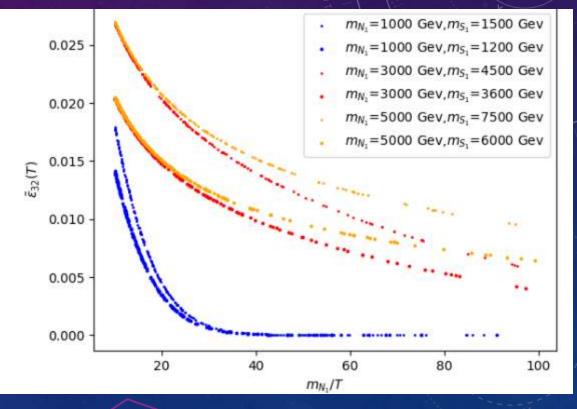
way out: Thermal average consistently defined below

$$\epsilon_T \equiv \langle \epsilon(s) \rangle = \frac{4m_{N_1}^2}{n_a^{eq} n_b^{eq}} \int d\Pi_a f_a^{eq} d\Pi_b f_b^{eq} \epsilon(a+b \to i+j).$$

 $|\lambda_{R1}||\lambda_{R2}||\lambda_{sh1}|$ 

SL Chen, ZK Liu, Z. Kang and P. Zhang, to appear

#### Non-zero CP-violation parameter thanks to thermal motion


• nonrelativistic suppression is mild,  $\sim \mathcal{O}(0.001) - \mathcal{O}(0.01)$ 

$$\langle \tilde{\epsilon}_{32}(T) \rangle \approx \frac{e^{2z}}{8g_N^2 (15/8 + z)^2 z \pi \sqrt{\frac{\pi}{2}}}$$
$$\int_{2z} \sqrt{x} e^{-x} \sqrt{x^2 - 4z^2} \frac{x \sqrt{(x^2 - 4z^2)} (x^2 - 2z^2)}{(x^2 - y^2)} dx$$

• Resonant enhancement  $\sim O(10)$ from the coupling part is reasonable

 $\operatorname{Im}[\lambda_0^*\lambda_1]$ 

 $=\frac{\mathrm{Im}[\lambda_{R2}^*\lambda_{sh12}\lambda_{R2}\lambda_{R2}\lambda_{R1}^*\lambda_{sh1}^*]}{|\lambda_{R1}\lambda_{sh12}^*|^2}$ 



This coupling can be very small due to DM annihilation with resonant enhancement

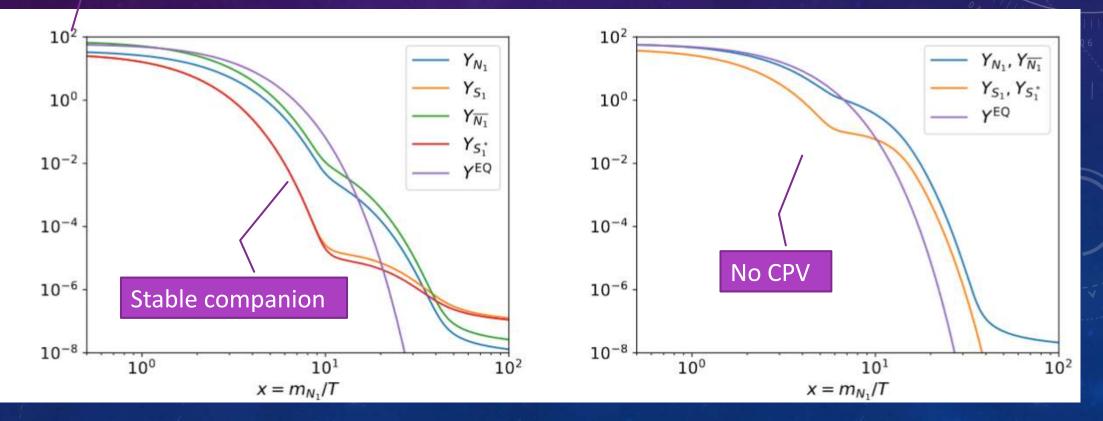
SL Chen, ZK Liu, Z. Kang and P. Zhang, to appear

#### Boltzmann equations

evolutions of number density of the (anti)DM-(anti)companion system

$$\begin{aligned} \frac{\mathrm{d}Y_{N_{1}}}{\mathrm{d}z_{N}} &= \frac{m_{N}^{3}}{z_{N}^{2}H(m_{N})} [2Y_{S_{1}^{*}}Y_{h}\left\langle\sigma_{a}v\right\rangle - 2Y_{N_{1}}Y_{N_{1}}\left\langle\sigma_{b}v\right\rangle + Y_{S_{1}}\frac{z_{N}^{3}}{m_{N}^{3}}\Gamma_{D} - Y_{\upsilon_{1}}e^{-\frac{z_{N}\Delta m}{m_{N}}}\frac{z_{N}^{3}}{m_{N}^{3}}\Gamma_{D} \\ &+ Y_{S_{1}}Y_{h}\left\langle\sigma_{c}v\right\rangle - Y_{N_{1}}Y_{\overline{\upsilon_{1}}}\left\langle\sigma_{c}v\right\rangle + 2Y_{S_{2}^{*}}Y_{h}\left\langle\sigma_{a}v\right\rangle - 2Y_{N_{1}}Y_{N_{1}}\left\langle\sigma_{b}v\right\rangle \\ &+ Y_{S_{2}}\frac{z_{N}^{3}}{m_{N}^{3}}\Gamma_{D} - Y_{\upsilon_{1}}e^{-\frac{z_{N}\Delta m}{m_{1}}}\frac{z_{N}^{3}}{m_{N}^{3}}\Gamma_{D} + Y_{S_{2}}Y_{h}\left\langle\sigma_{c}v\right\rangle - Y_{N_{1}}Y_{\overline{\upsilon_{1}}}\left\langle\sigma_{c}v\right\rangle],\end{aligned}$$

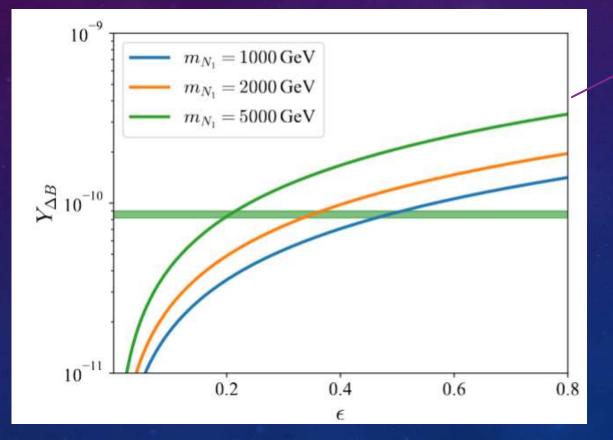
$$\begin{aligned} \frac{\mathrm{d}Y_{S_{1}^{*}}}{\mathrm{d}z_{1}} &= \frac{m_{1}^{3}}{z_{1}^{2}H(m_{1})} [Y_{N_{1}}Y_{N_{1}} \langle \sigma_{b}v \rangle - Y_{S_{1}^{*}}Y_{h} \langle \sigma_{a}v \rangle + Y_{v_{1}}e^{-\frac{z_{1}\Delta m}{m_{1}}}\frac{z_{1}^{3}}{m_{1}^{3}}\Gamma_{D} - Y_{S_{1}}\frac{z_{1}^{3}}{m_{1}^{3}}\Gamma_{D} \\ &+ Y_{N_{1}}Y_{\overline{v_{1}}} \langle \sigma_{c}v \rangle - Y_{S_{1}}Y_{h} \langle \sigma_{c}v \rangle], \end{aligned}$$


The only accessible channel of asymmetric companion decay is into neutrino, without washing<sub>7</sub>out

SL Chen, ZK Liu, Z. Kang and P. Zhang, to appear

BEs, beyond the coannihilation region

Asymmetry evolution samples


Asymmetry ~DM yield

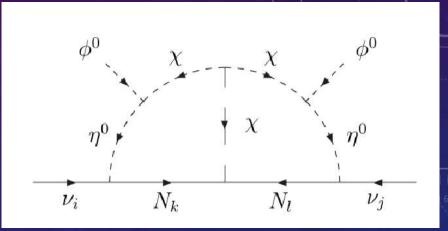


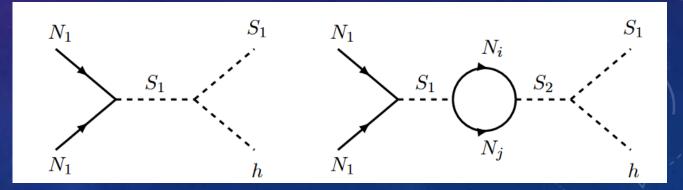
SL Chen, ZK Liu, Z. Kang and P. Zhang, to appear

#### ♦ Results

matter asymmetry versus thermally averaged CP violation parameter




For the interesting multi-TeV scale DM,  $\epsilon \sim 0.1$  works


Thank you for your attention!

## FUTURE WORK (WISH LIST LAST YEAR)

Neutrino & matter asymmetry
 a part of two-loop neutrino model
 ingredients for matter asymmetry

- DM DM not DM-anti-DM annihilation (dark number violation)
- CP violation in the dark sector or from the neutrino sector
- Departure from equilibrium during
  DM freeze-out
- transforming DM asymmetry to matter via leptons





Thank you for your attention!