

Quark Confinement for Multi-Quark Systems: An Application to Fully-Charmed Tetraquark States

王广娟

IPNS, KEK

Together with 孟琦 (NJU), 孟璐(RUB), Makoto Oka (RIKEN), Daisuke Jido (Tokyo Tech.), 与朱世琳 (PKU)

Based on Phys. Rev. D. 100, 096013, Phys. Rev. D 104, 036016, Phys. Rev. D 106, 096005, arXiv: 2307.04310 (to appear in PRD Letter)

- Background
- Conventional quark model: the S-wave and P-wave tetraquark states.
- Identifying the resonance: Complex scaling method.
- Investigation of the confinement mechanisms: Novel string-like confinement model
- Summary

Classical Quark model

• Classical Quark model (QM):

• Quark-antiquark static potential from Lattice QCD

• Quark-antiquark: one gluon exchange + string

• Lattice QCD shows string configurations

H. Ichie et al., Nucl. Phys. A 721,899

Exotic Multiquark Hadrons

 $D_{s0}^{*}(2317) \& X(3872) @2003, ..., P_{c} @2019, X(6900) @2020, T_{cc}^{+} @2021$

Fully-heavy tetraquark

• The fully heavy tetraquark state $T_{Q_1Q_2\bar{Q}_3\bar{Q}_4}(Q=c,b)$ is a good candidate for a **compact** tetraquark state.

• Theoretical works started in1970s. (*More details are referred to Prog.Part.Nucl.Phys. 107 (2019) 237-320.*) PRL 36 (1976) 1266, Z.Phys.C7 (1981) 317, PRD 25 (1982) 2370

 \checkmark *The tension in the existence* of the stable (bound) fully heavy tetraquark state:

- ◆ Stable QQQQQ states exist: bbbb ~ 18 20 GeV, cccc ~ 5 7 GeV: arXiv:1612.00012, Eur. Phys. J. C 78, 647, EPJ Web Conf. 182, 02028, Phys. Lett. B 718, 545, Phys. Rev. D 70, 014009 ...
- + Negative: no bound $QQ\bar{Q}\bar{Q}$ states exist.

Phys. Rev. D 97, 094015, Phys. Rev. D.97.054505, Phys. Rev. D. 100, 096013, ...

 \checkmark *Existence* of the *resonant* $T_{Q_1Q_2\bar{Q}_3\bar{Q}_4}$ and *the mass spectrum*.

Experimental search for $T_{QQ\bar{Q}\bar{Q}}$

• No significant excess observed for $T_{bb\overline{b}\overline{b}}$.

LHCb, JHEP 1810, 086 (2018).

CMS, PLB 808 (2020) 135578

Experimental search for T_{ccccc}

• Observation of structure $T_{cc\bar{c}\bar{c}}$ in di- J/ψ channel

J/ψ - J/ψ resonances observed in experiments

Experimental search for T_{ccccc}

• Observation of structure $T_{cc\bar{c}\bar{c}}$ in di- J/ψ and $J/\psi\psi(2S)$ channel

Update of results in ATLAS

	M	Γ	Observable channels
X(6200)	$6.22\pm0.05^{+0.04}_{-0.05}$	$0.31\pm0.12^{+0.07}_{-0.08}$	
X(6600)	$6.62\pm0.03^{+0.02}_{-0.01}$	$0.31\pm0.09^{+0.06}_{-0.11}$	${ m di} ext{-}J/\psi$
X(6000)	$6.87 \pm 0.03 ^{+0.06}_{-0.01}$	$0.12\pm0.04^{+0.03}_{-0.01}$	-
$\Lambda(0300)$	$6.78\pm0.36^{+0.35}_{-0.54}$	$0.39\pm0.11^{+0.11}_{-0.07}$	I/a/a/2(2S)
X(7200)	$7.22\pm0.03^{+0.02}_{-0.03}$	$0.10\substack{+0.13+0.06\\-0.07-0.05}$	$ J/\psi\psi(2S)$
			E. BT. on behalf of the ATLA

J/ψ - J/ψ resonances observed in experiments

model A model B $di - J/\psi$ $6.65 \pm 0.02^{+0.03}_{-0.02}$ $6.41 \pm 0.08^{+0.08}_{-0.03}$ m_0 $0.59 \pm 0.35^{+0.12}_{-0.20}$ $0.44 \pm 0.05^{+0.06}_{-0.05}$ Γ_0 $6.63 \pm 0.05^{+0.08}_{-0.01}$ m_1 $0.35 \pm 0.11^{+0.11}_{-0.04}$ Γ_1 $6.86 \pm 0.03^{+0.01}_{-0.02}$ $6.91 \pm 0.01 \pm 0.01$ m_2 $0.11 \pm 0.05^{+0.02}_{-0.01}$ $0.15 \pm 0.03 \pm 0.01$ Γ_2 $\pm 5.1\%^{+8.1\%}_{-8.9\%}$ $\Delta s/s$ $J/\psi + \psi(2S)$ model β model α $7.22 \pm 0.03 ^{+0.01}_{-0.03}$ $6.96 \pm 0.05 \pm 0.03$ m_3 or m $0.09 \pm 0.06^{+0.06}_{-0.03}$ $0.51 \pm 0.17^{+0.11}_{-0.10}$ Γ_3 or Γ $\pm 21\% \pm 14\%$ $\pm 20\% \pm 12\%$ $\Delta s/s$

E. B.-T. on behalf of the ATLAS Collaboration, https://agenda.infn.it/event/28874/ contributions/170298/.

Model A: Three resonances Model B: Two resonances Model α : A model + a standalone fourth resonance Model β : A single resonance in $J/\psi\psi(2S)$

arXiv:2304.08962v1

Theoretical interpretations

• The predicted ground S-wave $T_{cc\bar{c}\bar{c}}$: (6.3, 6.5) GeV.		J^{PC}	$M_{ m th}^1$	$M_{\rm th}^2$	[43]	[44]	[47]	[34]	[33]	[41]	[49]	[37,57]
		0++	6.377 6.425	6.371 6.483	5.966	6.192 ± 0.025	6.001			6.038	6.470 6.558	6.44 ± 0.15
• X(6900): Radial & P-wave excitation?		1^{+-} 2^{++}	6.425 6.432	6.450 6.479	6.051 6.223		6.109 6.166		· · ·	6.101 6.172	6.512 6.534	$\begin{array}{c} 6.37 \pm 0.18 \\ 6.37 \pm 0.19 \end{array}$
Phys. Rev. D 104, 116029 (2021).	bbb b	0++	19.215 19.247	19.243 19.305	18.754	18.826 ± 0.025	18.815	18.72 ± 0.02	18.69 ± 0.03		19.268 19.305	18.45 ± 0.15
arXiv:2207.07537 [hep-ph].		1+-	19.247	19.311	18.808		18.874				19.285	18.32 ± 0.17
Phys. Rev. D 105, 014006 (2022).		2++	19.249	19.325	18.916		18.905				19.295	18.32 ± 0.17
Phys. Rev. D 104, 036016 (2021).	$b b \bar{c} \bar{c} (c c \bar{b} \bar{b})$	0++	12.847 12.866	12.886 12.946			12.571				12.935 13.023	
Phys. Rev. D 104, 014020 (2021).		1+-	12.864	12.924			12.638				12.945	
arXiv:2104.08814 [hep-ph].		2++	12.868	12.940			12.673				12.956	

• The dynamical rescattering mechanism of double-charmonium.

```
Phys. Rev. D 103, 034024 (2021).
Phys. Rev. Lett. 126, 132001 (2021).
arXiv:2011.11374 [hep-ph].
Phys. Rev. D 103, 071503 (2021).
Sci. Bull. 66, 2462 (2021).
arXiv:2206.13867 [hep-ph].
```


. . . .

. . .

• Four body system: *two independent color singlet states are allowed*

 $\mathbf{3} \otimes \mathbf{3} \otimes \overline{\mathbf{3}} \otimes \overline{\mathbf{3}} = 2 \times \mathbf{1} \oplus 4 \times \mathbf{8} \oplus \mathbf{10} \oplus \overline{\mathbf{10}} \oplus \mathbf{27}$

- ✓ Diquark-antidiquark: (QQ)- $(\bar{Q}\bar{Q})$:
- $\overline{3}_c \otimes 3_c = 1_c$ and $6_c \otimes \overline{6}_c = 1_c$.
- ✓ Meson-Meson: $(Q\bar{Q})$ - $(Q\bar{Q})$

$$\begin{aligned} |\mathbf{1}\rangle &\equiv |(Q_1\bar{Q}_3)_{\mathbf{1}}(Q_2\bar{Q}_4)_{\mathbf{1}}\rangle, \\ |\mathbf{8}\rangle &\equiv |(Q_1\bar{Q}_3)_{\mathbf{8}}(Q_2\bar{Q}_4)_{\mathbf{8}}\rangle, \end{aligned} \quad \text{Or} \quad \begin{aligned} |\mathbf{1}\rangle &\equiv |(Q_1\bar{Q}_3)_{\mathbf{1}}(Q_2\bar{Q}_4)_{\mathbf{1}}\rangle, \\ |\mathbf{1}'\rangle &\equiv |(Q_1\bar{Q}_4)_{\mathbf{1}}(Q_2\bar{Q}_3)_{\mathbf{1}}\rangle, \end{aligned}$$

• Four body system: *two independent color singlet states are allowed*

 $\mathbf{3}\otimes\mathbf{3}\otimes\overline{\mathbf{3}}\otimes\overline{\mathbf{3}}=2\times\mathbf{1}\oplus4\times\mathbf{8}\oplus\mathbf{10}\oplus\overline{\mathbf{10}}\oplus\mathbf{27}$

 $|\mathbf{1}
angle = \sqrt{rac{1}{3}}|\overline{\mathbf{3}}
angle + \sqrt{rac{2}{3}}|\mathbf{6}
angle,$ \checkmark Diquark-antidiquark: (QQ)-(QQ): $\overline{3}_c \otimes 3_c = 1_c$ and $6_c \otimes \overline{6}_c = 1_c$. $|\mathbf{8}
angle = -\sqrt{rac{2}{3}}|\overline{\mathbf{3}}
angle + \sqrt{rac{1}{3}}|\mathbf{6}
angle,$ \checkmark Meson-Meson: $(Q\bar{Q})$ - $(Q\bar{Q})$ $|\mathbf{1'}
angle = -\sqrt{rac{1}{3}}|\overline{\mathbf{3}}
angle + \sqrt{rac{2}{3}}|\mathbf{6}
angle.$ Or $\begin{aligned} |\mathbf{1}\rangle &\equiv |(Q_1\bar{Q}_3)_1(Q_2\bar{Q}_4)_1\rangle, \\ |\mathbf{1}'\rangle &\equiv |(Q_1\bar{Q}_4)_1(Q_2\bar{Q}_3)_1\rangle, \end{aligned}$ $|\mathbf{1}\rangle \equiv |(Q_1\bar{Q}_3)_\mathbf{1}(Q_2\bar{Q}_4)_\mathbf{1}\rangle,$ $|\mathbf{8}\rangle \equiv |(Q_1\bar{Q}_3)_{\mathbf{8}}(Q_2\bar{Q}_4)_{\mathbf{8}}\rangle,$ Either two of them $\langle \mathbf{1}' | \mathbf{1}
angle = rac{1}{2}$ • Not orthogonal

Formalism

• Hamiltonian: $H = H_0 + \frac{\lambda_i}{2} \cdot \frac{\lambda_j}{2} [V_{\text{cen}}^{(0)}(r_{ij}) + V_{\text{so}}^{(1)}(r_{ij}) + V_{\text{tens}}^{(1)}(r_{ij})]$	(Charmonium state <i>cc</i>							
$\frac{4}{2}$ \mathbf{p}^2	param	eter	Mass spectrum (MeV)						
$H_0 = \sum rac{\mathbf{p}_i}{2m_i} + \sum m_i - T_G.$			$^{2S+1}L_J$	Meson	EXP	THE			
i=1 i i	$lpha_s$	0.5461	$^{1}S_{0}$	η_c	2983.9	2984			
• $V_{cen}^{(0)}$: Color Coulomb+linear confinement + hyperfine	b $[\text{GeV}^2]$	0.1452	3S_1	J/ψ	3096.9	3092			
$V^{(0)}(r_{s}) = \frac{\alpha_s}{br_{s}} = \frac{3}{br_{s}} = \frac{8\pi\alpha_s}{c} \left(\frac{\sigma}{c}\right)^3 e^{-\sigma^2 r_{ij}^2 s_{s}} s_{s}$	$m_c \; [{ m GeV}]$	1.4794	${}^{3}P_{0}$	χ_{c0}	3414.7	3426			
$\mathbf{v}_{cen}(r_{ij}) = \frac{1}{r_{ij}} - \frac{1}{4} or_{ij} - \frac{1}{3m_i m_j} \left(\frac{1}{\sqrt{\pi}}\right)^{-2} e^{-ij \mathbf{s}_i \cdot \mathbf{s}_j}.$	$\sigma~[{\rm GeV}]$	1.0946	${}^{3}P_{1}$	χ_{c1}	3510.7	3506			
(1) Phys. Rev. D 72 (2005) 054026	$^{1}P_{1}$	$h_c(1P)$	3525.4	3516					
• $V_{so}^{(1)} + V_{tens}^{(1)}$: spin-orbital and tensor interactions.	${}^{3}P_{2}$	χ_{c2}	3556.2	3556					
$U^{(1)}(m, r) = U^{v}(m, r) + U^{s}(m, r)$			$^{1}S_{0}$	$\eta_c(2S)$	3637.5	3634			
$V_{\rm so}(T_{ij}) = V_{\rm so}(T_{ij}) + V_{\rm so}(T_{ij}).$			3S_1	$\psi(2S)$	3686.1	3675			
$V_{\rm so}^{v}(r_{ij}) = \frac{1}{n} \frac{dV_{\rm Coul}}{dn} \frac{1}{4} \left[\left(\frac{1}{m^2} + \frac{1}{m^2} + \frac{4}{m} \right) \mathbf{L}_{ij} \cdot \mathbf{S}_{ij} + \left(\frac{1}{m^2} - \frac{1}{m^2} \right) \mathbf{L}_{ij} \right]$	$\cdot \left(\mathbf{s}_i - \mathbf{s}_j\right)$		3S_1	$\psi(3S)$	4039.0	4076			
T_{ij} aT_{ij} $4 \left(\frac{m_i}{m_j} - \frac{m_i m_j}{m_i} \right)$ $m_i - \frac{m_j}{m_j}$	L		3S_1	$\psi(4S)$	4421.0	4412			
$V_{\rm so}^{s}(r_{ij}) = -\frac{1}{r_{ij}} \frac{dV_{\rm lin}}{dr_{ij}} \left(\frac{\mathbf{L}_{ij} \cdot \mathbf{s}_{i}}{2m_{i}^{2}} + \frac{\mathbf{L}_{ij} \cdot \mathbf{s}_{j}}{2m_{j}^{2}} \right) $ Phys. Rev. D 32, 189 $V_{\rm tens}^{(1)}(r_{ij}) = -\left(\frac{\partial^{2}}{\partial r_{ij}^{2}} - \frac{1}{r_{ij}} \frac{\partial}{\partial r_{ij}}\right) \frac{V_{\rm Coul}}{3m_{i}m_{j}} \mathcal{S}_{ij}$				3	PDG				
	color	-singlet	color-s	singlet					

Gaussian Expansion Method

• Few-body problem: Gaussian expansion method

Prog. Part. Nucl. Phys. 51 223-307

$$\psi_{JJ_z} = \sum \left[\varphi_{n_a J_a}(\mathbf{r}_{12}, \beta_a) \otimes \varphi_{n_b J_b}(\mathbf{r}_{34}, \beta_b) \otimes \phi_{NL_{ab}}(\mathbf{r}, \beta) \right]_{JJ_z},$$

• Basic wave function of each Jacobi coordinate

$$\varphi_{n_a J_a M_a} = [\phi_{n_a l_a}(\mathbf{r}_{12}, \beta_a) \chi_{s_a}]_{M_a}^{J_a} \chi_f \chi_{c_a}$$

• $\chi_{s,f,c}$: the wave function in the spin, flavor, and color space.

• Gaussian function:

$$\phi_{n_a l_a}(r_{12}, \beta_a) = \left\{ \frac{2^{l_a + 2} (2\nu_{n_a})^{l + 3/2}}{\sqrt{\pi} (2l_a + 1)!!} \right\}^{1/2} r_{12}^{l_a} e^{-\nu_{n_a} r_{12}^2} \quad Q_2^{\frown}$$

• Calculate the mass spectrum in two stages.

 $\checkmark H = H_0 + V_{cen}^{(0)}$ (OGE Coulomb + confinement+ hyperfine) & Schrödinger equation to obtain $\psi_{JJ_z}^0$. $\checkmark H = H_0 + V_{cen}^{(0)} + V_{so}^{(1)} + V_{tens}^{(1)}$ & diagonalizing the Hamiltonian matrix in the basis of $\psi_{JJ_z}^0$.

Diquark-antidiquark configuration

• The S-wave
$$T_{cc\bar{c}\bar{c}}$$
 state: $L_{12} = L_{34} = L_r = 0$.

$$0^{++} \begin{bmatrix} [QQ]^{1}_{\bar{3}_{c}}[\bar{Q}\bar{Q}]^{1}_{\bar{3}_{c}}]^{0}_{1_{c}} & 1^{+-} & \left[[QQ]^{1}_{\bar{3}_{c}}[\bar{Q}\bar{Q}]^{1}_{\bar{3}_{c}}]^{1}_{1_{c}} \\ \\ & \left[[QQ]^{0}_{\bar{6}_{c}}[\bar{Q}\bar{Q}]^{0}_{\bar{6}_{c}}]^{0}_{1_{c}} & 2^{++} & \left[[QQ]^{1}_{\bar{3}_{c}}[\bar{Q}\bar{Q}]^{1}_{\bar{3}_{c}}]^{2}_{1_{c}} \end{bmatrix} \end{bmatrix}$$

• P-wave state: λ -and ρ - mode excitations.

TABLE II. The color-flavor-spin configurations of the QQ $(\bar{Q}\bar{Q})$ diquark (antidiquark). The scripts "S" and "A" represent the exchange symmetry and antisymmetry for the identical particles, respectively.

Flavor	S-wave $(L = 0)$	Spin	Color		J^P						
S	S	$\mathbf{S}(S_{QQ}=1)$	$\bar{3}_c(A)$	$[QQ]^{1}_{\bar{3}}$	1+						
S	S	$\mathcal{A}(S_{QQ}=0)$	$6_c(S)$	$[QQ]_{6_c}^{0}$	0+						
Flavor	<i>P</i> -wave $(L = 1)$	Spin	Color								
S	Α	$S(S_{QQ} = 1)$	$6_c(S)$	$[[QQ]^1_{6_c}, \rho]^0_{6_c}$	0-						
				$[[QQ]^1_{6_c}, \rho]^1_{6_c}$	1-						
				$[[QQ]_{6_c}^1, \rho]_{6_c}^2$	2-						
S	А	$S(S_{QQ} = 0)$	$\bar{3}_c(A)$	$[[QQ]^{0}_{\bar{\mathfrak{Z}}_{c}},\rho]^{1}_{\bar{\mathfrak{Z}}_{c}}$	1-						
	-										
	Phys. Rev. D. 100, 096013										

Results

• No stable bound states exist in the quark models.

- The lowest fully charmed tetraquark state : in mass region (6.5, 6.7, 6.9) GeV
- X(6900): wide S-wave states $J^{PC} = 0^{++}$ or 2^{++} or narrow P-wave states with $J^{PC} = 1^{-+}$ or 2^{-+} .
- Redundancy states :

 \checkmark The finite number of the bases \longrightarrow discrete eigenvalues of the scattering states

 \checkmark Multiquark states with large decay widths \longrightarrow hard to observe

Phys. Rev. D. 100, 096013 Phys. Rev. D. 104, 036016

Complex scaling method (CSM): T_{ccccc}

• Complex scaling method

 $T_{cc\bar{c}\bar{c}}$

• 2nd pole: quite close to the threshold lines with a scaling angle in the (8, 10) degree \checkmark Higher states are more difficult to describe.

Ċ

$$\Phi_{\text{Res}}^{\theta} \sim \exp(iK_R e^{-i\theta_R} \cdot re^{i\theta}) = \exp(iK_R re^{i(\theta - \theta_R)})$$
 T. Myo et al. PPNP. 79, 1 (2014)
$$= \exp[iK_R r \cdot \cos(\theta - \theta_R)] \cdot \exp[-K_R r \cdot \sin(\theta - \theta_R)] \rightarrow \text{ damping with } \theta > \theta_R$$

$T_{cc\bar{c}\bar{c}}$

											1.7 7		
											M	Г	Observable channels
									LHCb model I [12]	$\mathbf{V}(6000)$	$6905 \pm 11 \pm 7$	$80\pm19\pm33$	di <i>U</i> ak
	7300	r							LHCb model II $[12]$	$\Lambda(0900)$	$6886 \pm 11 \pm 11$	$168\pm33\pm69$	$dI-J/\psi$
			7273.5(49.8)	7281.3(91.2	2)	X(7200)				X(6600)	$6552 \pm 10 \pm 12$	$124\pm29\pm34$	
	-	7202.2(60.6)				()	X(7200)		CMS [14]	X(6900)	$6927\pm9\pm5$	$122\pm22\pm19$	$\mathrm{di}\text{-}J/\psi$
	7100	_		7068 5(83 6	5)		~ /			X(7200)	$7287 \pm 19 \pm 5$	$95\pm46\pm20$	
		7035.1(77.8)	7049.6(69.4)	7008.5(85.0	5)					X(6200)	$6.22\pm0.05^{+0.04}_{-0.05}$	$0.31\pm0.12^{+0.07}_{-0.08}$	
	6900	-				X(6900)				X(6600)	$6.62\pm0.03^{+0.02}_{-0.01}$	$0.31\pm0.09^{+0.06}_{-0.11}$	$\mathrm{di}\text{-}J/\psi$
[eV]					X(6900)		X(6900)	$J/\psi\psi(2S)$	ATLAS $[15]$	X(6900)	$6.87\pm0.03^{+0.06}_{-0.01}$	$0.12\pm0.04^{+0.03}_{-0.01}$	-
2 2	6700							$\eta_c(2S)J/\psi$ $\eta_w(2S)$		M(0000)	$6.78\pm0.36^{+0.35}_{-0.54}$	$0.39\pm0.11^{+0.11}_{-0.07}$	- I/a/a/a(2S)
Ι								$\eta_c \eta_c(2S)$		X(7200)	$7.22\pm0.03^{+0.02}_{-0.03}$	$0.10\substack{+0.13+0.06\\-0.07-0.05}$	$5/\psi\psi(25)$
	6500	-				X(6600)	X(6600)		• 1st pole	/S X(69)00):		
									√ 100 MeV	V highe	r mass & con	nsistent deca	av width
	6300	-					_			8			· J
							X(6200)	$J/\psi J/\psi$	• 2nd pole:	a cana	lidate for X((7200).	
	6100							$\eta_c J/\psi$	<i>P</i>		<i>J</i> •••••(
	5900	0++	1+-	2++	LHCb	CMS	ATLAS	$\eta_c \eta_c$	• <i>Absence</i> √ a wide re	<i>of the l</i> eesonance	ower X(660 e asymptote	0) <i>state</i> . will oscilla	te very

Phys. Rev. D 106, 096005

• The confinement mechanism~ br.

strongly in the complex plane.

Investigation of the confinement mechanisms

- Conventional quark-quark confinement potential form $\overline{Q}Q$ meson: $V(r) \sim br$
- Application to baryons (qqq): $V = -\frac{3}{4}\sigma \sum_{i < i} (T_i \cdot T_j)r_{ij}$ (Δ -shape) + Y-shape?
- Direct application to $T_{Q_1Q_2\bar{Q}_3\bar{Q}_4}$: $V = -\frac{3}{4}\sigma \sum_{i < i} (T_i \cdot T_j)r_{ij}$ V. Dmitrasinovic et al., Eur. Phys. J. C 62, 383-397 (2009)

Two bases:
$$|1\rangle = [|(1\bar{3})(2\bar{4})\rangle \phi((r_{13}, r_{24}, R) |1'\rangle = |(1\bar{4})(2\bar{3})\rangle \phi(r_{14}, r_{23}, R')$$

$$NM = \begin{pmatrix} \langle 1|1 \rangle & \langle 1|1' \rangle \\ \langle 1'|1 \rangle & \langle 1'|1' \rangle \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{3} \\ \frac{1}{3} & 1 \end{pmatrix}$$
$$\begin{pmatrix} 2a & \frac{1}{3} \left(2a + 2b - 2\sqrt{a^2 + b^2} \right) \\ \frac{1}{3} \left(2a + 2b - 2\sqrt{a^2 + b^2} \right) & 2b \end{pmatrix}$$

√Problem: *long-range color van der Waals* between color singlet mesons,

$$V_{\rm cvdW} = \frac{|\langle \mathbf{8} | V_{\rm QM} | \mathbf{1} \rangle|^2}{\Delta E} \propto -\frac{1}{R^3}$$

T. Appelquist et al Phys. Lett. B77, 405 (1978)

String Flip-Flop model

• "Reconnection of strings and quark matter"

$$V_{\text{string}} = \sigma \times \min_{\text{links}} \sum r_{\text{link}}$$
 H. Miyazawa, PRD20, 2953 (1979).

• "String Flip-Flop" -- Strings can make a transition to another configuration when they touch each other.

• long-range color van der Waals between color singlet mesons disappear.

H. Miyazawa, PR D20, 2953 (1979)
N. Isgur, J. E. Paton, Phys. Lett. B 124, 247 (1983)
M. Oka, Phys. Rev. D 31, 2274 (1985).
J. Vijande, et. Al. Phys. Rev. D 85, 014019 (2012).

• The lattice QCD may choose the adiabatic potential of the configuration with the shortest string lengths to minimize the string tension energy – Flip-Flop model

F. Okiharu, et al. PRD72 (2005) 014505
C. Alexandrou . et al. Nucl. Phys. A 518, 723-751 (1990)
F. Okiharu .et al. J. Mod. Phys. 7, 774-789 (2016)

String Flip-Flop model

 $V_{\rm FF} = \sigma \operatorname{Min} \left[r_{13} + r_{24}, r_{14} + r_{23} \right].$

• The flip-flop potential model may not be satisfactory for color SU(3): choice of color configurations has some ambiguity

• $|1\rangle$ and $|1'\rangle$ are not smoothly connected in SU(3), because the overlap of $|1\rangle$ and $|1'\rangle$ is not complete.

only the $1/N_c$ part of $|\mathbf{1}\rangle$ can go directly to $|\mathbf{1}'\rangle$.

• The transition between two color configurations is dynamically generated, and the HC channel can be treated as an independent configuration.

Novel string-like confinement potential

• Three bases: States with different string configurations are orthogonal

 $|\mathbf{1}\rangle\rangle \equiv |(Q_{1} \rightarrow \bar{Q}_{3})_{1}(Q_{2} \rightarrow \bar{Q}_{4})_{1}\rangle$ $|\mathbf{1}'\rangle\rangle \equiv |(Q_{1} \rightarrow \bar{Q}_{4})_{1}(Q_{2} \rightarrow \bar{Q}_{3})_{1}\rangle.$ $|\mathbf{hc}\rangle\rangle \equiv |(Q_{1} \leftrightarrow Q_{2})_{\overline{3}} \leftarrow (\bar{Q}_{3} \leftrightarrow \bar{Q}_{4})_{3}\rangle,$ $\langle\langle \mathbf{1}'|\mathbf{1}\rangle\rangle = 0.$ $\langle\langle \mathbf{1}|\mathbf{hc}\rangle\rangle = \langle\langle \mathbf{1}'|\mathbf{hc}\rangle\rangle = 0.$ Phys. Rev. D.37.2431 Nucl. Phys. A 505, 655-669. Prog. Theor. Phys. Suppl. 137, 21-42.

• Minimal surface area S: N-body force

A toy model: Conventional QM VS String-like potential

A toy model: Conventional QM VS String-like potential

Novel string-like potential: T_{ccccc}

- Application to the $T_{cc\bar{c}\bar{c}}$ states:
- Parameters are same as the conventional QM reproduce the two meson thresholds
- Replace the linear confinement by the string-like confinement

$$\begin{split} H &= H_0 + \sum_{i,j} \frac{\lambda_i}{2} \cdot \frac{\lambda_j}{2} V_{\text{SR}} (r_{ij}) + V_{\text{ST}} \\ H_0 &= \sum_{i=1}^4 \frac{\mathbf{p}_i^2}{2m_i} + \sum_i m_i - T_G \\ V_{\text{SR}} (r_{ij}) &= \frac{\alpha_s}{r_{ij}} - \frac{8\pi\alpha_s}{3m_im_j} \left(\frac{\sigma}{\sqrt{\pi}}\right)^3 e^{-\sigma^2 r_{ij}^2} \mathbf{s}_i \cdot \mathbf{s}_j \\ V_{\text{ST}} &= \begin{pmatrix} \sigma (r_{13} + r_{24}) & \kappa e^{-\sigma S} & \kappa' e^{-\sigma S} \\ \kappa e^{-\sigma S} & \sigma (r_{14} + r_{23}) & -\kappa' e^{-\sigma S} \\ \kappa' e^{-\sigma S} & -\kappa' e^{-\sigma S} & \frac{\sigma}{4} \left[r_{13} + r_{24} + r_{14} + r_{23} + 2 \left(r_{12} + r_{34} \right) \right] \end{pmatrix} \\ \text{with} \end{split}$$

$$S = \frac{1}{4} \left(r_{13}^2 + r_{24}^2 + r_{14}^2 + r_{23}^2 \right) \longrightarrow N\text{-body force}$$

• Wave function expansion:

$$egin{aligned} \Psi(1,2,3,4) &= \psi_1 |\mathbf{1}
angle + \psi_{\mathbf{1}'} |\mathbf{1}'
angle + \psi_{\mathbf{hc}} |\mathbf{hc}
angle \ \Psi(1,2,3,4) &= \psi_{\mathrm{S}} rac{1}{\sqrt{2}} (|\mathbf{1}
angle - |\mathbf{1}'
angle) + \psi_A rac{1}{\sqrt{2}} (|\mathbf{1}
angle + |\mathbf{1}'
angle) \ &+ \psi_{S,\mathbf{hc}} |\mathbf{hc}
angle, \end{aligned}$$

• For the colored V_{SR} contributions, here we take a possible attractive configuration: $|(Q_1Q_2)_{\overline{3}}(\bar{Q}_3\bar{Q}_4)_3\rangle$

$$\begin{split} &\langle\!\langle \mathbf{1} | (T_1 \cdot T_3) | \mathbf{1}' \rangle\!\rangle = \langle\!\langle \mathbf{1} | (T_2 \cdot T_4) | \mathbf{1}' \rangle\!\rangle = \langle\!\langle \mathbf{1} | (T_1 \cdot T_4) | \mathbf{1}' \rangle\!\rangle \\ &= \langle\!\langle \mathbf{1} | (T_2 \cdot T_3) | \mathbf{1}' \rangle\!\rangle = -\frac{4}{3} \langle\!\langle \mathbf{1} | \mathbf{1}' \rangle\!\rangle = 0, \\ &\langle\!\langle \mathbf{1} | (T_1 \cdot T_2) | \mathbf{1}' \rangle\!\rangle \\ &= \langle\!\langle \mathbf{1} | T_1 \cdot (T_2 + T_4) - T_1 \cdot T_4 | \mathbf{1}' \rangle\!\rangle = -\langle\!\langle \mathbf{1} | (T_1 \cdot T_4) | \mathbf{1}' \rangle\!\rangle = 0, \end{split}$$

Novel string-like potential: 2^{++} T_{ccccc}

Probability Density

Pole trajectories

Novel string-like potential: T_{ccccc}

• 1st pole : a candidate for X(6600)

- 2nd pole: a candidate for X(6900).
- A third pole at around 7.0 GeV?- convergency not so good. For instance: 0^{++} : E=6980.4 MeV, $\Gamma = 29.0$ MeV

Summary

• Conventional confinement: $V = -\frac{3}{4}\sigma \sum_{i < j} (T_i \cdot T_j)r_{ij}$

√ 1st pole -X(6900) & 2nd pole-X(7200).

 \checkmark Absence of the lower X(6600) state.

• Novel string confinement: N-body force

 \checkmark Mixings of states induce a strong attraction.

✓ A bound state appears.

 \checkmark Two candidates for *X*(6600) *and X*(6900).

√ X(7200) or X(7000)?

Thank you for your attention!

Backup slide

Real scaling method

 \checkmark scale ρ_b by multiplying α : $\rho_b \rightarrow \alpha \rho_b$

• Meson-meson scattering channel

- \checkmark stabilization plot
- Real scaling method: *quite narrow resonances.* √ typical width ~ 10 MeV Phys. Lett. B 814 (2021), 136095

S-wave T_{ccccc}

• The S-wave $T_{cc\bar{c}\bar{c}}$ state: $L_{12} = L_{34} = L_r = 0$.

• The coupling with non S-wave orbital excitations is neglected.

 $\eta_c \eta_c, J/\psi J/\psi, \chi_{c1}\eta_c$ (P-wave), $J/\psi h_c(1P)$ (P-wave), $J/\psi \psi(2S), \chi_{c0}\chi_{c0}$ $\eta_c J/\psi, h_c \eta_c$ (P-wave), $J/\psi \chi_{c1}$ (P-wave), $\eta_c \psi', h_c \chi_{c0}$

 $2^{++} \mid \boldsymbol{J/\psi J/\psi}, \eta_c \chi_{c1}(\text{P-wave}), \eta_c \chi_{c2}(\text{P-wave}), J/\psi h_c(\text{P-wave}), J/\psi \psi(2S), \chi_{c0} \chi_{c2}$

TABLE IV. The mass spectrum (MeV), the percentage of different color configurations, and the root mean square radius (fm) of the *S*-wave tetraquark states.

0^{++}	Mass	$\bar{3}_c \otimes 3_c$	$6_c \otimes \overline{6}_c$	$1_c \otimes 1_c$	$8_c \otimes 8_c$	r_{12}/r_{34}	r	r_{13}/r_{24}	r'
1S	6405	31.9%	68.1%	96.9%	3.13%	0.52	0.31	0.48	0.37
	6498	67.7%	32.3%	5.7%	94.3%	0.51	0.36	0.51	0.36
2S	6867	10.6%	89.4%	80.6%	19.4%	0.65	0.35	0.58	0.46
	7007	89.7%	10.3%	26.0%	74.0%	0.49	0.47	0.59	0.35
1+-	Mass	$\bar{3}_c \otimes 3_c$	$6_c \otimes \overline{6}_c$	$1_c \otimes 1_c$	$8_c \otimes 8_c$	r_{12}/r_{34}	r	r_{13}/r_{24}	r'
1 S	6481	100%	0%	33.3%	66.7%	0.48	0.37	0.51	0.34
2S	6954	100%	0%	33.3%	66.7%	0.61	0.44	0.61	0.43
3S	7024	100%	0%	33.3%	66.7%	0.66	0.42	0.62	0.46
2^{++}	Mass	$\bar{3}_c \otimes 3_c$	$6_c \otimes \overline{6}_c$	$1_c \otimes 1_c$	$8_c \otimes 8_c$	r_{12}/r_{34}	r	r_{13}/r_{24}	r'
1 S	6502	100%	0%	33.3%	66.7%	0.49	0.39	0.53	0.35
2S	6917	100%	0%	33.3%	66.7%	0.55	0.60	0.72	0.39
3S	7030	100%	0%	33.3%	66.7%	0.64	0.46	0.64	0.45

0⁺⁺ state: an admixture of 3_c - 3_c and 6_c - 6_c configurations.
0⁺⁺ ground state: 6_c - 6_c component is lighter and dominates.

- No bound states exist.
- Wide S-wave $T_{cc\bar{c}\bar{c}}$: $di J/\psi$, $di \eta_c$, $\eta_c J/\psi$.
- X(6900): wide S-wave states $J^{PC} = 0^{++}$ or 2^{++} .

 0^{++}

 1^{+-}

P-wave $T_{cc\bar{c}\bar{c}}$

J^{PC}	Decay modes
0^{-+}	$m{J/\psi J/\psi}(ext{P-wave}),\eta_c\chi_{c0},J/\psi h_c,J/\psi\psi(2S)(ext{P-wave})$
1^{-+}	$J/\psi J/\psi$ (P-wave) $J/\psi h_c, J/\psi \psi(2S)$ (P-wave)
2^{-+}	$m{J/\psi J/\psi}(ext{P-wave}),\eta_c\chi_{c2},J/\psi h_c,J/\psi\psi(2S)(ext{P-wave})$
0	$\eta_c J/\psi(ext{P-wave}),J/\psi\chi_{c1},\eta_c\psi(2S)(ext{P-wave})$
1	$\eta_c J/\psi(ext{P-wave}),\eta_c h_c,J/\psi\chi_{c0},J/\psi\chi_{c1},J/\psi\chi_{c2},\eta_c\psi'(ext{P-wave})$
$2^{}$	$\eta_c J/\psi(ext{P-wave}), J/\psi\chi_{c1}, J/\psi\chi_{c2}, \eta_c\psi'(ext{P-wave}), h_c\chi_{c0}(ext{P-wave})$
$3^{}$	$J/\psi\chi_{c2}$

- New narrow $T_{cc\bar{c}\bar{c}}$ tetraquark: especially $J^{PC} = 0^{--}$ or 1^{-+} .
- P-wave decay channels dominated: small decay widths.
- X(6900): Narrow P-wave state with $J^{PC} = 1^{-+}$ or 2^{-+} .

Discussion

• For a confined charmonium $\bar{c}c$, the *H* in harmonic oscillator potential is

$$H = \sum_{i} \frac{p_i^2}{2m_i} + kr_{12}^2 = \frac{p^2}{2u_m} + \frac{u_m\omega^2}{2}r_{12}^2, \quad \text{with} \quad u_m = \frac{m_Q}{2}, \quad \omega_m = \sqrt{\frac{4k}{m_Q}},$$

• $\bar{c}c: m_P - m_S = \hbar \sqrt{\frac{4k}{m_Q}} \approx 400 \sim 500 \text{ MeV}.$

• For a confined $T_{cc\bar{c}\bar{c}}$,

$$H = \sum_{i} \frac{p_{i}^{2}}{2m_{i}} + a_{1}k(r_{12}^{2} + r_{34}^{2}) + a_{2}k'(r_{13}^{2} + r_{24}^{2} + r_{14}^{2} + r_{23}^{2}) \qquad \boxed{\begin{array}{c}a_{1} & a_{2} & \omega_{\rho} & \omega_{\lambda}\\\hline \overline{3}_{c} - 3_{c} & \frac{1}{2} & \frac{1}{4} & \sqrt{\frac{2k+k'}{2u_{a}}} & \sqrt{\frac{-2k+5k'}{4u_{a}}}\\\hline -\frac{p_{a}^{2}}{2u_{a}} + \frac{p_{b}^{2}}{2u_{b}} + \frac{p_{ab}^{2}}{2u_{ab}} + \frac{u_{a}\omega_{a}^{2}}{2}r_{12}^{2} + \frac{u_{b}\omega_{b}^{2}}{2}r_{34}^{2} + \frac{u_{ab}\omega_{ab}^{2}}{2}r^{2}, \qquad \boxed{\begin{array}{c}b_{c} - \overline{6}_{c} & -\frac{1}{4} & \frac{5}{8} & \sqrt{\frac{2k'}{u_{ab}}} & \sqrt{\frac{-2k+5k'}{4u_{b}}}\\\hline -\frac{1}{4} & \frac{5}{8} & \sqrt{\frac{2k'}{u_{ab}}} & \sqrt{\frac{-2k+5k'}{4u_{b}}}\\\hline \end{array}}$$

$$\cdot \text{If } k = k', 6_{\rho} < 3_{\lambda} < 3_{\rho} < 6_{\lambda}. \qquad \cdot \text{P-wave } T_{ccc\overline{c}\overline{c}} : 6_{\rho} < 3_{\lambda} < 6_{\lambda} < 3_{\rho}\\\hline \cdot \text{Small mass gap between S-wave and P-wave } T_{cc\overline{c}\overline{c}} .$$

Discussion

J^{PC}		Mass	$ \lambda_1^{+/-} angle$ $ \lambda_2^- angle$	$ \lambda_3^- angle$	$ ho_1^{+/-} angle$	$ ho_2^{+/-} angle$	r_{12}/r_{34}	r	r_{13}/r_{24}	r'
	(6746 - 20 - 20 - 34)	6589	3.5%		92.8%	3.7%	0.62	0.33	0.60	0.50
0^{-+}	-20 $6599 + 2$ -42	6723	90.4%		5.2%	4.4%	0.52	0.43	0.66	0.37
	$\begin{array}{ c c c } \hline & -34 & -42 & 6894 - 62 \end{array}$	6847	6.0%		2.1%	91.9%	0.57	0.38	0.61	0.47
0	(6561 + 31 - 11)	6592		9	99.9%	0.1%	0.61	0.32	0.59	0.49
0	$\begin{pmatrix} -11 & 6913 - 14 \end{pmatrix}$	6899			0.1%	99.9%	0.58	0.38	0.61	0.48
	(6746 - 3 - 4 - 6)	6608	0.1%	1	99.8%	0.1%	0.63	0.33	0.60	0.50
1^{-+}	-4 $6599 + 9$ 8	6743	99.7%		0.1%	0.2%	0.51	0.43	0.66	0.36
	-6 8 6894 - 10	6884	0.2%		0.1%	99.7%	0.57	0.37	0.60	0.47
	(6740 -2 0 -10 9)	6555	$0.3\% 1.6\%$ \sim	$\sim 0\%$	97.5%	0.6%	0.61	0.32	0.59	0.49
	-2 6741 - 23 7 -19 26	6716	$0.6\% \ 94.8\%$	0.4%	2.0%	2.1%	0.52	0.42	0.65	0.37
1	0 7 6885 -2 -25	6740	$98.8\% \ 0.9\% \ r$	$\sim 0\%$	0.2%	0.1%	0.51	0.43	0.65	0.36
	-10 -19 -2 6561 - 1 21	6864	0.2% 2.2% 5	55.7%	0.1%	41.9%	0.62	0.35	0.64	0.47
	9 26 -25 21 6913 - 28	6911	0.1% 0.5% 4	43.9%	0.2%	55.3%	0.61	0.36	0.63	0.47
	(6746+6 7 10)	6592	0.2%	9	99.7%	0.1%	0.63	0.33	0.60	0.50
2^{-+}	7 6599 - 6 13	6752	99.4%		0.2%	0.4%	0.52	0.43	0.66	0.36
	10 13 6894 + 18	6913	0.4%		0.2%	99.4%	0.57	0.38	0.60	0.47
	$\left(\begin{array}{ccc} 6741-2 & 7 & -9 \end{array} \right)$	6554	0.1%	9	99.7%	0.2%	0.61	0.32	0.59	0.49
$2^{}$	7 6561 - 6 -15	6739	99.6%		0.1%	0.2%	0.51	0.43	0.66	0.36
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	6934	0.2%		0.2%	99.6%	0.57	0.38	0.61	0.48
3	6741 + 11	6753	100%				0.51	0.43	0.66	0.36

ATLAS

Model A: Three resonances 2400 5 200 200 00 ATLAS ATLAS $\begin{cases} 7.0 \\ 0.$ Events / 0.04 (√s = 13 TeV, 140 fb BW_o + Bkg. + Int. Background di-J/ψ ---- Bka, w/o Feed-down ---- Bkg. w/o Feed-down $f_s(x) = \left| \sum_{i=1}^{2} \frac{z_i}{m_i^2 - x^2 - im_i \Gamma_i(x)} \right|^2 \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2} \otimes R(\theta)},$ Sig. w/o Int. 200 E Kents Sig. w/o Int. - Sig. Int Interference Data + Data Model B: Two resonances -100 -100 (a) **(b)** -200 -200 $f(x) = \left(\left| \frac{z_0}{m_0^2 - x^2 - im_0\Gamma_0(x)} + Ae^{i\phi} \right|^2 + \left| \frac{z_2}{m_2^2 - x^2 - im_2\Gamma_2(x)} \right|^2 \right) \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2} \otimes R(\theta)},$ 6.5 7.5 7.5 7 8 8.5 9 6.5 7 8 8.5 m_{4u} [GeV] m_{4u} [GeV] 50 ATLAS Events / 0.075 GeV 0.075 GeV ATLAS Sig. + Bkg. √s = 13 TeV, 140 fb⁻ Model α : Two resonances: A model+standalone fourth resonance √s = 13 TeV, 140 fb Background Background 40 J/ψ+ψ(2S) 40^{-J/ψ+ψ(2S)} Signal Signal - Data - Data $f_s(x) = \left(\left| \sum_{i=0}^2 \frac{z_i}{m_i^2 - x^2 - im_i \Gamma_i(x)} \right|^2 + \left| \frac{z_3}{m_3^2 - x^2 - im_3 \Gamma_3(x)} \right|^2 \right) \sqrt{1 - \left(\frac{m_{J/\psi} + m_{\psi(2S)}}{x} \right)^2 \otimes R(\theta)},$ 30 20 20 (c) (**d**) Model β : Two resonances: A single resonance in $J/\psi\psi(2S)$ 10 10 0

7.5

8

8.5

9

m_{4μ} [GeV]

7

7.5

8

8.5

7

9

m_{4µ} [GeV]

9

First Lattice QCD Study for Static Quark Potential in Multi-Quark System

From H. Suganuma-san's talk

Lattice QCD

