A coupled channel analysis of the X(3872) lineshape

Mengchuan Du, Junli Ma, Guangyi Tang, Junhao Yin, Changzheng Yuan

Institute of High Energy Physics, Chinese Academy of Sciences

7 July 2023

fm

Junli Ma

majunli@ihep.ac.cn

1 / 42

Two decades have past, the nature of the X(3872) remains the subject of intense debate.

Compact tetraquark

Hadronic molecule

Important properties

- $M(X) \approx M(\overline{D}^0) + M(D^{*0})$ • $\Gamma < 1 \text{ MeV}$ Target of this work
- $J^{pc} = 1^{++}$, Isospin singlet (no charged partner has been found)
- $B(J/\psi\rho) \approx \mathrm{B}(J/\psi\omega)$, isospin break
- In pp collisions, it is produced more copiously through "prompt" processes, rather that through the decay of B mesons

Various theories about its nature

- Conventional charmonium $\chi_{c1}(2P)$
- Hadronic molecule (deuteron)
- Compact tetraquark (diquark anti diquark)
- Hybrid charmonium (ccbar and gluons)
- Hadro-charmonium

Junli Ma

Global fit [Chunhua Li	Chang-Zheng Yuan,	PRD 100(2019) 094003]
------------------------	-------------------	-----------------------

Parameter index	. Decay mode	Branching fraction
1	$X(3872) \to \pi^+\pi^- J/\psi$	$(4.1^{+1.9}_{-1.1})\%$
2	$X(3872) \to D^{*0}\bar{D}^0 + c.c.$	$(52.4^{+25.3}_{-14.3})\%$
3	$X(3872) \rightarrow \gamma J/\psi$	$(1.1^{+0.6}_{-0.3})\%$
4	$X(3872) \rightarrow \gamma \psi(3686)$	$(2.4^{+1.3}_{-0.8})\%$
5	$X(3872) \rightarrow \pi^0 \chi_{c1}$	$(3.6^{+2.2}_{-1.6})\%$
6	$X(3872) \rightarrow \omega J/\psi$	$(4.4^{+2.3}_{-1.3})\%$
7	$B^+ \to X(3872)K^+$	$(1.9 \pm 0.6) \times 10^{-4}$
8	$B^0 \to X(3872)K^0$	$(1.1^{+0.5}_{-0.4}) \times 10^{-4}$
	$X(3872) \rightarrow \text{unknown}$	$(31.9^{+18.1}_{-31.5})\%$

[Chunhua Li, Chang-Zheng Yuan, PRD 100(2019) 094003]

Paramet	er index	Decay mode	Branching fraction
1	L	$X(3872) \to \pi^+\pi^- J/\psi$	$(4.1^{+1.9}_{-1.1})\%$
6	2	$X(3872) \to D^{*0}\bar{D}^0 + c.c.$	$(52.4^{+25.3}_{-14.3})\%$
e e	3	$X(3872) \rightarrow \gamma J/\psi$	$(1.1^{+0.6}_{-0.3})\%$
2	1	$X(3872) \rightarrow \gamma \psi(3686)$	$(2.4^{+1.3}_{-0.8})\%$
Ę	ó	$X(3872) \to \pi^0 \chi_{c1}$	$(3.6^{+2.2}_{-1.6})\%$
(5	$X(3872) \rightarrow \omega J/\psi$	$(4.4^{+2.3}_{-1.3})\%$
,	7	$B^+ \to X(3872)K^+$	$(1.9 \pm 0.6) \times 10^{-4}$
8	8	$B^0 \to X(3872)K^0$	$(1.1^{+0.5}_{-0.4}) \times 10^{-4}$
		$X(3872) \rightarrow \text{unknown}$	$(31.9^{+18.1}_{-31.5})\%$

- $R = \frac{\Gamma(\gamma \psi')}{\Gamma(\gamma J/\psi)} \simeq 2.2$
- For a pure $D^0 \overline{D}^{*0}$, $\gamma \psi'$ should be suppressed, $R \sim 10^{-3}$

[E.S. Swanson, Phys. Lett. B 598 (2004) 197]

- For a pure $\chi_{c1}(2P)$, the predictions are in a wide range
- A small $\chi_{c1}(2P)$ component (5% 12%) may explain

[Feng-Kun Guo et al., PLB 742 (2015) 394-398]

[Chunhua Li, Chang-Zheng Yuan, PRD 100(2019) 094003]

- $R = \frac{\Gamma(\gamma \psi')}{\Gamma(\gamma J/\psi)} \simeq 2.2$
- For a pure $D^0 \overline{D}^{*0}$, $\gamma \psi'$ should be suppressed, $R \sim 10^{-3}$

[E.S. Swanson, Phys. Lett. B 598 (2004) 197]

- For a pure $\chi_{c1}(2P)$, the predictions are in a wide range
- A small $\chi_{c1}(2P)$ component (5% 12%) may explain

[Feng-Kun Guo et al., PLB 742 (2015) 394-398]

R < 0.59, 90% C. L.
 [BESIII, PRL 124, 242001 (2020)]

Junli Ma

IHEP, CAS

[Chunhua Li, Chang-Zheng Yuan, PRD 100(2019) 094003]

Parameter	index Decay mode	Branching fraction
1	$X(3872) \to \pi^+\pi^- J/$	$\psi = (4.1^{+1.9}_{-1.1})\%$
2	$X(3872) \to D^{*0}\bar{D}^0$ -	$+ c.c. (52.4^{+25.3}_{-14.3})\%$
3	$X(3872) \rightarrow \gamma J/\psi$	$(1.1^{+0.6}_{-0.3})\%$
4	$X(3872) \rightarrow \gamma a / (3686)$	$(2 4 + 1.3) 0 \times$
5	$X(3872) \to \pi^0 \chi_{c1}$	$(3.6^{+2.2}_{-1.6})\%$
6	$V(2872) \rightarrow I/q/$	
7	$B^+ \to X(3872)K^+$	$(1.9 \pm 0.6) \times 10^{-4}$
8	$B^0 \to X(3872)K^0$	$(1.1^{+0.5}_{-0.4}) \times 10^{-4}$
	$X(3872) \rightarrow \text{unknown}$	n $(31.9^{+18.1}_{-31.5})\%$

- The pionic transitions χ_{c1}(2P) → π⁰χ_{c1} proceed through the isospin breaking by the light quark masses. [S. Dubynskiy, PRD 77, 014013 (2008)]
- Suppressed relative to $\pi\pi\chi_{c1}$
- Disfavor the $\chi_{c1}(2P)$ interpretation

[BESIII, PRL 122, 202001 (2019)]

Junli Ma

majunli@ihep.ac.cn

IHEP, CAS

[Chunhua Li, Chang-Zheng Yuan, PRD 100(2019) 094003]

Paran	neter index	x Decay mode	Branching fraction
	1	$X(3872) \to \pi^+ \pi^- J/\psi$	$(4.1^{+1.9}_{-1.1})\%$
	Ź	$\Lambda(3012) \to D^{+}D^{+} + c.c.$	(32.4 - 14.3)/0
	3	$X(3872) \rightarrow \gamma J/\psi$	$(1.1^{+0.6}_{-0.3})\%$
	4	$X(3872) \rightarrow \gamma \psi(3686)$	$(2.4^{+1.3}_{-0.8})\%$
	5	$V(2872) \pi^0 \chi$	$(2.6^{\pm 2.2})07$
	6	$X(3872) \rightarrow \omega J/\psi$	$(4.4^{+2.3}_{-1.3})\%$
	1	$B^+ \rightarrow \Lambda (3872) K^+$	$(1.9 \pm 0.6) \times 10^{-4}$
	8	$B^0 \to X(3872)K^0$	$(1.1^{+0.5}_{-0.4}) \times 10^{-4}$
		$X(3872) \rightarrow \text{unknown}$	$(31.9^{+18.1}_{-31.5})\%$

• $\frac{\Gamma(\rho J/\psi)}{\Gamma(\omega J/\psi)} \simeq 1$

- For a pure $\chi_{c1}(2P)$, $\rho J/\psi$ should be suppressed (isospin breaking)
- In molecular picture, an enhancement of isospin violation can be naturally produced [F. Guo et al., Rev.Mod.Phys. 90 (2018) 1, 015004]
- A large ω interference is observed in $\pi^+\pi^$ mode, the ratio need to be reconsidered

[LHCb, arxiv:2204.12597 [hep-ex]]

IHEP, CAS

[A. Esposito, Phys. Rev. D 92, 034028, 2015]

- Prompt and non-prompt productions
- There is a difference in the probability of producing X(3872) and that of producing light nuclei, in high energy collisions at large p_T
- Disfavor pure molecular interpretation

IHEP, CAS

majunli@ihep.ac.cn

Junli Ma

- Prompt production rate is consistent with NLO NRQCD predictions with the X(3872) modelled as a mixture of $\chi_{c1}(2P)$ and a $D^0\overline{D}^{*0}$ molecular, assuming production proceeds dominantly through its χ'_{c1} component. [C. Meng, PRD 96 (2017) 7, 074014]
- Inconsistent in low pt region, which may be due to the problem of the fixedorder NRQCD calculation that may not be applicable for the region with small pT (pT \sim 5 GeV) and large forward rapidity

[LHCb, JHEP 01 (2022) 131]

IHEP, CAS

majunli@ihep.ac.cn

Junli Ma

[E. Braaten, PRD 103 (2021) 7, L071901]

Prompt production: X(3872) could be broken ٠ by comovers

- Survival rate decreases with multiplicity ٠
- Disfavor molecular interpretation ٠
- Can be explained by molecular interpretation ٠

Junli Ma

3.95

[Belle, PRD 84, 052004 (2011)] [BaBar, PRD 71, 031501 (2005)]

$$X^{\pm} \to J/\psi \pi^{\pm} \pi^0$$

[Belle, PTEP 2014 (2014) 4, 043C01] [LHCb, JHEP 04 (2022) 046]

$$\overline{X} \to J/\psi \eta$$

- Negative result for charged and C-odd partners
- Disfavor compact tetraquark interpretation ۲

X(3872): $[cu][\bar{c}\bar{u}]$ $X^{\pm}: [cu][\bar{c}\bar{d}]$?

IHEP,	CAS
11	/ 42

X(3872) partners

Junli Ma

majunli@ihep.ac.cn

IHEP, CAS 12 / 42

[Chunhua Li, Chang-Zheng Yuan, PRD 100(2019) 094003]

•	Two important decay modes:
---	----------------------------

- > $\pi^+\pi^- J/\psi$: Pure charged daughter particles, higher selection efficiency, lower background, narrower peak.
- > $D^{*0}\overline{D}^0 + c.c.$: Major decay mode, the opening threshold will strongly distort the lineshape.

Parameter inde	Branching fraction	
1	$X(3872) \to \pi^+\pi^- J/\psi$	$(4.1^{+1.9}_{-1.1})\%$
2	$X(3872) \to D^{*0}D^0 + c.c.$	$(52.4^{+25.3}_{-14.3})\%$
3	$X(3872) \rightarrow \gamma J/\psi$	$(1.1^{+0.6}_{-0.3})\%$
4	$X(3872) \rightarrow \gamma \psi(3686)$	$(2.4^{+1.3}_{-0.8})\%$
5	$X(3872) \to \pi^0 \chi_{c1}$	$(3.6^{+2.2}_{-1.6})\%$
6	$X(3872) \rightarrow \omega J/\psi$	$(4.4^{+2.3}_{-1.3})\%$
7	$B^+ \to X(3872)K^+$	$(1.9 \pm 0.6) \times 10^{-4}$
8	$B^0 \to X(3872)K^0$	$(1.1^{+0.5}_{-0.4}) \times 10^{-4}$
	$X(3872) \rightarrow \text{unknown}$	$(31.9^{+18.1}_{-31.5})\%$

unli Ma	IHEP, CAS
ajunli@ihep.ac.cn	13 / 42

[Chunhua Li, Chang-Zheng Yuan, PRD 100(2019) 094003]

- Two important decay modes:
 - > $\pi^+\pi^-J/\psi$: Pure charged daughter particles, higher selection efficiency, lower background, narrower peak.
 - $> D^{*0}\overline{D}^{0} + c.c. : Major decay mode, the content of the content of the lines hold will strongly distort the lines hold will strongly distort the lines hold will strong be determined by the$

[BES III, PRL 122, 232002(2019)], [BES III, PRL 124, 242001(2020)]

We have well established samples for both modes, we can perform a simultaneous fit!

Т		n	li.	- N	Л	р	
J	u			1.0	4	a	

Construct the lineshape in a model independent way

Correlate the number of signal events as a function of lineshape parameters

Model the detector effect based on the MC simulation and calibrate it by control samples

Unbinned maximum likelihood fit simultaneously to the $D^0\overline{D}^0\pi^0$ and $\pi^+\pi^-J/\psi$ samples

Investigate the result

	Jun	li	Ma	
--	-----	----	----	--

$$\frac{d\operatorname{Br}(D^0\overline{D}^0\pi^0)}{dE} = \mathbf{B}\frac{1}{2\pi} \times \frac{\mathbf{g} * k_{\operatorname{eff}}(E)}{|D(E)|^2} \times \operatorname{Br}(D^{*0} \to D^0\pi^0)$$
$$\frac{d\operatorname{Br}(\pi^+\pi^- J/\psi)}{dE} = \mathbf{B}\frac{1}{2\pi} \times \frac{\Gamma_{\pi^+\pi^-} J/\psi}{|D(E)|^2}$$

 $D(E) = E - \frac{E_X}{2} + \frac{1}{2}g * \left(\kappa_{\text{eff}}(E) + ik_{\text{eff}}(E) + \kappa_{\text{eff}}^c(E) + ik_{\text{eff}}^c(E)\right) + \frac{i}{2}\Gamma_0$

Composite particle with one unstable constituent

$$k_{\rm eff}(E) = \sqrt{\mu_p} \sqrt{\sqrt{(E - E_R)^2 + \Gamma^2/4} + E - E_R}$$

$$\kappa_{\rm eff}(E) = -\sqrt{\mu_p} \sqrt{\sqrt{(E - E_R)^2 + \Gamma^2/4} - E + E_R}$$

$$+\sqrt{\mu_p} \sqrt{\sqrt{(E_X - E_R)^2 + \Gamma_X^2/4} - E_X + E_R}$$

$$\Gamma_0 = \Gamma_{\pi} + \pi^- J/\psi + \Gamma_{known} + \Gamma_{unknown}$$

$$E_X = M_X - (m_{D^0} + m_{\overline{D}^0} + m_{\pi^0})$$

* Due to the limited statistics, $\Gamma_{unknown}/\Gamma_{\pi^+\pi^- J/\psi}$ is fixed [Chunhua Li, Chang-Zheng Yuan, PRD 100(2019) 094003] * It brings us the largest uncertainty

Junli Ma

$$\frac{d\operatorname{Br}(D^{0}\overline{D}^{0}\pi^{0})}{dE} = B \frac{1}{2\pi} \times \frac{g * k_{\operatorname{eff}}(E)}{|D(E)|^{2}} \times \operatorname{Br}(D^{*0} \to D^{0}\pi^{0})$$

$$\frac{d\operatorname{Br}(\pi^{+}\pi^{-}J/\psi)}{dE} = B \frac{1}{2\pi} \times \frac{\Gamma_{\pi^{+}\pi^{-}J/\psi}}{|D(E)|^{2}}$$

$$D(E) = E - \frac{E_{X}}{2} + \frac{1}{2}g * \left(\kappa_{\operatorname{eff}}(E) + ik_{\operatorname{eff}}(E) + \kappa_{\operatorname{eff}}^{c}(E) + ik_{\operatorname{eff}}^{c}(E)\right) + \frac{i}{2}\Gamma_{0}$$

$$Composite particle with one unstable constituent$$

$$k_{\operatorname{eff}}(E) = \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} + E - E_{R}} - \sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \sqrt{\mu_{p}}\sqrt{(E - E_{R})^{2} + \Gamma^{2}/4} - E + E_{R}} + \frac{1}{2} + \frac{$$

* It brings us the largest uncertainty

Junli Ma

$$\frac{d\operatorname{Br}(D^0\overline{D}^0\pi^0)}{dE} = \mathbf{B}\frac{1}{2\pi} \times \frac{\mathbf{g} * k_{\operatorname{eff}}(E)}{|D(E)|^2} \times \operatorname{Br}(D^{*0} \to D^0\pi^0)$$
$$\frac{d\operatorname{Br}(\pi^+\pi^- J/\psi)}{dE} = \mathbf{B}\frac{1}{2\pi} \times \frac{\Gamma_{\pi^+\pi^-} J/\psi}{|D(E)|^2}$$

 $D(E) = E - \frac{E_X}{2} + \frac{1}{2}g * \left(\kappa_{\text{eff}}(E) + ik_{\text{eff}}(E) + \kappa_{\text{eff}}^c(E) + ik_{\text{eff}}^c(E)\right) + \frac{i}{2}\Gamma_0$

[C. Hanhart, PRD 81, 094028]

$$D^*$$
 $\Gamma(E)$
 $\kappa_{eff}(E) + ik_{eff}(E)$

Composite particle with one unstable constituent

$$k_{\rm eff}(E) = \sqrt{\mu_p} \sqrt{\sqrt{(E - E_R)^2 + \Gamma^2/4} + E - E_R}$$

$$\kappa_{\rm eff}(E) = -\sqrt{\mu_p} \sqrt{\sqrt{(E - E_R)^2 + \Gamma^2/4} - E + E_R}$$

$$+\sqrt{\mu_p} \sqrt{\sqrt{(E_X - E_R)^2 + \Gamma_X^2/4} - E_X + E_R}$$

$$\Gamma_0 = \Gamma_{\pi^+\pi^- J/\psi} + \Gamma_{known} + \Gamma_{unknown}$$

$$E_X = M_X - (m_{D^0} + m_{\overline{D}^0} + m_{\pi^0})$$

* Due to the limited statistics, $\Gamma_{unknown}/\Gamma_{\pi^+\pi^- J/\psi}$ is fixed [Chunhua Li, Chang-Zheng Yuan, PRD 100(2019) 094003] * It brings us the largest uncertainty

Key features:

- Model independent
- Including the $D^*\overline{D}$ self energy terms
- Including the width of D^*
- Including the coupled channel effect
- Fit parameters: g, $\Gamma_{\pi^+\pi^- J/\psi}$, M_X

Junli Ma

$$2 Im[D(E)] = g * (k_{eff} + k_{eff}^c) + \Gamma_{\pi^+\pi^- J/\psi} + \Gamma_{known} + \Gamma_{unknown}$$

The produced numbers of events in a fitting range (E_{min}, E_{max}) are:

$$\mu_{X(3872)}^{prod} = \int_{E_{min}}^{E_{max}} dE \; \frac{B}{2\pi} * \frac{2 \; Im[D(E)]}{|D(E)|^2}$$
$$\mu_{D^0 \overline{D}{}^0 \pi^0}^{prod} = Br(D^{*0} \to D^0 \pi^0) \times \int_{E_{min}}^{E_{max}} dE \; \frac{B}{2\pi} * \frac{g * k_{eff}}{|D(E)|^2}$$
$$\mu_{\pi^+ \pi^- J/\psi}^{prod} = \int_{E_{min}}^{E_{max}} dE \; \frac{B}{2\pi} * \frac{\Gamma_{\pi^+ \pi^- J/\psi}}{|D(E)|^2}$$

Only one new parameter $\mu_{X(3872)}^{prod}$

$$\mu_{D^{0}\overline{D}^{0}\pi^{0}} = \epsilon_{D^{0}\overline{D}^{0}\pi^{0}} \times R_{D^{0}\overline{D}^{0}\pi^{0}} \times \mu_{X(3872)}^{prod}$$
$$\mu_{\pi^{+}\pi^{-}J/\psi} = \epsilon_{\pi^{+}\pi^{-}J/\psi} \times R_{\pi^{+}\pi^{-}J/\psi} \times \mu_{X(3872)}^{prod}$$

 $\epsilon : \text{efficiency and branching fractions correction}} \\ R_{D^0 \overline{D}^0 \pi^0} = \text{Br} \left(D^{*0} \to D^0 \pi^0 \right) \times \frac{\int_{E_{min}}^{E_{max}} dE \frac{g * k_{eff}}{|D(E)|^2}}{\int_{E_{min}}^{E_{max}} dE \frac{2 Im[D(E)]}{|D(E)|^2}} \\ R_{\pi^+ \pi^- J/\psi} = \frac{\int_{E_{min}}^{E_{max}} dE \frac{\Gamma_{\pi^+ \pi^- J/\psi}}{|D(E)|^2}}{\int_{E_{min}}^{E_{max}} dE \frac{2 Im[D(E)]}{|D(E)|^2}}$

majunli	@ihep.ac.cn	

Junli Ma

19 / 42

Result of lineshape parameters

$$g = 0.16 \pm 0.10^{+1.12}_{-0.11}$$

$$\Gamma_0 = (2.67 \pm 1.77^{+8.01}_{-0.82}) \text{ MeV}$$

$$M_X = (3871.63 \pm 0.13^{+0.06}_{-0.05}) \text{ MeV}$$

Large systematic uncertainty from $\Gamma_{unknow}/\Gamma_{\pi^+\pi^- J/\psi}$

Junli Ma

Sources:

- The width of D^{*0}
- The uncertainties of the efficiency corrections
- The mass resolution model
- The background shape
- The mass of D^0
- The uncertainties of the center-of-mass energies
- The input e⁺e⁻ cross sections and decay models in MC simulation
- The largest uncertainty α : the value (Γ_{known} + $\Gamma_{unknown}$)/ $\Gamma_{\pi^+\pi^- J/\psi}$ is changed in range (4.2, 21.8), mostly due to the lack of knowledge about the X(3872) absolute branching fractions

Source	g	$\Gamma_0 \ ({\rm MeV})$	M_X (MeV)
α	+1.08 - 0.10	+6.54 - 0.65	+0.05 - 0.04
$\Gamma_{D^{*0}}$	—	+0.05 - 0.07	<u> </u>
Efficiency	+0.05 - 0.03	+0.35 - 0.24	
Resolution	—	± 0.02	—
Background	+0.05	+0.51 - 0.24	± 0.01
$M(D^0)$	—	+0.11 - 0.09	± 0.03
$E_{\rm cms}$	+0.29	+4.57	-0.01
Simulation	± 0.02	± 0.26	± 0.01
Sum	+1.12 - 0.11	+8.01 - 0.82	+0.06 - 0.05

Pole search

Junli Ma

22 / 42

- Due to causality, the scattering amplitude should be analytic over the complex energy plane, up to poles and branch cuts
- The pole locations can reveal the intrinsic properties of the particle
- Two sheets with respect to $D^{*0}\overline{D}{}^0$ branch cut

• Sheet I:
$$E - E_X - g\sqrt{-2\mu(E - E_R + i\Gamma/2)}$$

• Sheet II:
$$E - E_X + g\sqrt{-2\mu(E - E_R + i\Gamma/2)}$$

- $E_{\rm I} = (7.04 \pm 0.15^{+0.07}_{-0.08}) + (-0.19 \pm 0.08^{+0.14}_{-0.19})i$ MeV
- $E_{\text{II}} = (0.26 \pm 5.74^{+5.14}_{-38.32}) + (-1.71 \pm 0.90^{+0.60}_{-1.96})i \text{ MeV}$

$M(D^0 \overline{D}^{*0}) - M(D^0 \overline{D}^0 \pi^0) = 7.0332 \text{ MeV}$

Pole search

- Due to causality, the scattering amplitude should be analytic over the complex energy plane, up to poles and branch cuts
- The pole locations can reveal the intrinsic properties of the particle
- Two sheets with respect to $D^{*0}\overline{D}{}^0$ branch cut

• Sheet I:
$$E - E_X - g\sqrt{-2\mu(E - E_R + i\Gamma/2)}$$

• Sheet II:
$$E - E_X + g\sqrt{-2\mu(E - E_R + i\Gamma/2)}$$

- $E_{\rm I} = (7.04 \pm 0.15^{+0.07}_{-0.08}) + (-0.19 \pm 0.08^{+0.14}_{-0.19})i$ MeV
- $E_{\text{II}} = (0.26 \pm 5.74^{+5.14}_{-38.32}) + (-1.71 \pm 0.90^{+0.60}_{-1.96})i \text{ MeV}$
- $E_{\rm I}$ is much closer to the threshold, should play a dominant role in the X(3872) confinement mechanism

IHEP, CAS

Source	$\operatorname{Re}[E_{\mathrm{I}}]$ (MeV)	$\operatorname{Im}[E_{\mathrm{I}}]$ (MeV)	$\operatorname{Re}[E_{\mathrm{II}}]$ (MeV)	$\operatorname{Im}[E_{\mathrm{II}}]$ (MeV)
α	± 0.01	+0.12 - 0.18	+4.74 - 34.20	+0.54 - 0.76
$\Gamma_{D^{*0}}$	± 0.01	± 0.01	+0.23 - 0.20	± 0.03
Efficiency	+0.01	± 0.02	+1.55 - 2.41	+0.13 - 0.18
Resolution	-	_	± 0.08	± 0.01
Background	± 0.02	+0.01	+0.15 - 3.02	-0.26
$M(D^0)$	± 0.06	± 0.03	+0.34 - 0.16	+0.12 - 0.11
$E_{\rm cms}$	-0.03	-0.06	-16.79	-1.77
Simulation	± 0.01	± 0.01	± 1.15	± 0.18
Sum	+0.07 - 0.08	+0.14 - 0.19	+5.14 - 38.32	+0.60 - 1.96

- Near the threshold, the scattering amplitude can be expanded as the power series of the momentum $k = \sqrt{2\mu(E - E_R)}$ (Effective Range Expansion, ERE)
- S-Wave $f^{-1}(E) \sim \frac{1}{a} + \frac{r_e}{2}k^2 ik + O(k^4)$
- Two poles on k-plane
 - $k^+ = -12.6 + 12.3i$ MeV
 - $k^- = 14.1 115.3 i$ MeV

Junli Ma	IHEP, CAS
majunli@ihep.ac.cn	25 / 42

Junli Ma	IHEP, CAS
majunli@ihep.ac.cn	26 / 42

B€SⅢ

 Near the threshold, the scattering amplitude can be expanded as the power series of the momentum k =

 $\sqrt{2\mu(E-E_R)}$ (Effective Range Expansion, ERE)

- S-Wave $f^{-1}(E) \sim \frac{1}{a} + \frac{r_e}{2}k^2 ik + O(k^4)$
- Two poles on k-plane
 - $k^+ = -12.6 + 12.3 i \text{ MeV}$
 - $k^- = 14.1 115.3 i$ MeV
- ERE parameters
 - *a*: scattering length
 - *r_e*: effective range
- In the limit of $\Gamma_0 \rightarrow 0$ and stable D^* , the ERE parameters are determined:
 - $a = (-16.5^{+7.0}_{-27.6} + 5.6_{-27.7})$ fm
 - $r_e = (-4.1^{+0.9}_{-3.3} + 2.8)_{-4.4}$ fm

[I. Matuschek, V. Baru, F.-K. Guo, and C. Hanhart, Eur.Phys.J.A 57 (2021) 3, 101]

Junli Ma	IHEP, CAS
majunli@ihep.ac.cn	27 / 42

[S. Weinberg, Phys. Rev. 137, B672 (1965)]

$$\begin{split} a &= -\frac{2(1-Z)}{(2-Z)}\frac{1}{\gamma} + \mathcal{O}(\beta^{-1}) \\ r_e &= -\frac{Z}{1-Z}\frac{1}{\gamma} + \mathcal{O}(\beta^{-1}) \end{split}$$

Z: field renormalization constant

- Z = 0: pure bound (composite) state
- Z = 1: pure elementary state

 $\beta^{-1} \approx \frac{1}{m_{\pi}} \approx 1.4$ fm, for both deuteron and the *X*(3872) $\gamma = \sqrt{2\mu E_b}$

X(3872) deuteron	
Nearby threshold $D^{*0}\overline{D}^0$ $p n$	
a -16.5 fm -5.41 fm	suggest an
r_e -4.1 fm 1.75 fm $elementary c\bar{c}$ core	
Range correctionnegligibleimportant for r_e	JJ, LUJIJUJ]
Z ≈ 0.18 - Close to 0 but can r model-independen	not be solved htly
$\bar{z} = 1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $ r_e/a $ 0.25 0.32 due to the range contrast of the range contr	orrection
$\frac{Z_A - 1}{\sqrt{1 + 2r_e/a }} = \bar{Z}_A = 0.18 = 0.22$	

Junli Ma	IHEP, CAS
majunli@ihep.ac.cn	28 / 42

Flatté:

$$\frac{dR(J/\psi\pi^{+}\pi^{-})}{dE} \propto \frac{\Gamma_{\rho}(E)}{|D(E)|^{2}}$$
$$D(E) = E - \frac{E_{f}}{E_{f}} + \frac{i}{2} \left[g(k_{1} + k_{2}) + \Gamma_{\rho}(E) + \Gamma_{\omega}(E) + \Gamma_{0} \right]$$

No substraction term like

$$\sqrt{\mu_p} \sqrt{(E_X - E_R)^2 + \Gamma_X^2/4} - E_X + E_R$$

$$k_1 = \sqrt{2\mu_1 E}, \qquad k_2 = \sqrt{2\mu_2 (E - \delta)} \quad \delta = 8.2 \text{ MeV}$$

$$\Gamma_{\rho}(E) = f_{\rho} \int_{2m_{\pi}}^{M(E)} \frac{dm'}{2\pi} \frac{q(m',E)\Gamma_{\rho}}{(m'-m_{\rho})^2 + \Gamma_{\rho}^2/4}$$
$$\Gamma_{\omega}(E) = f_{\omega} \int_{3m_{\pi}}^{M(E)} \frac{dm'}{2\pi} \frac{q(m',E)\Gamma_{\omega}}{(m'-m_{\omega})^2 + \Gamma_{\omega}^2/4}$$

$$q(m', E) = \sqrt{\frac{\left[M^2 - (m' + m_{J/\psi})^2\right] \left[M^2 - (m' - m_{J/\psi})^2\right]}{4M^2}}$$

$$M(E) = E + (m_{D^0} + m_{D^{*0}}) - m_{J/\psi}$$

Constraints:
•
$$\frac{\Gamma(\pi^+\pi^- J/\psi)}{\Gamma(D^0 \overline{D}^{*0})} = 0.11 \pm 0.03$$

• $\Gamma(\omega J/\psi) = \Gamma(\rho J/\psi)$
• $E_f = -7.2$ MeV (3864.5)
[Belle, Babar]

u	n	li	M	а

LHCb [Phys.Rev.D 102 (2020) 9, 092005]

Junli Ma	IHEP, CAS
majunli@ihep.ac.cn	30 / 42

For large couplings to the two-body channel the Flatté parameterisation exhibits a scaling property [43] that prohibits the unique determination of all free parameters on the given data set. Almost identical lineshapes are obtained when the parameters E_f , g, f_ρ and Γ_0 are scaled appropriately. In particular, it is possible to counterbalance a lower value of E_f with a linear increase in the coupling to the $D\overline{D}^*$ channels g. While this is not a true symmetry of the parameterisation — there are subtle differences in the tails of the lineshape — in practice, within the experimental precision this effect leads to strong correlations between the parameters.

Scaling?

$$\eta \pi \to a_0(980) \to \eta \pi$$
 [V. Baru et al. EPJ A 23 (2005) 523]

$$f_{el} = -\frac{1}{2q_{\eta}} \frac{\Gamma_{\eta\pi}}{E - E_f + \frac{i}{2}(\Gamma_{\eta\pi} + g_K k)}$$

$$\sigma_{el} = 4\pi |f_{el}|^2 \sim \frac{\Gamma_{\eta\pi}^2}{\left|E - E_f\right|^2 + \frac{\left(\Gamma_{\eta\pi} + g_K k\right)^2}{4}} \qquad E > 0$$
$$\frac{\Gamma_{\eta\pi}^2}{\left|E - E_f - \frac{g_K \kappa}{2}\right|^2 + \frac{\left(\Gamma_{\eta\pi}\right)^2}{4}} \qquad E < 0$$

if the state is very narrow:

$$\frac{\Gamma_{\eta\pi}^2}{\left|E - E_f\right|^2 + \frac{\left(\Gamma_{\eta\pi} + g_K k\right)^2}{4}} \approx \frac{1}{\left|\frac{E_f}{\Gamma_{\eta\pi}}\right|^2 + \left(\frac{1}{2} + \frac{g_k}{2\Gamma_{\eta\pi}}k\right)^2}$$

$$X(3872) \rightarrow \pi^+\pi^- J/\psi$$

$$\frac{d\sigma}{dE} \sim \frac{gk}{\left|E - E_f - \frac{gk_c}{2}\right|^2 + \frac{(\Gamma_0 + gk)^2}{4}}$$

Junli Ma

majunli@ihep.ac.cn

IHEP, CAS 34 / 42

- $E_f \in (-17, 0)$ MeV (black dots)
- The choices of E_f do have impact on the pole location, $\Delta(Im(E_I)) > -0.5 \text{ MeV}$
- Not in LHCb's systematic uncertainties

nli Ma	IHEP, CAS
ajunli@ihep.ac.cn	35 / 42

- $B^{\pm} \rightarrow K^{\pm}X, B^0 \rightarrow K^0X$
- $X(3872) \rightarrow D^0 \overline{D}^{*0}$
- Constraints:
 - $\Gamma(\omega J/\psi) = \Gamma(\rho J/\psi)$
 - $\frac{dg}{dE_f} = -15.11 \text{ GeV}^{-1}$
 - $\frac{f_{\rho}}{E_f} = \frac{1.8 \times 10^{-3}}{-7.2 \text{ MeV}}$

•
$$\frac{\Gamma_0}{E_f} = \frac{1.4 \text{ MeV}}{-7.2 \text{ MeV}}$$

- Only g is floated as a free parameter
- $g = 0.29^{+2.69}_{-0.15}$
- BW result:
 - $m = 3873.71^{+0.56}_{-0.50} \pm 0.13 \text{ MeV}$
 - $\Gamma_0 = 5.2^{+2.2}_{-1.5} \pm 0.4 \text{ MeV}$

LHCb

majunli@ihep.ac.cn

+ $m = 3871.695 \pm 0.067 \pm 0.068 \pm 0.010$ MeV

• $\Gamma_{BW} = 1.39 \pm 0.24 \pm 0.10$ MeV

Junli Ma

IHEP, CAS
36 / 42

sheet II

Belle [Phys.Rev.D 107 (2023) 11, 112011]

Junli Ma

majunli@ihe

	IHEP, CAS
ep.ac.cn	38 / 42

	LHCb	Belle	This work
g	$0.108 \pm 0.003 \substack{+0.005 \\ -0.006}$	$0.29^{+2.69}_{-0.15}$	$0.16 \pm 0.10^{+1.12}_{-0.11}$
$Re[E_I]$ [MeV]	7.10	7.12	$7.04 \pm 0.15 ^{+0.07}_{-0.08}$
$Im[E_I]$ [MeV]	-0.13	-0.12	$-0.19 \pm 0.08^{+0.14}_{-0.19}$
$Re[k^+]$ [MeV]	-13.9	-15.3	$-12.6 \pm 5.5^{+6.6}_{-6.2}$
$Im[k^+]$ [MeV]	8.8	7.7	$12.3 \pm 6.8^{+6.0}_{-6.4}$
<i>a</i> (fm)	-27.1	-31.2	$-16.5^{+7.0}_{-27.6}{}^{+5.6}_{-27.7}$
r_e (fm)	-5.3	$-3.0^{+1.3}_{-1.5}$	$-4.1^{+0.9}_{-3.3}{}^{+2.8}_{-4.4}$
$ar{Z}_A$	0.15 (0.33)	$0.08\substack{+0.04\\-0.03}$	$0.18^{+0.06}_{-0.17} {}^{+0.19}_{-0.16}$

Junli Ma	IHEP, CAS
majunli@ihep.ac.cn	39 / 42

- We performed a coupled channel analysis of the X(3872)Lineshape. With BESIII data, the $D^0 \overline{D}{}^0 \pi^0$ and $\pi^+ \pi^- J/\psi$ samples are analyzed simultaneously for the first time.
- The result is consistent with the molecular picture. Due to the uncertainty, the presence of a compact component can not be excluded.
- Future data taking and more measurements of the *X*(3872) decay modes will help.

Thanks!

lп	nli	i N/	la
Ju		1 1 V	ıч

majunli@ihep.ac.cn

 IHEP, CAS

 41 / 42

Backup slides

Junli Ma

majunli@ihep.ac.cn

IHEP, CAS 42 / 42 Im E [MeV]

-0.2

-0.4

-0.6

-0.8

-1-0.4

 $k^+ = -13.9 + 8.8 i$ MeV $k^- = 14.1 - 84.5 i$ MeV

Junli Ma

IHEP, CAS 43 / 42

Estimation of the width of D^{*0}

The Lagrangian for $D^* \rightarrow D + \pi$ under HQSS is

$$\mathcal{L} = -\frac{g}{f_{\pi}} < \overline{H_a} H_b \gamma^{\mu} \gamma^5 > \partial_{\mu} M_{ba},$$

Where H is the heavy meson fields and the M is the matrix of pseudoscalar mesons. The partial width of $D^{*+} \rightarrow D^0 \pi^+$ reads

$$\begin{split} \Gamma_{c} &= \frac{|p_{\pi}|}{8\pi M_{D^{*+}}^{2}} \times \frac{1}{3} \frac{4g^{2}}{f_{\pi}^{2}} |p_{\pi}^{2}| M_{D^{*+}} M_{D^{0}} \;. \end{split}$$
For $D^{*0} \to D^{0} \; \pi^{0}$,
 $\Gamma_{0} &= \frac{|p_{\pi}'|}{8\pi M_{D^{*0}}^{2}} \times \frac{1}{3} \frac{2g^{2}}{f_{\pi}^{2}} |p_{\pi}'|^{2} M_{D^{*0}} M_{D^{0}} = \frac{|p_{\pi}'|^{3} M_{D^{*+}}}{2|p_{\pi}|^{3} M_{D^{*0}}} \times \Gamma_{c}$

One obtains the strong decay partial width $\Gamma_0 = 35.8$ keV, the total width of D^{*0} is estimated to be

$$\Gamma_{D^{*0}} = \frac{\Gamma_0}{64.7\%} \approx 55.4 \text{ keV}$$