Models 0000 Fits & Poles

Nature of X(6200)

Conclusions 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

1/16

Interaction of fully heavy hadrons

A.V. Nefediev

Josef Stefan Institute, Ljubljana, Slovenia

Huizhou 2024

Long-term fruitful collaboration with my colleagues and co-authors is gratefully acknowledged!

- X. K. Dong, V. Baru, F. K. Guo, C. Hanhart, A. Nefediev, "Coupled-Channel Interpretation of the LHCb Double-*J/ψ* Spectrum and Hints of a New State Near the *J/ψJ/ψ* Threshold," Phys. Rev. Lett. **126**, 132001 (2021)
- X. K. Dong, V. Baru, F. K. Guo, C. Hanhart, A. Nefediev, B. S. Zou, "Is the existence of a J/ψJ/ψ bound state plausible?," Sci. Bull. 66, 2462 (2021)
- X. K. Dong, F. K. Guo, A. Nefediev, J. T. Castellà, "Chromopolarizabilities of fully-heavy baryons," Phys. Rev. D 107, 034020 (2023)

Motivation: Near-threshold fully heavy exotic states

Why to study?

- Encodes information on internal structure of heavy hadrons
- Relevant for molecular model
- Allows making predictions for exotic states

Do we have adequate theoretical approaches?

- Effective field theory
- Coupled channels
- Multipole expansion in QCD

Do we have promising candidates?

- Di-charmonium production at LHC
- Lattice simulations of heavy di-baryons

5/16

Models ●000 Fits & Poles

Nature of X(6200)

Conclusions 0

All channels

 Introduction
 Models
 Fits & Poles
 Nature of X(6200)
 Conclusions

 0000
 0000
 0000
 000000
 0
 0

Only *S*-wave channels (no $J/\psi h_c$, $\psi(2S)h_c$, $\chi_{c0}\chi_{c1}$)

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><日<の<()</td>6/16

Models

Fits & Poles

Nature of X(6200)

Conclusions 0

No heavy exchanges (no $\chi_{c0}\chi_{c0}$, $\chi_{c1}\chi_{c1}$)

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

Models

Fits & Poles

Nature of X(6200)

Conclusions 0

Only HQSS-allowed channels (no *h*_c*h*_c**)**

6/16

Models 0000 Fits & Poles

Nature of X(6200)

Conclusions 0

Fits & poles

7/16

Models 0000 Fits & Poles

Nature of X(6200)

Conclusions 0

Fits & poles

Models 0000 Fits & Poles

Nature of X(6200)

Conclusions O

Data from CMS and ATLAS

• Analyse CMS and ATLAS data in the double- J/ψ channel

Models 0000 Fits & Poles 00●0 Nature of X(6200)

Conclusions 0

Data from CMS and ATLAS

• Analyse CMS and ATLAS data in the double- J/ψ channel

Models 0000 Fits & Poles

Nature of X(6200)

Conclusions O

Data from CMS and ATLAS

ullet Analyse CMS and ATLAS data in the double- J/ψ channel

- Analyse data in the complimentary $\psi(2S)J/\psi$ channel
- Combined analysis of all data sets (?)

Models 0000 Fits & Poles

Nature of X(6200)

Conclusions 0

Multipole expansion in QED

Field produced by charge distribution at $R \gg r$

 $\Phi(R) = \frac{Q}{R} + \mathsf{Dipole} + \mathsf{Quadrupole} + \dots$

If Q = 0, dipole term provides leading contribution

Polarisability measures how easily neutral object is distorted by electric field

Fits & Poles

Nature of X(6200)000000

Multipole expansion for charmonia

Multipole expansion for soft-gluon exchanges $(r_{\bar{Q}Q} \ll \Lambda_{\text{OCD}}^{-1})$: $H_{\text{int}} \approx -\frac{1}{2} \zeta_a \boldsymbol{r} \cdot \boldsymbol{E}^a$ (Gottfried'1977, Voloshin'1978, Peskin'1979,...Voloshin&Sibirtsev'2005)

$$\beta_{\psi\psi'} = \frac{1}{9} \langle \psi' | \boldsymbol{r} \frac{1}{\hat{H}_O - M} \boldsymbol{r} | \psi \rangle \Longrightarrow \begin{cases} \mathcal{M}(\psi(2S) \to J/\psi \pi \pi) = \beta_{\psi(2S)J/\psi} \langle \pi \pi | \boldsymbol{E}^a \cdot \boldsymbol{E}^a | 0 \rangle \\ \hline V_{J/\psi J/\psi}(r) \propto \beta_{J/\psi J/\psi}^2 \propto \xi^2 \end{cases} \quad \left(\xi = \frac{\beta_{J/\psi J/\psi}}{\beta_{\psi(2S)J/\psi}}\right)$$

10/16

tr	0	d	u	ct	0	n			
0	0	0							

Fits & Poles

Nature of X(6200)

Conclusions 0

Chromopolarisability of J/ψ

• Simple estimate

$$\begin{split} \xi \sim I_{J/\psi J/\psi}/I_{\psi(2S)J/\psi} \sim 10 \qquad I_{\psi'\psi} = \langle \psi' | \, e^{-i\Delta q_c \cdot r/2} \, |\psi\rangle \\ \text{(Dong et al.'2021)} \end{split}$$

• More advanced estimate

$$\begin{split} a_0^{\rm th}(J/\psi\pi\to J/\psi\pi)&\approx 0.0036\xi~{\rm fm}\\ &({\rm Dong~et~al.}^{\rm 2021})\\ |a_0^{\rm lat}(J/\psi\pi\to J/\psi\pi)|\sim 0.01~{\rm fm}\implies \xi\simeq 3 \end{split}$$

(Yokokawa et al'2006,Liu et al.'2008)

• Quark model calculation (approximation: J/ψ = Coulombic system)

$$\begin{split} \beta_{J/\psi J/\psi} &= \frac{1}{9} \langle J/\psi | \mathbf{r} \frac{1}{\hat{H}_O - M_{J/\psi}} \mathbf{r} | J/\psi \rangle = \frac{1}{9} \int \frac{d^3 p}{(2\pi)^3} \int_0^\infty r dr \frac{u_{J/\psi}(r) v_{p,l=1}(r)}{2m_c + \frac{p^2}{m_c} - M_{J/\psi}} \\ &= \frac{0.93}{\alpha_s^4 m_c^3} = 19^{+15}_{-14} \text{ GeV}^{-3} \implies 3 \lesssim \xi \lesssim 19 \\ &\qquad \text{(Brambilla et al. '2016, Dong et al' 2023)} \quad \text{(Brambilla et al. '2016, Dong et al' 2024, Dong et al' 20$$

Interaction potential in di- J/ψ system

$$V_{\mathsf{tot}}(r,\Lambda) = V_{\pi}(r,\Lambda) + V_K(r,\Lambda) = V_{\mathrm{CT}}(r,\Lambda) + V_{\mathsf{exch}}(r,\Lambda)$$

$$V_{\rm exch}(r,\Lambda) = -\frac{1}{4\pi M_{J/\psi}^2} \int \frac{d^3q}{(2\pi)^3} e^{i\mathbf{q}\cdot\mathbf{r}} \int_{4m_\pi^2}^{\infty} d\mu^2 \, \frac{{\rm Im}\mathcal{M}_{J/\psi J/\psi}(\mu^2)}{\mu^2 + q^2} F\left(\frac{q^2 + \mu^2}{\Lambda^2}\right)$$

Exchange of charmonia is suppressed as Λ^2_{QCD}/m_c^2 $\implies V_{CT}$ mainly comes from pion/kaon exchanges \implies For natural $\Lambda \sim 1 \text{ GeV}$ $\boxed{V_{CT} \sim V_{exch}} \implies V_{exch}/V_{tot} \gtrsim \frac{1}{2}$ IntroductionModelsFits & PolesNature of X(6200)00000000000000000000

Conclusions O

X(6200) as double- J/ψ molecule

IntroductionModelsFits & PolesNature of X(6200)00000000000000000000

Conclusions O

X(6200) as double- J/ψ molecule

Conclusion: Existence of a molecular pole near the double- J/ψ threshold is consistent with our knowledge on hadron-hadron interactions

Models 0000 Fits & Poles

Nature of X(6200)

Conclusions 0

Di-heavy-baryon molecules?

• Quarkonium $\psi = \bar{Q}Q$

 $\beta_{\psi} = \frac{C_{\psi}}{\alpha_s^4 m_Q^3} \qquad C_{\psi} \approx 0.93$

(Brambilla et al.'2016,Dong et al'2023)

• Baryon $\Omega = QQQ$

$$\beta_{\Omega} = \frac{C_{\Omega}}{\alpha_s^4 m_Q^3}$$

 $C_{\Omega} \approx 2.4 \approx 2.6 C_{\psi}$

(Dong et al'2023)

• Uncertainty from hadron being not Coulombic

$$\frac{\delta\beta}{\beta} \sim \frac{\langle\sigma r\rangle}{\langle\alpha_s/r\rangle} \sim \frac{\Lambda_{\rm QCD}^2}{\alpha_s^3 m_Q^2} \sim \left\{ \begin{array}{cc} 100\% & Q=c\\ 10\% & Q=b \end{array} \right.$$

▲ロト▲御ト▲臣ト▲臣ト 連首 の名(で)

Models

Fits & Poles

Nature of X(6200)

Conclusions 0

Di-heavy-baryon molecules?

• Quarkonium
$$\psi = \bar{Q}Q$$

 $\beta_{th} = \frac{C_{\psi}}{C_{th}} \qquad C_{th} \approx 0.93$ Conclusion: If X(6200) is a di- J/ψ molecule, then di- Ω_{coc} and di- Ω_{bbb} molecules are also likely to exist

Supported by recent lattice results:

- $E_B(di-\Omega_{ccc}) \simeq 5..6$ MeV (Lyu et al.'2021)
- $E_B(\operatorname{di}-\Omega_{bbb}) \simeq 80..100 \text{ MeV}$ (Mathur et at.'2022)

Oncertainty from nauron being not Coulombic

$$\frac{\delta\beta}{\beta}\sim \frac{\langle\sigma r\rangle}{\langle\alpha_s/r\rangle}\sim \frac{\Lambda_{\rm QCD}^2}{\alpha_s^3m_Q^2}\sim \left\{ \begin{array}{cc} {\rm 100\%} & Q=c\\ {\rm 10\%} & Q=b \end{array} \right.$$

Models 0000 Fits & Poles

Nature of X(6200)

Conclusions

Conclusions

- Discovery of X(3872) started new era in hadronic physics of heavy quarks
- LHC studies of double- J/ψ production opened new chapter in this book
- Data collected are analysed
 - using (minimal but realistic) coupled-channel scheme
 - preserving unitarity of multichannel scattering amplitude
 - respecting (approximate but accurate) heavy quark spin symmetry
- Existence of a pole at $J/\psi J/\psi$ threshold is predicted from data analysis
- Conjecture of molecular nature of X(6200) is plausible and consistent with our knowledge of hadron-hadron interactions
- Near-threshold state in double- J/ψ channel may imply existence of double-heavy-baryon molecules