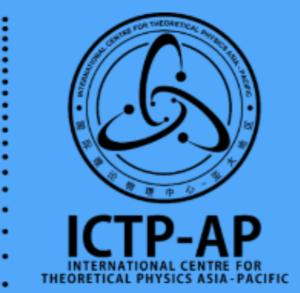
Bootstrapping the Chiral Anomaly at Large Nc

Teng Ma

United Nations Educational, Scientific and Cultural Organization



Based on:

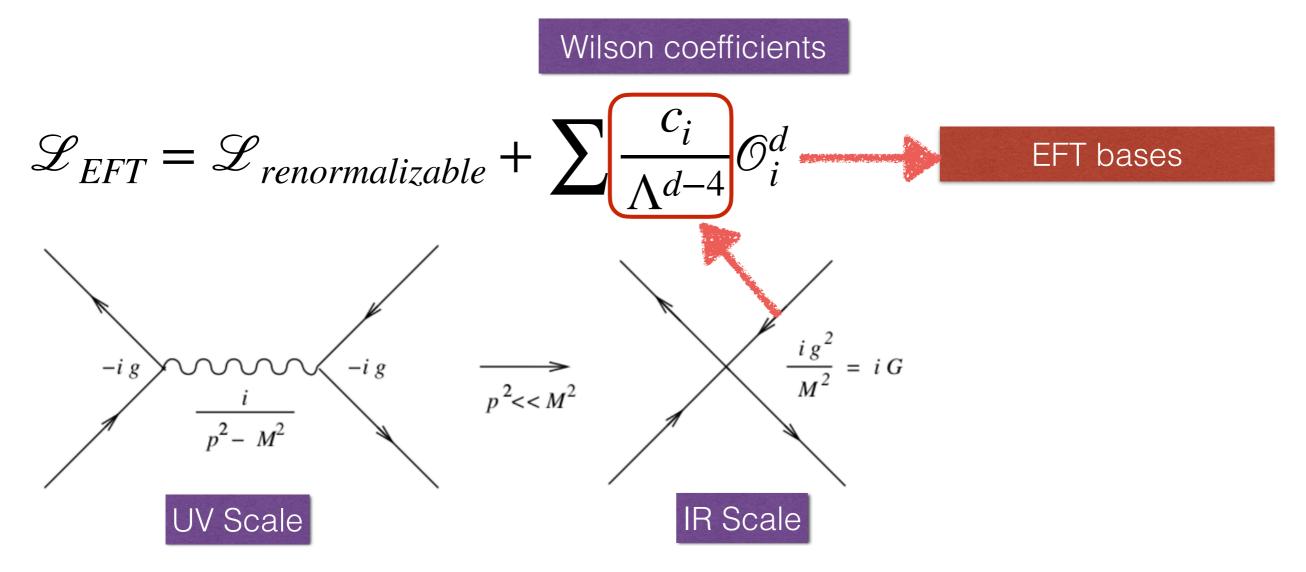
Arxiv: JHEP 11 (2023) 176

Collaborators: Alex Pomarol, Francesco Sciotti

Bootstrapping EFT

Bootstrapping EFT

• Effective field theory

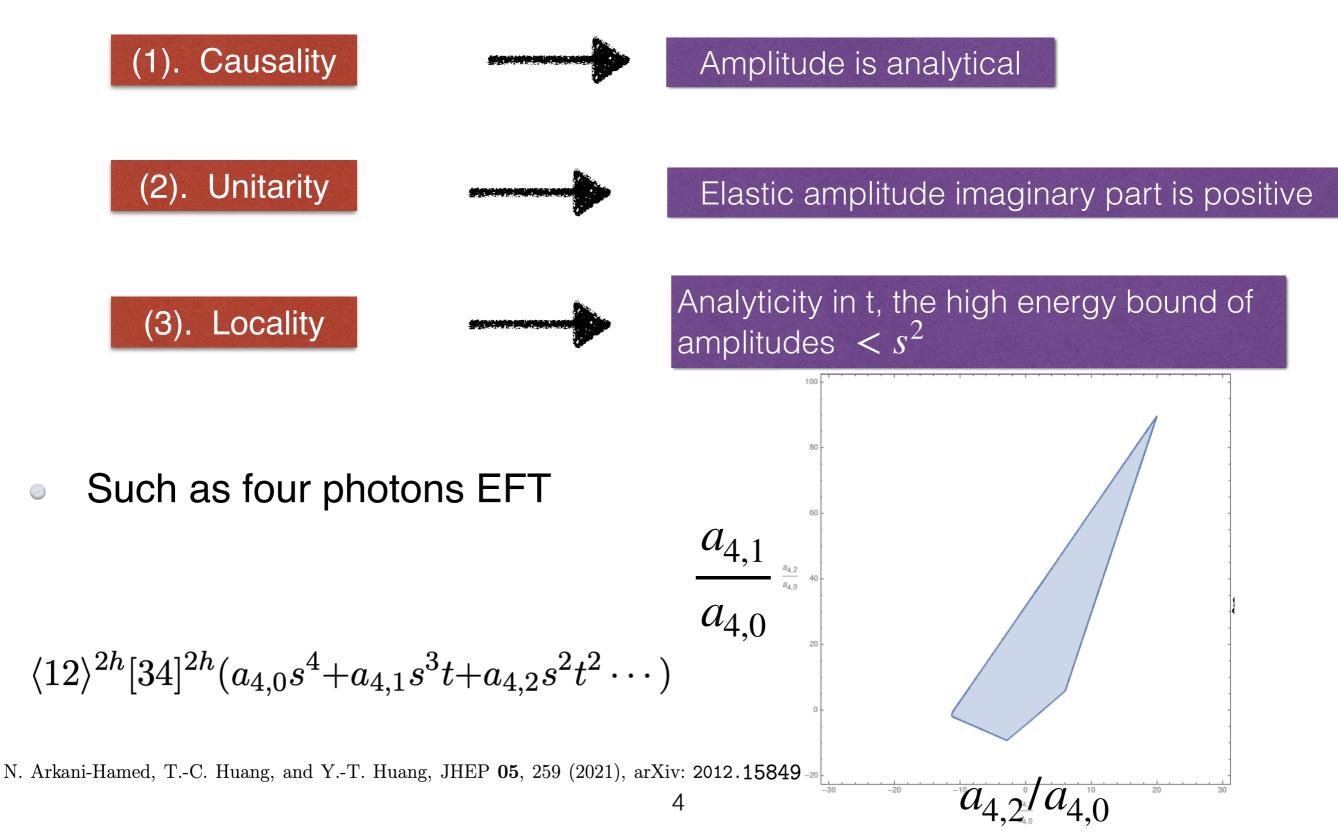


• The Wilson coefficients can choose any value if UV physics is unknown

$$\frac{c_i}{\Lambda^{d-4}} \quad ?$$

Bootstrapping EFT

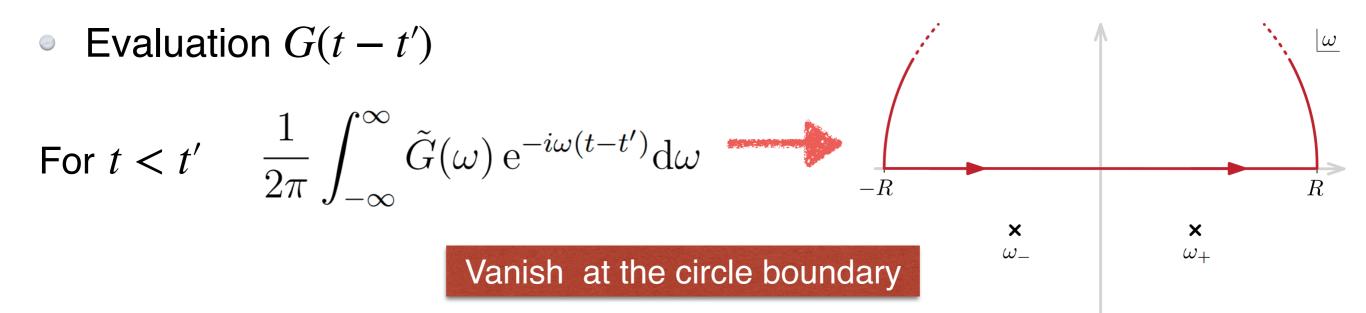
• The EFT is bounded if UV amplitudes follows consistency conditions



Causality vs Analyticity

• The electron motion under the electric field E(x, t)

$$\mathbf{x}(t) = \int_{-\infty}^{\infty} G(t - t') \mathbf{E}(t') \, \mathrm{d}t' \qquad \text{with} \qquad G(t - t') = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{G}(\omega) \, \mathrm{e}^{-i\omega(t - t')} \mathrm{d}\omega$$

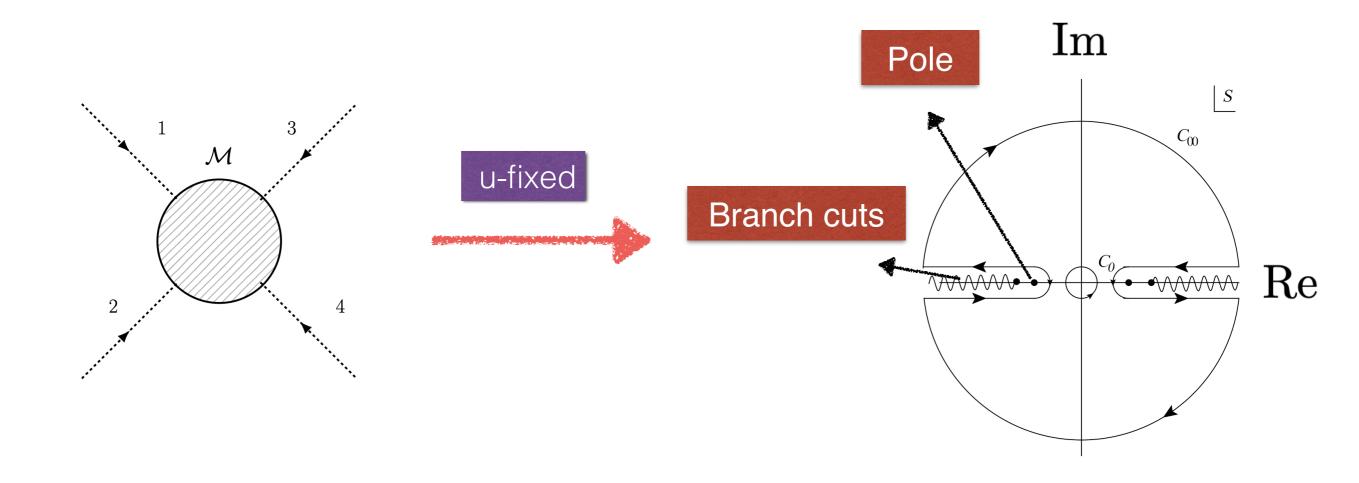


• Causality requires $G(\omega)$ is analytical in the upper half plane of ω

For
$$t < t'$$
 $G(t - t') = 0$ $G(\omega)$ no pole for $Im[\omega] > 0$

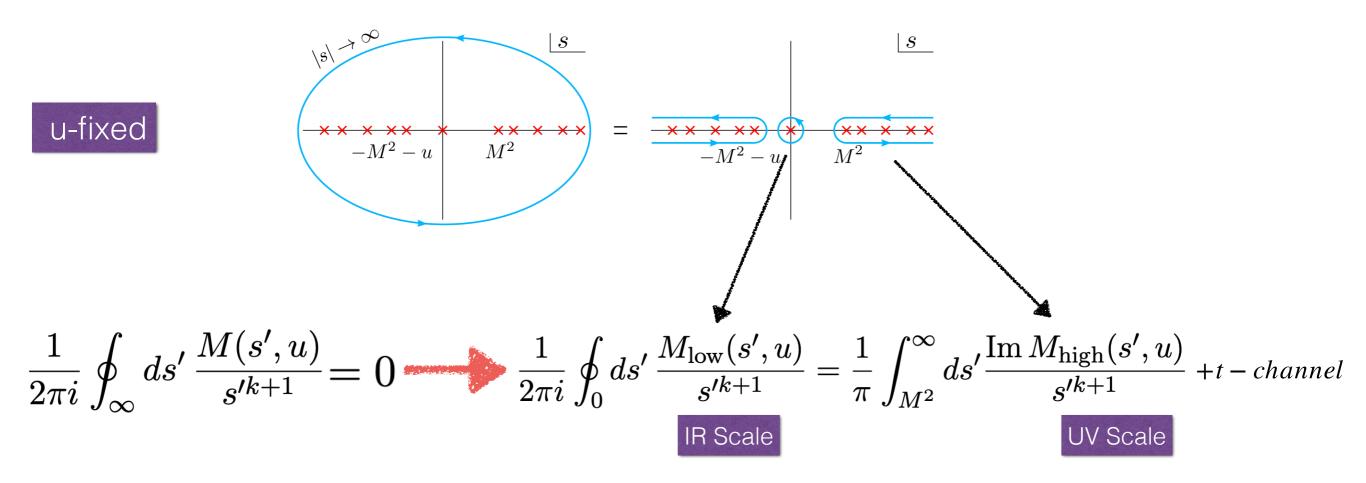
Causality vs Analyticity

 Causality: four-point amplitude is analytic in whole s plane except its real axis



Dispersion Relation

Analytic property allows to equate EFT amplitude to UV singularities



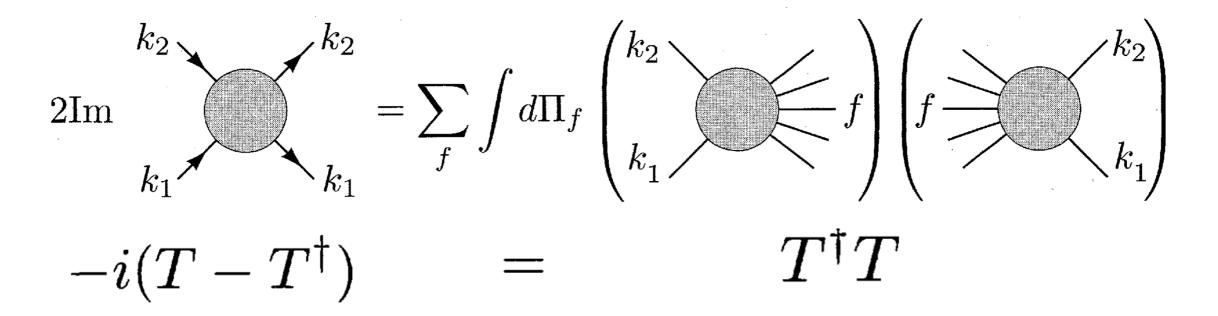
Dispersion relation is the tool to constrain EFT

Dispersion Relation

Dispersion relation relates the EFT with UV singularities

$$\text{u-fixed} \quad \frac{1}{2\pi i} \oint_0 ds' \, \frac{M_{\text{low}}(s', u)}{s'^{k+1}} = \frac{1}{\pi} \int_{M^2}^{\infty} ds' \frac{\text{Im} \, M_{\text{high}}(s', u)}{s'^{k+1}} \, +t - channel(s', u) + t - channel(s', u)$$

Unitarity: discontinuity is positive for elastic amplitudes

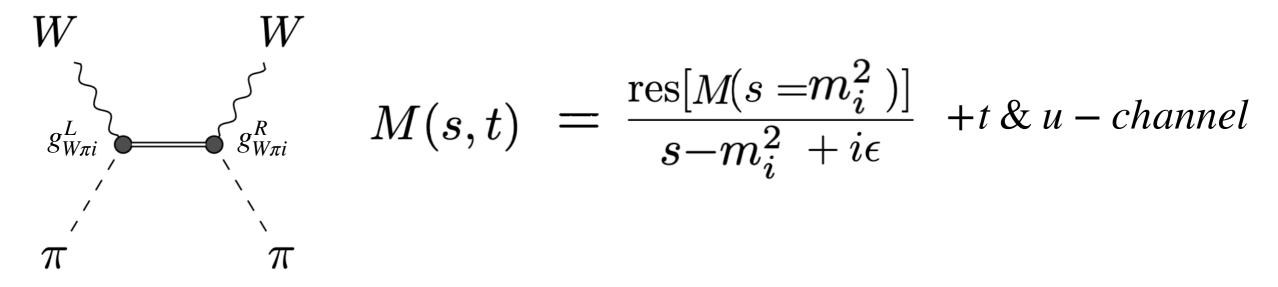


Optical theorem

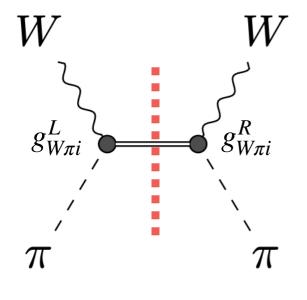
Im
$$M_{\text{high}}(s', u) = 2E_{\text{cm}}p_{\text{cm}}\sigma_{\text{tot}}(k_1, k_2 \rightarrow \text{anything})$$

Dispersion Relation

Unitarity at tree level



Amplitude imaginary at tree level



$$ImM = -\pi\delta(s - m_i^2) \operatorname{res}[M(s = m_i^2)]$$
$$\sim g_{W\pi i}^L (g_{W\pi i}^R)^*$$

Is determined by 3-point couplings

Application of Dispersion Relation

Constrain generic EFT

A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, *Causality, analyticity* and an IR obstruction to UV completion, JHEP **10** (2006) 014, [hep-th/0602178].

N. Arkani-Hamed, T.-C. Huang and Y.-T. Huang, The EFT-Hedron, 2012.15849.

X. Li, H. Xu, C. Yang, C. Zhang and S.-Y. Zhou, *Positivity in Multifield Effective Field Theories*, *Phys. Rev. Lett.* **127** (2021) 121601, [2101.01191].

Gravity EFT

S. Caron-Huot, D. Mazac, L. Rastelli and D. Simmons-Duffin, *Sharp Boundaries for the Swampland*, *JHEP* 07 (2021) 110, [2102.08951].

B. Bellazzini, M. Lewandowski, and J. Serra, "Positivity of Amplitudes, Weak Gravity Conjecture, and Modified Gravity," *Phys. Rev. Lett.* **123** no. 25, (2019) 251103,

• Constrain QCD EFT (focus on π)

J. Albert and L. Rastelli, JHEP 08, 151 (2022), arXiv: 2203.11950.

C. Fernandez, A. Pomarol, F. Riva, and F. Sciotti, JHEP 06, 094 (2023), arXiv: 2211. 12488.

Understanding Vector Meson Dominance and holographic QCD

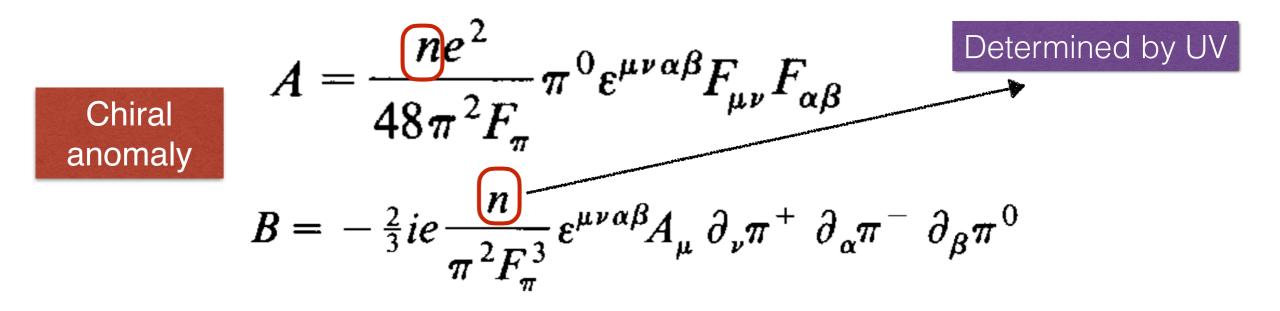
QCD in large N_c

• Understanding strong dynamics is still an open problem, such QCD

Chiral
grangian
$$\mathcal{L}_{Ch} = -\underbrace{\int_{4}^{2}}_{4} \operatorname{Tr} \left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \right) + \underbrace{L'_{1}}_{4} \left[\operatorname{Tr} \left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \right) \right]^{2}$$

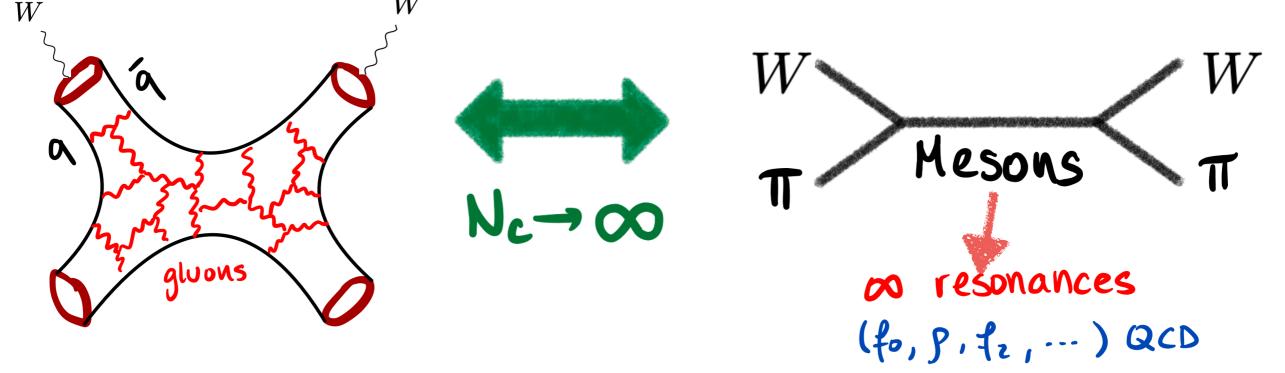
No connection with UV

The anomaly is bridge to connect the IR physics with the UV physics

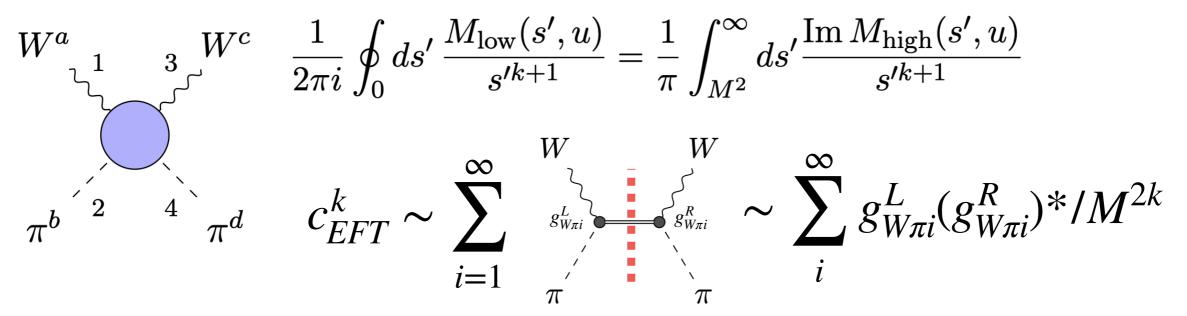


 Bound the anomaly can provide non-trivial connection between UV and IR and consistency conditions for phenomenological models for QCD

• For large N_c , the strong $SU(N_c)$ gauge theory has a weakly coupled dual theory with infinite mesons



For large N_c , the EFT can well bounded by the tree level amplitudes of weakly coupled theory



UV set up: $N_f = 2$ massless quarks in the fundamental Rep of $SU(N_c)$ 0

Chiral symmetry
breaking pattern
$$U(N_f)_L \times U(N_f)_R \rightarrow SU(N_f) \times U(1)$$

Generate a iso-spin triplet π^a and η singlet under $SU(N_f = 2)$ \bigcirc

$$U = \operatorname{Exp}(i\eta/F_{\pi})\operatorname{Exp}(2i\pi^{a}\tau^{a}/F_{\pi})$$

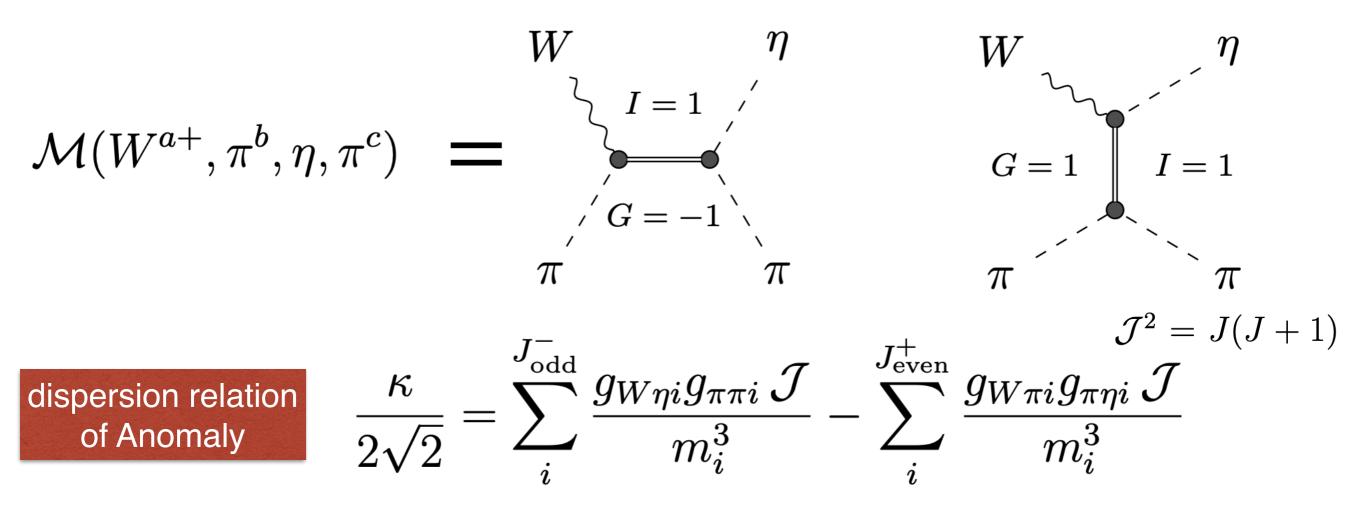
Gauge the unbroken global $SU(N_f = 2)$: W^a

breaking patter

$$\kappa \ \varepsilon^{\mu\nu\alpha\beta} \mathrm{Tr} \left[A_{\mu L} U_{\nu L} U_{\alpha L} U_{\beta L} + \mathrm{L} \to \mathrm{R} \right]$$

$$\mathcal{M}(W^{a+}, \pi^b, \eta, \pi^c) \propto [12]\langle 24 \rangle [41] \propto \sqrt{stu}$$

UV scattering amplitude associated with chiral anomaly



• U(2) symmetry relates coupling $g_{W\eta i}$ with $g_{W\pi i}$ ($g_{\pi\eta i}$ with $g_{\pi\pi i}$)

• To bound anomaly, should constrain $g_{W\pi i}(g_{\pi\pi i})$ and spectrum through $\mathcal{M}(W\pi W\pi)(\mathcal{M}(\pi\pi\pi\pi\pi))$

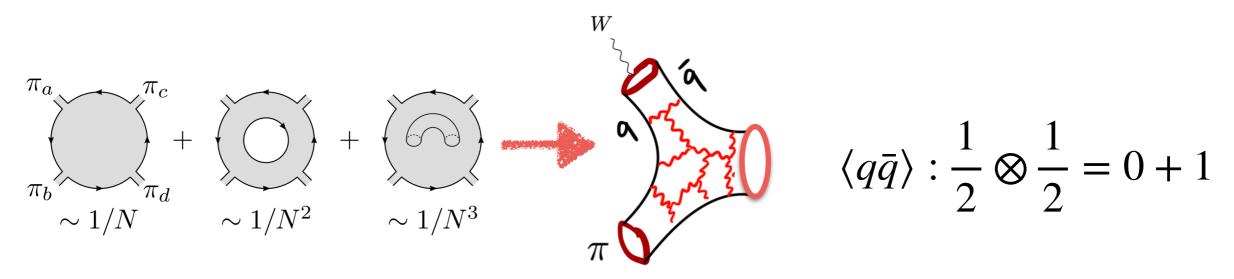
$W\pi \to W\pi$

$$W\pi \to W\pi$$

• $W\pi \rightarrow W\pi$: the quantum number of the $W^a \pi^b$ state under Isospin $SU(N_f = 2)$

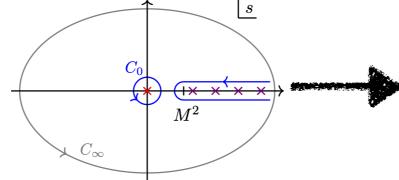
$$I = 1 \otimes 1 = 0 + 1 + 2$$

• For large N_c , the mesons are only the bound state of two quark doublets, no mesons in I = 2 Rep



The amplitude $M_t^{I=2}(s, u)$ with I = 2 in t-channel do not have tchannel poles.

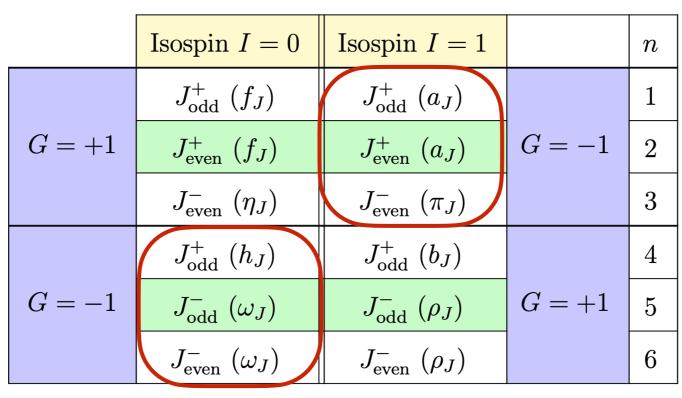
Pole structure for u-fixed



Impose most strong constraints on the EFT and mesons

$W\pi \to W\pi$

• There are six types of mesons can couple to $W\pi$



Only meson-2,5 relevant to anomaly

 $q\bar{q}$ states classified in terms of their Isospin, G-parity and J^P

• The sign of the $\mathcal{M}(W^{\lambda_1}\pi W^{\lambda_2}\pi)$ residues from mesons depends on the helicity λ of W and CP property of mesons Unitarity

Elastic

$$(\lambda_1, \lambda_2) = (+ -)$$

$$R_{I=0}^{+-} = +g_4^2 + g_5^2 + g_6^2$$

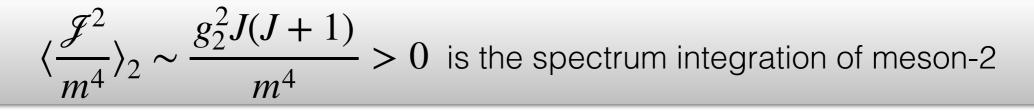
$$R_{I=1}^{+-} = +g_1^2 + g_2^2 + g_3^2$$
P and C unbroken
$$R_{I=0}^{++} = -g_4^2 + g_5^2 - g_6^2$$

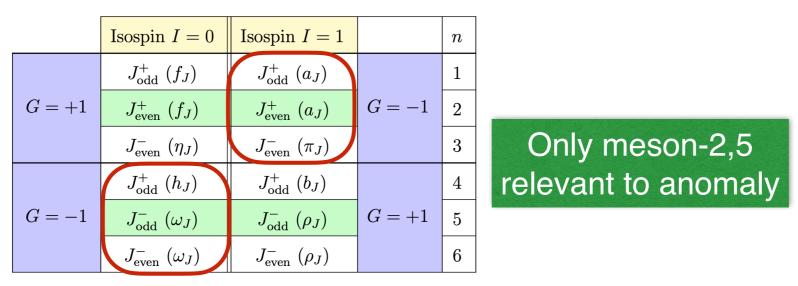
$$R_{I=1}^{++} = -g_1^2 + g_2^2 - g_3^2$$

$W\pi \to W\pi$

• The dispersion relations of $\mathcal{M}(W^{\lambda_1}\pi W^{\lambda_2}\pi)$ tell us (plus other conditions)

$$\left\langle \frac{\mathcal{J}^2}{m^4} \right\rangle_2 + \left\langle \frac{\mathcal{J}^2}{m^4} \right\rangle_5 = 3f_{1,0} - 2g_{0,0} \equiv \mathcal{P} \ge 0$$





 $f_{1,0}, g_{0,0}$ are the d-8 Wilson coefficients relevant to polarizabilities of the pions

Anomaly $W\pi \to W\eta$

Anomaly $W\pi \to W\eta$

• $U(N_f = 2)$ symmetry can relate the anomaly with meson-2, 5 interactions

$$\frac{\kappa}{4\sqrt{2}} = \sum_{i}^{J_{\text{even}}^{+}} \frac{(g_2 g_{\pi\pi})_i \mathcal{J}}{m_i^3} = \sum_{i}^{J_{\text{odd}}^{-}} \frac{(g_5 g_{\pi\pi})_i \mathcal{J}}{3m_i^3}$$

Non-trivial informations

Anomaly requires that QCD should contain at least one vector and one spin-two resonance

Holographic QCD describing anomaly only contain vector is not consistent

spin two particles heavier than spin one

Anomaly $W\pi \to W\eta$

• $U(N_f = 2)$ symmetry can relate the anomaly with meson-2, 5 interactions

$$\frac{\kappa}{4\sqrt{2}} = \sum_{i}^{J_{\text{even}}^{+}} \frac{(g_2 g_{\pi\pi})_i \mathcal{J}}{m_i^3} = \sum_{i}^{J_{\text{odd}}^{-}} \frac{(g_5 g_{\pi\pi})_i \mathcal{J}}{3m_i^3}$$

Using Cauchy identities, anomaly can be bounded as

$$\frac{\kappa}{4\sqrt{2}} \leq \sqrt{\left(\sum_{i}^{J_{\text{even}}^{+}} \frac{g_{\pi\pi i}^{2}}{m_{i}^{2}}\right)\left(\frac{\mathcal{J}^{2}}{m^{4}}\right)_{2}}$$

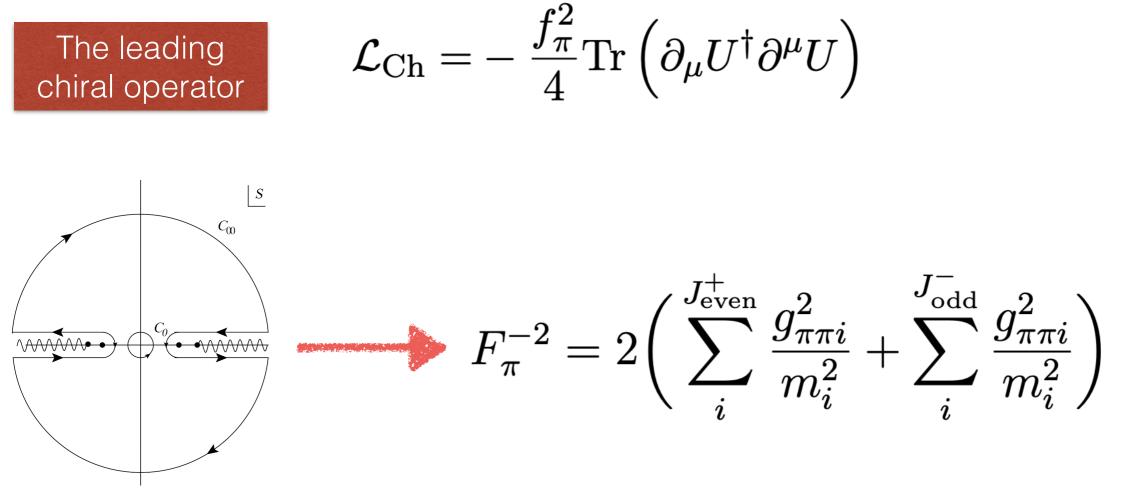
$$\frac{\kappa}{4\sqrt{2}} \leq \frac{1}{3}\sqrt{\left(\sum_{i}^{J_{\text{odd}}} \frac{g_{\pi\pi i}^{2}}{m_{i}^{2}}\right)\left(\frac{\mathcal{J}^{2}}{m^{4}}\right)_{5}}$$
Bounded by
$$f_{1,0}, g_{0,0}$$

$$\pi\pi o \pi\pi$$

 $\pi\pi \to \pi\pi$: the couplings of π -pair to the mesons $g_{\pi\pi i}$ are bounded by Goldstone decay constant

0

 $U = \operatorname{Exp}(i\eta/F_{\pi})\operatorname{Exp}(2i\pi^{a}\tau^{a}/F_{\pi})$



J. Albert and L. Rastelli, JHEP 08, 151 (2022), arXiv: 2203.11950
C. Fernandez, A. Pomarol, F. Riva, and F. Sciotti, JHEP 06, 094 (2023), arXiv: 2211.12488

Chiral Anomaly Upper bound

Anomaly can be bounded as

$$\frac{\kappa}{4\sqrt{2}} \leq \sqrt{\left(\sum_{i}^{J_{\text{even}}} \frac{g_{\pi\pi i}^2}{m_i^2}\right) \left(\frac{\mathcal{J}^2}{m^4}\right)_2} \xrightarrow{\text{Bounded}}_{\substack{\text{by}\\f_{1,0},g_{0,0}}}$$
$$\frac{\kappa}{4\sqrt{2}} \leq \frac{1}{3} \sqrt{\left(\sum_{i}^{J_{\text{odd}}} \frac{g_{\pi\pi i}^2}{m_i^2}\right) \left(\frac{\mathcal{J}^2}{m^4}\right)_5}$$

• Optimizing this bound, the upper bound of anomaly is

$$\frac{\kappa}{\sqrt{\mathcal{P}/F_{\pi}^2}} \le \frac{1}{\sqrt{2}}$$

$$3f_{1,0} - 2g_{0,0} \equiv \mathcal{P}$$

Polarizabilities of the pions

Summary

- Goldstone anomaly is determined by UV
- Bootstrap anomaly can provide non-trivial connection UV and IR

$$\frac{\kappa}{\sqrt{\mathcal{P}/F_{\pi}^2}} \le \frac{1}{\sqrt{2}}$$

 Anomaly require the QCD should contain both vector and high spin resonance

Phenomenological models for QCD should follow above conditions

• Graviton anomaly?

Thanks !!