

# Identify the two-pole structures from an SU(3) flavor filter

#### Xiao-Hai Liu

Center for Joint Quantum Studies & Department of Physics, Tianjin University

## **Outline**

- $\triangleright$  Brief review of  $\Lambda(1405)$
- **➤ Two-pole structure**
- > An SU(3) flavor filter
- > Summary

# $\Lambda(1405)$ : Puzzles in the quark model

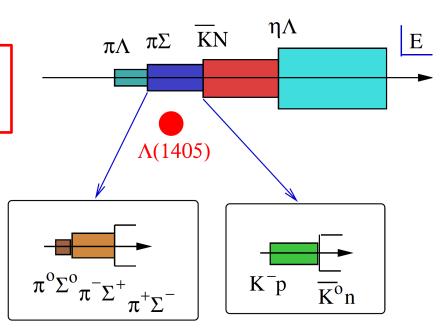
$$I(J^P) = 0(1/2^-)$$
 $M = 1405.1^{+1.3}_{-1.0}$  MeV,  $\Gamma = 50.5 \pm 2.0$  MeV

Quark model classification: a uds P-wave excitation, a few hundred MeV above the ground state  $\Lambda(1116)$ 

- Much lower than its nucleon-counterpart N(1535) ( $J^P = 1/2^-$ )
- Mass gap between  $\Lambda(1405)$  and  $\Lambda(1520)$  (J<sup>P</sup> = 3/2<sup>-</sup>) is much larger compared with N/4525. larger, compared with N(1535) and N(1520)



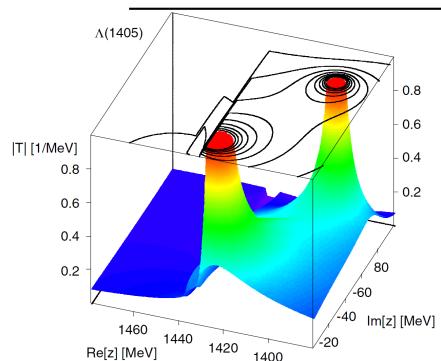
# Λ(1405): Dynamically generated state


• Dynamically generated from the  $\pi\Sigma - \overline{K}N$  coupled channel interaction in UChPT. (Hadronic molecule)

$$T = V + VGT$$

Bethe-Salpeter equation

Obtained from a chiral effective Lagrangian


- Kaiser, Siegel, Weise, NPA594, 325(1995)
- Kaiser, Wass, Weise, NPA612, 297(1997)
- Oset & Ramos, NPA635, 99(1998)
- Oller, Oset, Ramos, PPNP45, 157(2000)
- Oller & Meissner, PLB500, 263(2001)
- " "first exotic hadron"



### $\Lambda(1405)$ : Two-pole structure

| Four     |  |
|----------|--|
| coupled- |  |
| channels |  |

| $z_R$             | 1390 + 66i    |         | 1426 + 16    | i       |
|-------------------|---------------|---------|--------------|---------|
| (I = 0)           | $g_i$         | $ g_i $ | $g_i$        | $ g_i $ |
| $\pi  \Sigma$     | -2.5 - 1.5i   | 2.9     | 0.42 - 1.4i  | 1.5     |
| $\overline{K}N$   | 1.2 + 1.7 i   | 2.1     | -2.5 + 0.94i | 2.7     |
| $\eta \varLambda$ | 0.010 + 0.77i | 0.77    | -1.4 + 0.21i | 1.4     |
| $K \varXi$        | -0.45 - 0.41i | 0.61    | 0.11 - 0.33i | 0.35    |



Hyodo & Jido, PPNP67, 55(2012)

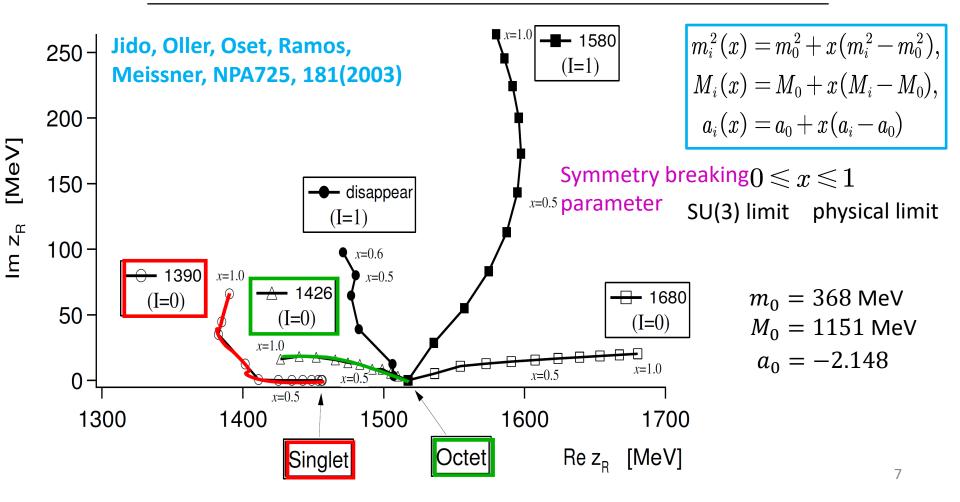
Oset, Ramos, Bennhold, PLB527, 99(2002); Jido, Oller, Oset, Ramos, Meissner, NPA725, 181(2003)

- Oller & Meissner, PLB500, 263(2001)
- Jido, Hosaka, Nacher, Oset, Ramos, PRC66, 025203(2002)
- Garcia-Recio, Nieves, Arriola, Vacas, PRD67, 076009(2003)
- Jido, Oller, Oset, Ramos, Meissner, NPA725, 181(2003)

#### **Two-pole Structure**

#### > Understanding with group theory

Weinberg-Tomozawa (WT) term dominates the interaction


$$V_{ij}^{ ext{WT}}ig(\sqrt{s}ig) = -rac{C_{ij}}{4f^2}ig(2\sqrt{s}-M_i-M_jig)\mathcal{N}_i\mathcal{N}_j$$

Decomposed into group irreducible representations

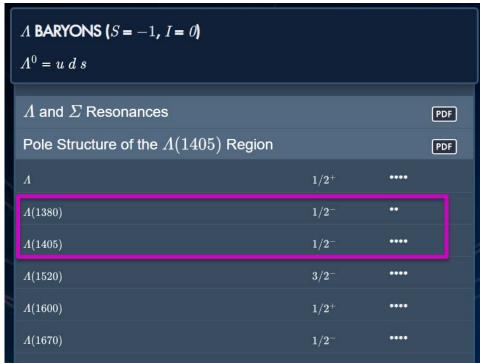
Baryon Octet 
$$8\otimes 8 = 1 \oplus 8_s \oplus 8_a \oplus 10 \oplus \overline{10} \oplus 27$$
 Baryon Octet 
$$C_{\alpha\beta}^{\text{SU(3)}} = \sum_{i,j} \mathcal{D}_{\alpha i} C_{ij} \mathcal{D}_{\beta j}$$
 
$$= \operatorname{diag}(6,3,3,0,0,-2)$$
 attractive

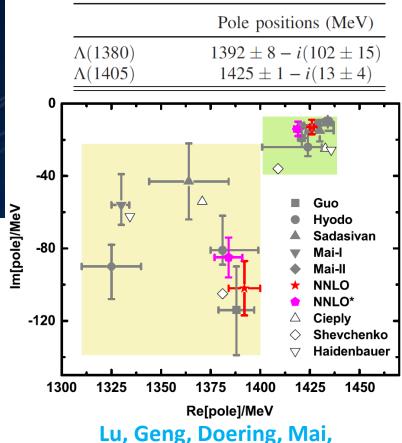
# **Two-pole Structure Understanding with group theory**

| $z_R$           | 1390 + 66i    | <u>;</u> | 1426 + 16    | i       | 1680 + 20i     |         |
|-----------------|---------------|----------|--------------|---------|----------------|---------|
| (I = 0)         | $g_i$         | $ g_i $  | $g_i$        | $ g_i $ | $g_i$          | $ g_i $ |
| $\pi \Sigma$    | -2.5 - 1.5i   | 2.9      | 0.42 - 1.4i  | 1.5     | -0.003 - 0.27i | 0.27    |
| $\overline{K}N$ | 1.2 + 1.7i    | 2.1      | -2.5 + 0.94i | 2.7     | 0.30 + 0.71 i  | 0.77    |
| $\eta A$        | 0.010 + 0.77i | 0.77     | -1.4 + 0.21i | 1.4     | -1.1 - 0.12i   | 1.1     |
| $K \varXi$      | -0.45 - 0.41i | 0.61     | 0.11 - 0.33i | 0.35    | 3.4 + 0.14i    | 3.5     |



### $\Lambda(1405)$ : Two-pole structure





Table 83.1: Comparison of the pole positions of  $\Lambda(1405)$  in the complex energy plane from next-to-leading order chiral unitary coupled-channel approaches including the SIDDHARTA constraint. The lower two results also include the CLAS photoproduction data.

| approach                 | pole 1 [MeV]                                  | pole 2 [MeV]                            |
|--------------------------|-----------------------------------------------|-----------------------------------------|
| Refs. [14,15], NLO       | $1424^{+7}_{-23} - i \ 26^{+3}_{-14}$         | $1381_{-6}^{+18} - i\ 81_{-8}^{+19}$    |
| Ref. [17], Fit II        | $1421^{+3}_{-2} - i \ 19^{+8}_{-5}$           | $1388^{+9}_{-9} - i\ 114^{+24}_{-25}$   |
| Ref. [18], solution $#2$ | $1434_{-2}^{+2} - i \ 10_{-1}^{+2}$           | $1330_{-5}^{+4} - i\ 56_{-11}^{+17}$    |
| Ref. [18], solution #4   | $1429^{+8}_{-7} - i \ 12^{+\frac{5}{2}}_{-3}$ | $1325_{-15}^{+15} - i \ 90_{-18}^{+12}$ |

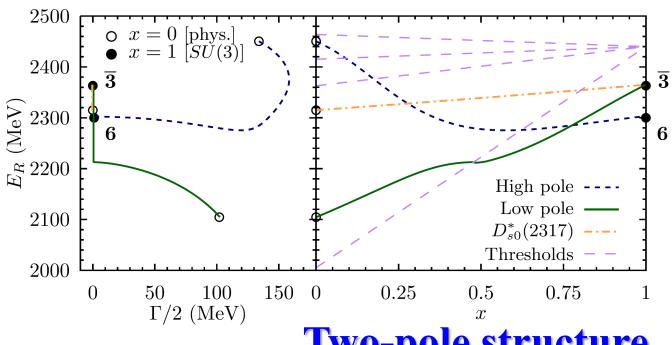
**PDG 2022** 

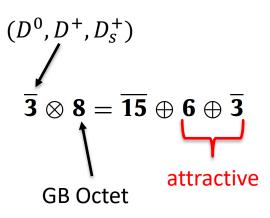
 $\Lambda(1380) \\ \Lambda(1405)$ 

#### Pole positions up to NNLO



PRL130, 071902(2003)


#### $D_0(I^P = 0^+)$ : Analog in the heavy flavor sector


**PDG 2022**  $D_0^*(2300)$ :  $M = 2343 \pm 10$  MeV;  $\Gamma = 229 \pm 16$  MeV

| Masses   | M (MeV)                                 | $\Gamma/2~(\text{MeV})$            | RS             | $ g_{D\pi} $                             | $ g_{D\eta} $                            | $ g_{D_sar{K}} $                          |
|----------|-----------------------------------------|------------------------------------|----------------|------------------------------------------|------------------------------------------|-------------------------------------------|
| lattice  | $2264^{+\ 8}_{-14} \\ 2468^{+32}_{-25}$ | $0 \\ 113^{+18}_{-16}$             | (000)<br>(110) | $7.7_{-1.1}^{+1.2} \\ 5.2_{-0.4}^{+0.6}$ | $0.3_{-0.3}^{+0.5} \\ 6.7_{-0.4}^{+0.6}$ | $4.2^{+1.1}_{-1.0} \\ 13.2^{+0.6}_{-0.5}$ |
| physical | $2105_{-8}^{+6} \\ 2451_{-26}^{+36}$    | $102_{-12}^{+10} \\ 134_{-8}^{+7}$ | (100)<br>(110) | $9.4_{-0.2}^{+0.2} \\ 5.0_{-0.4}^{+0.7}$ | $1.8_{-0.7}^{+0.7} \\ 6.3_{-0.5}^{+0.8}$ | $4.4_{-0.5}^{+0.5} \\ 12.8_{-0.6}^{+0.8}$ |

Moir *et al.*, JHEP1610, 011(2016)

Albaladejo, Fernandes-Soler, Guo, Nieves, PLB767, 465(2017)





#### Analog in the heavy flavor sector

|         | lower pole                                      | higher pole                                    | RPP                                            |
|---------|-------------------------------------------------|------------------------------------------------|------------------------------------------------|
| $D_0^*$ | $\left(2105^{+6}_{-8}, 102^{+10}_{-11}\right)$  | $(2451^{+35}_{-26}, 134^{+7}_{-8})$            | $(2300 \pm 19, 137 \pm 20)$                    |
| $D_1$   | $\left(2247_{-6}^{+5}, 107_{-10}^{+11}\right)$  | $\left(2555^{+47}_{-30}, 203^{+8}_{-9}\right)$ | $(2427 \pm 26 \pm 25, 192^{+54}_{-38} \pm 37)$ |
| $B_0^*$ | $\left(5535_{-11}^{+9}, 113_{-17}^{+15}\right)$ | $\left(5852^{+16}_{-19}, 36 \pm 5\right)$      | -                                              |
| $B_1$   | $\left(5584_{-11}^{+9}, 119_{-17}^{+14}\right)$ | $\left(5912_{-18}^{+15}, 42_{-4}^{+5}\right)$  | -                                              |

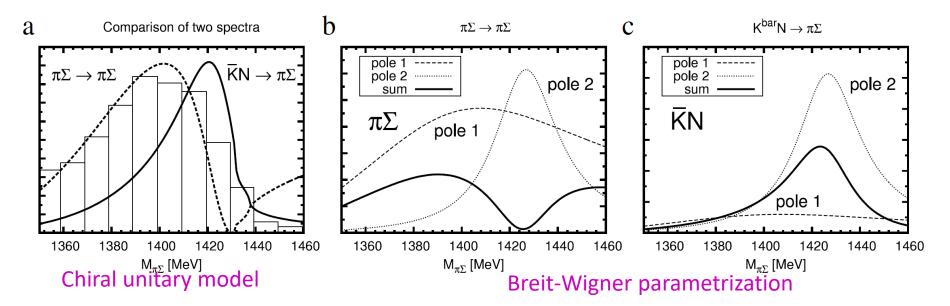
Guo, Shen, Chiang, PLB647, 133(2007) Cleven, Guo, Hanhart, Meissner, EPJA47, 465(2011)





Article

#### Two-Pole Structures in QCD: Facts, Not Fantasy!

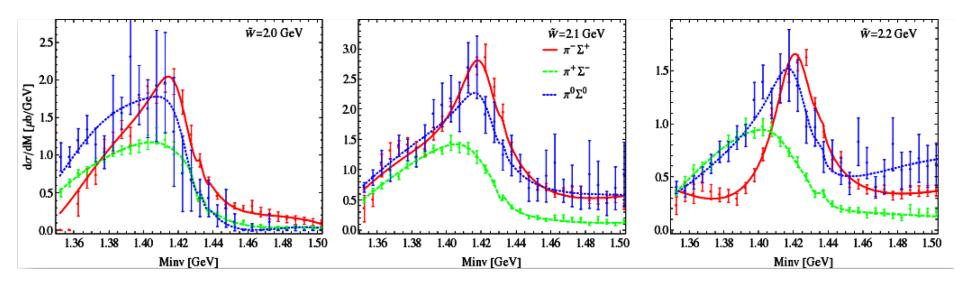

Ulf-G. Meißner 1,2,3

The two-pole structure refers to the fact that particular single states in the spectrum as listed in the PDG tables are often two states.

A comprehensive review by Ulf-G. Meissner Symmetry 2020, 12(6), 981

#### Identify the two-pole structures

• Due to different couplings, the shape of the  $\Lambda(1380/1405)$  spectrum can be different depending on the initial and final channels

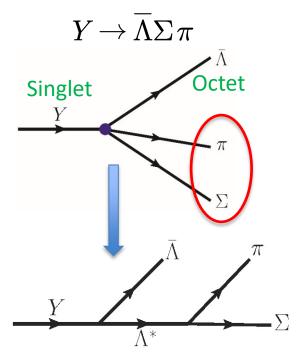



Jido et al., NPA725, 181(2003); NPA835, 59(2010)

| $\overline{z_R}$ | 1390 + 666    | i       | 1426 + 16    | i       |
|------------------|---------------|---------|--------------|---------|
| (I = 0)          | $g_i$         | $ g_i $ | $g_i$        | $ g_i $ |
| $\pi \Sigma$     | -2.5 - 1.5i   | 2.9     | 0.42 - 1.4i  | 1.5     |
| $\overline{K}N$  | 1.2 + 1.7i    | 2.1     | -2.5 + 0.94i | 2.7     |
| $\eta A$         | 0.010 + 0.77i | 0.77    | -1.4 + 0.21i | 1.4     |
| $K \varXi$       | -0.45 - 0.41i | 0.61    | 0.11 - 0.33i | 0.35    |

#### Identify the two-pole structures

Mai & Meissner, EPJA51, 30(2015)  $\gamma p 
ightarrow \pi \Sigma K^+$ 




Result of the fits to the CLAS photoproduction data in three channels

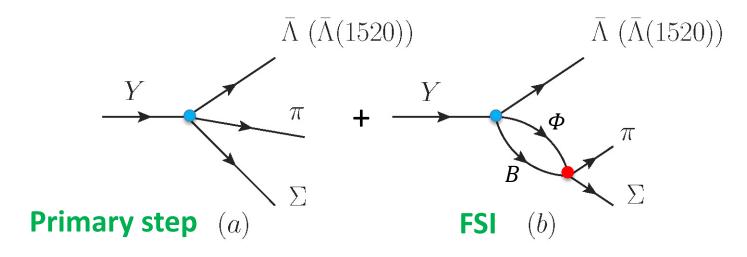
A chiral unitary model adopted

| Solution | Pole 1                             | Pole 2                               |
|----------|------------------------------------|--------------------------------------|
| #2       | $1434_{-2}^{+2} - i10_{-1}^{+2}$   | $1330_{-5}^{+4} - i56_{-11}^{+17}$   |
| #4       | $1429_{-7}^{+8} - i  12_{-3}^{+2}$ | $1325_{-15}^{+15} - i90_{-18}^{+12}$ |

The two-pole puzzle has still not been satisfactorily experimentally solved.



 $Y\! o\!\overline{\Lambda}(1520)\Sigma\pi$ Singlet Singlet  $\bar{\Lambda}(1520)$ 


 $\Sigma\pi$  produced from an SU(3) octet  $\Lambda^*$ 

 $\Sigma\pi$  produced from an SU(3) singlet  $\Lambda^*$ 

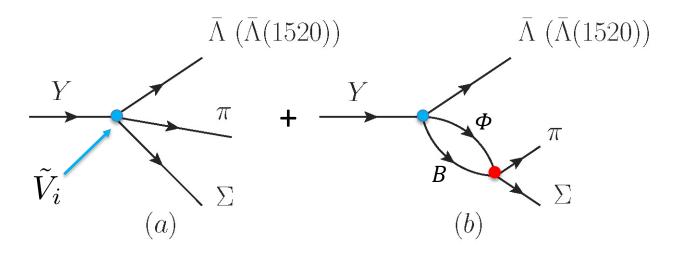
SU(3) symmetry requirement

Y: A heavy quarkonium state  $J/\psi$ ,  $\psi(3686)$ ,  $\chi_{cJ}$ ,  $\Upsilon(ns)$ ...

- SU(3) singlet
- Huge data samples, more than 10 billion  $J/\psi$  events and 3 billion  $\psi(3686)$ events in BESIII



$$\mathcal{L}_{\psi} = \tilde{D} \left\langle \bar{B} \gamma_{\mu} \gamma_{5} \{\Phi, B\} \right\rangle \psi^{\mu} + \tilde{F} \left\langle \bar{B} \gamma_{\mu} \gamma_{5} [\Phi, B] \right\rangle \psi^{\mu}$$


$$\mathcal{L}'_{\psi} = g_0 \bar{\Lambda}_{\mu} \gamma_5 \langle \Phi, B \rangle \psi^{\mu}$$

#### Four coupled channels

 $\Phi B: \pi \Sigma, \overline{K}N, \eta \Lambda, K\Xi$ 

$$\Phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & K^0 \\ K^- & \bar{K}^0 & -\frac{2}{\sqrt{6}}\eta \end{pmatrix} B = \begin{pmatrix} \frac{1}{\sqrt{2}}\Sigma^0 + \frac{1}{\sqrt{6}}\Lambda & \Sigma^+ & p \\ \Sigma^- & -\frac{1}{\sqrt{2}}\Sigma^0 + \frac{1}{\sqrt{6}}\Lambda & n \\ \Xi^- & \Xi^0 & -\frac{2}{\sqrt{6}}\Lambda \end{pmatrix}$$

14



Unitary model 
$$t_i = ilde{V}_i + \sum_j ilde{V}_j G_j T_{ji}$$
  $T_{ij} = V_{ij} + V_{ik} G_k T_{kj}$ 

$$G_{l} = i2M_{l} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{1}{(P-q)^{2} - M_{l}^{2} + i\epsilon} \frac{1}{q^{2} - m_{l}^{2} + i\epsilon}$$

$$= \frac{2M_{l}}{16\pi^{2}} \left\{ a_{l}(\mu) + \ln \frac{M_{l}^{2}}{\mu^{2}} + \frac{m_{l}^{2} - M_{l}^{2} + s}{2s} \ln \frac{m_{l}^{2}}{M_{l}^{2}} \right\}$$

$$a_{\overline{K}N} = -1.84, \quad a_{\pi\Sigma} = -2.00, \quad a_{\pi\Lambda} = -1.83,$$

$$a_{\eta\Lambda} = -2.25, \quad a_{\eta\Sigma} = -2.38, \quad a_{K\Xi} = -2.67$$

$$+ \frac{q_{l}}{\sqrt{s}} \left[ \ln\left(s - \left(M_{l}^{2} - m_{l}^{2}\right) + 2q_{l}\sqrt{s}\right) + \ln\left(s + \left(M_{l}^{2} - m_{l}^{2}\right) + 2q_{l}\sqrt{s}\right) - \ln\left(-s + \left(M_{l}^{2} - m_{l}^{2}\right) + 2q_{l}\sqrt{s}\right) - \ln\left(-s - \left(M_{l}^{2} - m_{l}^{2}\right) + 2q_{l}\sqrt{s}\right) \right] \right\}$$

$$a_{-5} = -1.84$$
  $a_{-5} = -2.00$   $a_{-5} = -1.83$ 

$$a_{\overline{K}N} = -1.84,$$
  $a_{\pi \Sigma} = -2.00,$   $a_{\pi \Lambda} = -1.83,$   $a_{\eta \Lambda} = -2.25,$   $a_{\eta \Sigma} = -2.38,$   $a_{K\Xi} = -2.67$ 

Adopt the same subtraction constants as those in [Jido et al., NPA725, 181(2003)]

#### Parameters of the model

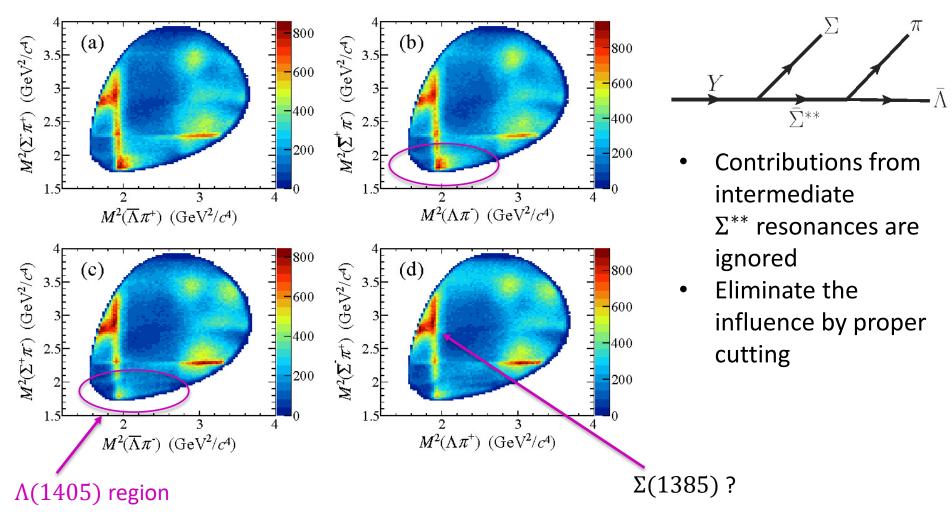
$$\mathcal{L}_{\psi} = \tilde{D} \left\langle \bar{B} \gamma_{\mu} \gamma_{5} \{\Phi, B\} \right\rangle \psi^{\mu} + \tilde{F} \left\langle \bar{B} \gamma_{\mu} \gamma_{5} [\Phi, B] \right\rangle \psi^{\mu}$$

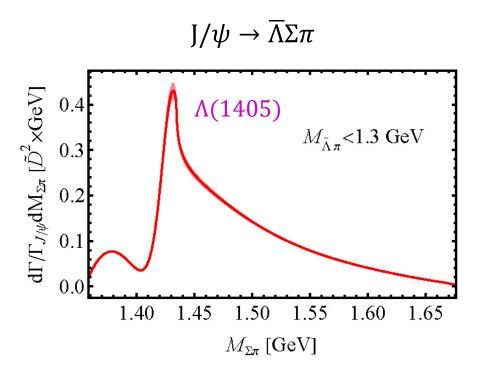
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{lll} \Gamma_{213} & \Lambda \overline{\Sigma}^- \pi^+ \ (\text{or c.c.}) & \ [2] & (8.3 \pm 0.7) \times 10^{-4} \\ \\ \Gamma_{214} & pK^- \overline{\Lambda} + \text{c.c.} & \ (8.6 \pm 1.1) \times 10^{-4} \\ \\ \Gamma_{215} & pK^- \overline{\Sigma}^0 & \ (2.9 \pm 0.8) \times 10^{-4} \\ \\ \Gamma_{216} & \overline{\Lambda} n K_S^0 + \text{c.c.} & \ (6.5 \pm 1.1) \times 10^{-4} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\Gamma_{214}$ $pK^{-}\overline{\Lambda}$ +c.c. $(8.6 \pm 1.1) \times 10^{-4}$ $\Gamma_{215}$ $pK^{-}\overline{\Sigma}^{0}$ $(2.9 \pm 0.8) \times 10^{-4}$ $\Gamma_{216}$ $\overline{\Lambda}nK_{S}^{0}$ + c.c. $(6.5 \pm 1.1) \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\Gamma_{215}$ $pK^{-}\overline{\varSigma}^{0}$ $(2.9 \pm 0.8) \times 10^{-4}$ $\Gamma_{216}$ $\overline{\Lambda}nK_{S}^{0}$ + c.c. $(6.5 \pm 1.1) \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\Gamma_{216}$ $\overline{\Lambda}nK_S^0$ + c.c. $(6.5\pm1.1)\times10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NE ASSESSED CONTRACTOR OF THE SECOND CONTRACTO |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\Gamma_{217}$ $\Lambda\overline{\Sigma}$ + c.c. $(2.83 \pm 0.23) \times 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\Gamma_{218} \qquad \Sigma^+ \overline{\Sigma}^- \qquad \qquad (1.07 \pm 0.04) 	imes 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\Gamma_{219} \qquad \qquad \varSigma^0 \overline{\varSigma}^0 \qquad \qquad (1.172 \pm 0.032) 	imes 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\Gamma_{220} \qquad \Sigma^{+}\overline{\Sigma}^{-}\eta \qquad \qquad (6.3\pm0.4)	imes10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\Gamma_{221} \qquad \mathcal{\Xi}^{-}\overline{\mathcal{\Xi}}^{+} \qquad \qquad (9.7\pm0.8)	imes10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

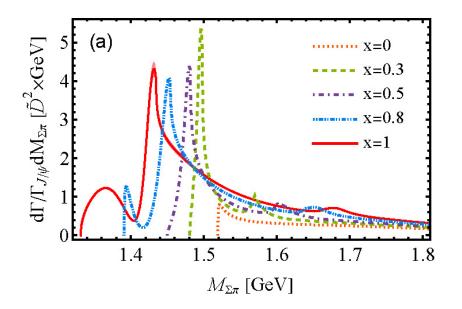

For  $J/\psi$  decays, branching fractions of four channels  $\overline{\Lambda}\Sigma\pi$ ,  $\overline{\Lambda}N\overline{K}$ ,  $\overline{\Lambda}\Lambda\eta$  and  $\overline{\Sigma}N\overline{K}$  are used for the fitting

$$\mathcal{R}_{\scriptscriptstyle F/D}\!\equiv\!rac{\widetilde{F}}{\widetilde{D}}\!=\!0.18\!\pm\!0.03$$

• For  $\psi(3686)$  decays


$$\mathcal{R}_{\scriptscriptstyle F/D}\!\equiv\!rac{\widetilde{F}}{\widetilde{D}}\!=\!0.50\pm0.06$$

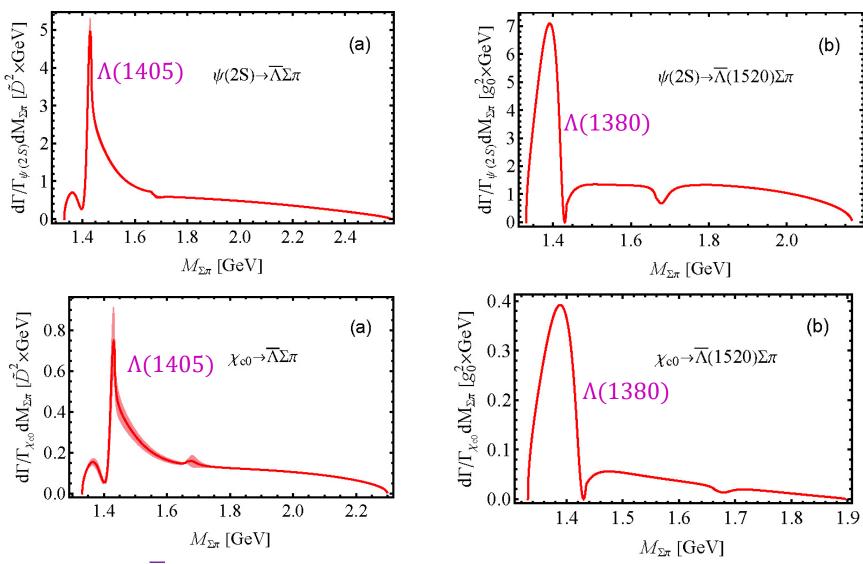

Braching fractions of  $J/\psi$  decay modes PDG 2022




#### **Background**

#### Dalitz plots of $J/\psi \to \overline{\Lambda}\Sigma\pi$ , $\overline{\Sigma}\Lambda\pi$








Invariant mass distribution of  $\Sigma\pi$  by cutting

Interference with the background is not taken into account

No available data of  $J/\psi \rightarrow \overline{\Lambda}(1520)\Sigma\pi$ 



 $\chi_{c0} \to \Lambda \Sigma \pi$  decay has ever been studied in [Liu, Wang, Xie, Song, Zhu, PRD98, 114017(2018)], the flavor filter is however ignored

#### **Summary**

- > An SU(3) flavor filter is proposed to identify the two-pole structure of  $\Lambda(1405/1380)$
- The two poles are dynamically generated from different irreducible representations.
- Huge data samples of heavy quarkonia accumulated in current experiments.
- The spectator in the three-body decays is a good singlet/octet candidate.
  - **≻Other flavor filter**
  - $Y \to \overline{D}^*D\pi$  decays, single out the triplet  $D_0^*$

# Thanks!