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Introduction to Partonic Structure of 
Hadrons 



Hadrons (baryons, mesons) are composite particles with quarks 
and gluons being their fundamental constituents
First evidence of the composite nature of the proton

Elastic e-p scattering maps out the charge and magnetization 
distribution of the proton

Introduction
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Hadrons (baryons, mesons) are composite particles with quarks 
and gluons being their fundamental constituents
Deep-inelastic scattering accesses the momentum density of the 
proton’s fundamental constituents via knockout reactions

Discovery of spin-1/2 quarks and  
partonic structure of the proton

Introduction
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 J. Friedman H. Kendall  R. Taylor



What have we learnt from non-relativistic systems such as atoms?

A quantum mechanical system is described by its wave function 
, which is determined from Schrödinger equation

Physical observables are usually sensitive to the modulus square 
of the wave function , where the phase 
information is washed out

The complete information of the system can be obtained by 
measuring correlations of wave functions or the density matrix. 
For a pure state it is defined as 

In coordinate space, we have

|ψ⟩

|⟨x |ψ⟩ |2 = |ψ (x) |2

Theoretical tools for hadron structure
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⟨x |ρ |x′ ⟩ = = ⟨x |ψ⟩⟨ψ |x′ ⟩ = ψ (x)ψ*(x′ )

ρ = |ψ⟩⟨ψ |



The Fourier transform of the density matrix provides an 
alternative description of a quantum mechanical system. It is 
called the Wigner function/distribution

It is the quantum analogue of the classical phase-space 
distribution. It is a real function,  
 
but not positive-definite, and cannot be regarded as a probability 
distribution
Nevertheless, physical observables can be computed by taking the 
average 
 
with the operator being appropriately ordered

Theoretical tools for hadron structure
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W(r, p) = ∫
d3R
(2π)3

e−ip⋅Rψ*(r −
R
2 )ψ(r +

R
2 )

W*(r, p) = W(r, p)

⟨O(r, p)⟩ = ∫ d3rd3pW(r, p)O(r, p)



The Fourier transform of the density matrix provides an 
alternative description of a quantum mechanical system. It is 
called the Wigner function/distribution

Integrating over coordinate or momentum does yield positive-
definite density functions

The former represents the spatial distribution of matter (e.g., 
charge distribution), while the latter represents the density 
distribution of its constituents in momentum space
They provide two types of quantities unraveling the microscopic 
structure of matter 

Theoretical tools for hadron structure
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W(r, p) = ∫
d3R
(2π)3

e−ip⋅Rψ*(r −
R
2 )ψ(r +

R
2 )

∫ d3p W(r, p) = |ψ (r) |2 = ρ(r), ∫ d3r W(r, p) = |ψ (p) |2 = n(p)



The spatial distribution can be probed through elastic 
scattering of electrons, photons, etc., off the target, where one 
measures the elastic form factor  defined as

The momentum density can be probed through inelastic knockout 
scattering, where one measures the structure function related to 
the momentum density

These two observables are complementary. The former contains 
spatial distribution but not velocity information of the 
constituents, while for the latter it is the opposite

ρ(r) = |ψ (r) |2

F(Δ)

Theoretical tools for hadron structure
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ρ(r) = ∫ d3ΔeiΔ⋅rF(Δ)

n(p) = ∫
d3r1d3r2

(2π)6
eip⋅(r1−r2)ρ(r1, r2)

dσ
dΩ

= ( dσ
dΩ )point

|F(Δ) |2



The spatial distribution and momentum density can be generalized 
to relativistic systems described by quantum field theory
Take the nucleon as an example. The spatial distribution can be 
probed by its elastic form factors. For example, the 
electromagnetic form factor is given by

 are called Dirac and Pauli form factors. They are 
related to the Sachs electric and magnetic form factors by 
 
 
which correspond to the charge and magnetization distribution in 
the Breit frame (the initial and final nucleons have )

F1(Δ2), F2(Δ2)

p1 = − p2

Nucleon form factors
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⟨p2 | jμ(0) |p1⟩ = Ū(p2)[γμF1(Δ2)+
iσμνΔν

2MN
F2(Δ2)]U(p1), jμ(0) = ∑

f

Qf ψ̄f (0)γμψf (0)

GE(Δ2) = F1(Δ2) −
Δ2

4M2
N

F2(Δ2), GM(Δ2) = F1(Δ2) + F2(Δ2)



The spatial distribution and momentum density can be generalized 
to relativistic systems described by quantum field theory
Take the nucleon as an example. The spatial distribution can be 
probed by its elastic form factors. For example, the 
electromagnetic form factor is given by

This is also reflected from the relation to the charge and magnetic 
moment of the nucleon

One can sandwich different current operators in the nucleon state, 
yielding different information about the nucleon structure

Nucleon form factors
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⟨p2 | jμ(0) |p1⟩ = Ū(p2)[γμF1(Δ2)+
iσμνΔν

2MN
F2(Δ2)]U(p1), jμ(0) = ∑

f

Qf ψ̄f (0)γμψf (0)



In particular, the axial-vector current helps to reveal the nucleon 
spin structure

 are the axial and (induced) pseudoscalar form factor
In analogy with the vector case, the axial charge is defined as the 
zero momentum transfer limit of 

The isovector combination  is an important parameter 
dictating the strength of weak interactions of nucleons
It can be well determined in neutron beta decay experiments
Ideal for benchmark lattice calculations of nucleon structure 
Disconnected contributions cancel

GA(Δ2), GP(Δ2)

GA(Δ2)

gu−d
A
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⟨p2 |Aμ(0) |p1⟩ = Ū(p2)[γμγ5GA(Δ2)+
γ5Δμ

2MN
GP(Δ2)]U(p1)

Aμ(0) = ψ̄f (0)γμγ5ψf (0)

Nucleon form factors

gA = GA(Δ2 = 0)



The only systematically improvable tool to study nonperturbative 
phenomena of hadrons is lattice QCD 

Calculate physical observables from the path integral 
 
 
in Euclidean space

Recover physical limit

Nucleon form factors from lattice QCD

⟨0 |O(ψ̄, ψ, A) |0⟩ =
1
Z ∫ 𝒟A𝒟ψ̄𝒟ψ eiS(ψ̄,ψ,A)O(ψ̄, ψ, A)

t → − iτ, eiSM → e−SE

mπ → mphys
π , a → 0, L → ∞
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Lattice calculation of nucleon axial charge:
Consider the nucleon 2- and 3-point correlation functions at zero 
momentum (Fourier transform factors reduce to 1)

with the nucleon interpolating operator
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Nucleon form factors from lattice QCD

𝒪Γ(x) = q̄(x)Γq(x)

Γ = γiγ5

Connected Disconnected

For a given flavor, quark contraction yields



Lattice calculation of nucleon axial charge:
Consider the nucleon 2- and 3-point correlation functions at zero 
momentum (Fourier transform factors reduce to 1)

with the nucleon interpolating operator
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Nucleon form factors from lattice QCD

𝒪Γ(x) = q̄(x)Γq(x)

Γ = γiγ5

Connected Disconnected

For a given flavor, quark contraction yields
Disconnected 
contributions 
cancel for u-d 
combination



Lattice calculation of nucleon axial charge:
Consider the nucleon 2- and 3-point correlation functions at zero 
momentum (Fourier transform factors reduce to 1)

with the nucleon interpolating operator
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Nucleon form factors from lattice QCD

𝒪Γ(x) = q̄(x)Γq(x)

Γ = γiγ5

Connected Disconnected

For a given flavor, quark contraction yields
Disconnected 
contributions 
cancel for u-d 
combination

Equivalent to



Lattice calculation of nucleon axial charge:
Consider the nucleon 2- and 3-point correlation functions at zero 
momentum (Fourier transform factors reduce to 1)

The nucleon charge is given by

To extract the charge, we need the projected correlation functions
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Nucleon form factors from lattice QCD

𝒪Γ(x) = q̄(x)Γq(x)

Γ = γiγ5



Lattice calculation of nucleon axial charge:
Consider the nucleon 2- and 3-point correlation functions at zero 
momentum (Fourier transform factors reduce to 1)

Two-state fits for the projected 2- and 3-point correlation 
functions
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Nucleon form factors from lattice QCD

𝒪Γ(x) = q̄(x)Γq(x)

Γ = γiγ5



Lattice calculation of nucleon axial charge:
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Nucleon form factors from lattice QCD

Effective mass plot 2-state fit of unrenormalized gu−d
A

Bhattacharya et al, PRD 16’



Lattice calculation of nucleon axial charge:
Renormalization constant

To compare with experimental measurements, we need to 
extrapolate to the continuum ( ), physical pion mass 
( ) and the infinite volume limit ( )

a → 0
mπ = mπ,phys L → ∞
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Nucleon form factors from lattice QCD

gu−d
A (a, mπ, L) = c1 + c2a + c3m2

π + c4m2
πe−mπL



Lattice calculation of nucleon axial charge:

19

Nucleon form factors from lattice QCD

Chang et al, Nature 18’



Parton distribution functions describe momentum densities of 
partons inside the nucleon, can be accessed in inclusive DIS
Scattering amplitude

Differential cross section can be written as

with leptonic and hadronic tensors

General decomposition of  in terms of structure functionsWμν

Parton distribution functions

ℳ = ū(k′ )(−ieγμ)u(k)
−i
q2

⟨X |Jμ |P⟩

lμν = 4e2(kμk′ ν + k′ μkν − gμνk ⋅ k′ ), Wμν =
1

4π ∑
X

⟨P |Jμ |X⟩⟨X |Jν |P⟩(2π)4δ4(P + q − PX)



Collinear approximation 

A simple example of factorization 
Parton transverse momentum integrated over in the collinear PDFs
It also provides an estimate of certain power corrections
In the Bjorken limit  fixed 
 
 
up to higher-order perturbative and high-power corrections
Bjorken scaling and Feynman’s parton model

Q ∼ xn ⋅ p ≫ kT, k2

Q2 → ∞, xB

Parton distribution functions

F1(xB, Q2) =
1
2 ∑

i

e2
i qi(xB), F2(xB, Q2) = xB ∑

i

e2
i qi(xB)

Universal



How do PDFs look like?

Parton distribution functions

⇒

⇒

⇒



PDFs from correlation matrix
Example: The quark PDFs are obtained by applying certain 
projection to the quark-quark correlation matrix

Not gauge invariant 
Needs a gauge link

This correlation matrix satisfies certain constraints from 
hermiticity, parity and time-reversal invariance

ψ (x) → eiα(x)ψ (x), ψ̄ (x) → ψ̄ (x)e−iα(x)

Parton distribution functions

Φij(k, P, S) = ∫ d4ξeik⋅ξ⟨PS | ψ̄j(0)ψi(ξ) |PS⟩

Tr(ΓΦ) = ∫ d4ξeik⋅ξ⟨PS | ψ̄ (0)Γψ (ξ) |PS⟩

Φ†(k, P, S) = γ0Φ(k, P, S)γ0 Hermiticity
Φ(k, P, S) = γ0Φ(k̃, P̃, − S̃)γ0 Parity

Φ*(k, P, S) = γ5CΦ(k̃, P̃, S̃)C†γ5 Time reversal
k̃μ = (k0, − k)

W(x2, x1) = 𝒫e−ig ∫x2
x1

dx⋅A(x), W(x2, x1) → eiα(x2)W(x2, x1)e−iα(x1)



 can be decomposed in terms of Dirac matrices

with the coefficients of each matrix

                       are real functions

Φ

Ci = Ci(k2, k ⋅ P)

Parton distribution functions



In the collinear approximation

To leading-power accuracy, only three terms are left

and

kμ ≈ xPμ, Sμ ≈ λN
Pμ

M
+ Sμ

⊥

=

Parton distribution functions



In the collinear approximation

To leading-power accuracy, only three terms are left

and

kμ ≈ xPμ, Sμ ≈ λN
Pμ

M
+ Sμ

⊥

=

Parton distribution functions



Global determination of PDFs from experimental data

Parton distribution functions



Theory prediction from lattice QCD
Example:

When reinterpreted in Feynman’s parton picture 

The boost operator can be applied either to the static operator or to 
the external state, projecting out the same physics
In practice, parton physics can be approximated 
by static correlations at large Lorentz boost 
(Large-Momentum Effective Theory)

Parton distribution functions

28

q(x) = ∫
dλ
2π

eixλ⟨P = ∞ |ψ†(z)ψ (0) |P = ∞⟩, |P = ∞⟩ = U(Λ∞) |P = 0⟩

q̃(y, Pz) = C(y/x, μ /xPz) ⊗ q(x, μ)+𝒪(Λ2
QCD /(yPz)2, Λ2

QCD /((1 − y)Pz)2)

q(x) = ∫
dλ
4π

eixλ⟨P | ψ̄ (0)n ⋅ γL(0,λn)ψ (λn) |P⟩

Ji, PRL 13’ & SCPMA 14’, Ji, Liu, Liu, JHZ, Zhao, RMP 21’

(n2 = 0)

q̃(y, Pz) = N∫
dz
4π

e−iyzPz⟨P | ψ̄ (0)γ0L(0,z)ψ (z) |P⟩



Theory prediction from lattice QCD 
Example: nucleon isovector (u-d) quark transversity PDF

Parton distribution functions

Yao et al (LPC), 22’



PDFs can be generalized to include more kinematic dependence. 
The generalized quantities play an important role in describing 
three-dim. structure of nucleons

Generalizations: GPDs and TMDs
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PDFs can be generalized to include more kinematic dependence. 
The generalized quantities play an important role in describing 
three-dim. structure of nucleons
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Cartoon from H.-W. Lin

Generalizations: GPDs and TMDs



The GPDs are given by non-forward matrix elements of nonlocal 
parton correlators, e.g. 
 
 

Access through exclusive processes  
like deeply virtual Compton  
scattering and meson production

Factorization formula

Various models for GPD parametrization have been used for 
extraction from experimental data 32

P̄ =
P′ + P

2
, Δ = P′ − P, t = Δ2, ξ = −

Δ+

2P̄+
Oγ+(λn) = ψ̄ (

λn
2

)γ+W(
λn
2

, −
λn
2

)ψ (−
λn
2

),

F(x, ξ, t) =
1

2P̄+ ∫
dλ
2π

e−ixλ⟨P′ |Oγ+(λn) |P⟩ =
1

2P̄+
ū(P′ )[H(x, ξ, t)γ++E(x, ξ, t)

iσ+μΔμ

2M ]u(P)

Generalizations: GPDs and TMDs



Form factors from nucleon GPDs
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⟨xn⟩ = ∫
1

−1
dx xn−1F(x, ξ, t)

Generalizations: GPDs and TMDs

Constantinou, JHZ et al, Prog. Part. Nucl. Phys. 21’



Apart from the form factors, the entire distribution can also be 
accessed from suitable spatial correlations on lattice

via the factorization (after Fourier transform)

34

H̃u−d(x, ξ, t, Pz, μ̃) = ∫
1

−1

dy
|y |

C ( x
y

,
ξ
y

,
μ̃
μ

,
yPz

μ )Hu−d(y, ξ, t, μ) + h . t .

C3pt
Γ ( ⃗p i, ⃗p f , t, tsep)

= |A0 |2 ⟨0 |OΓ |0⟩e−E0tsep + |A1 |2 ⟨1 |OΓ |1⟩e−E1tsep

+A1A*0 ⟨1 |OΓ |0⟩e−E1(tsep−t)e−E0t + A0A*1 ⟨0 |OΓ |1⟩e−E0(tsep−t)e−E1t

Generalizations: GPDs and TMDs



Nucleon GPDs (unpolarized)

Impact parameter distribution
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Generalizations: GPDs and TMDs

ξ = 0

ξ = 0

Alexandrou et al, PRL 20’ Lin, PRL 21’



TMDs are relevant for multi-scale processes where low transverse 
momentum transfer is important
Example: Drell-Yan process
If transverse momentum  of the  
lepton pair is not measured

If  is measured but  

If  is measured but 

qT

qT |qT | ∼ Q ≫ ΛQCD

qT |qT | ≪ Q

36

Generalizations: GPDs and TMDs

q

Q = q2



We need to take into account the transverse momentum of quarks

To leading-power accuracy, we have
kμ ≈ xPμ + kμ

⊥, Sμ ≈ λN
Pμ

M
+ Sμ

⊥

Generalizations: GPDs and TMDs



We need to take into account the transverse momentum of quarks

To leading-power accuracy, we have if time-reversal is relaxed

And

Leading-power projection is again given by

+
1
M

A′ 1ϵμνρσγμPνk⊥ρS⊥σ

+
i

2M
A′ 2ϵμνρσPρk⊥σσμνγ5

+
1
M

A′ 1ϵμνρσPνk⊥ρS⊥σ

+
1
M

A′ 2ϵμνρσPρk⊥σ

1
2P+

Tr(γ+Φ),
1

2P+
Tr(γ+γ5Φ),

1
2P+

Tr(iσi+γ5Φ)

kμ ≈ xPμ + kμ
⊥, Sμ ≈ λN

Pμ

M
+ Sμ

⊥

Generalizations: GPDs and TMDs



We need to take into account the transverse momentum of quarks

To leading-power accuracy, we have if time-reversal is relaxed

And

Leading-power projection is again given by

+
1
M

A′ 1ϵμνρσγμPνk⊥ρS⊥σ

+
i

2M
A′ 2ϵμνρσPρk⊥σσμνγ5

+
1
M

A′ 1ϵμνρσPνk⊥ρS⊥σ

+
1
M

A′ 2ϵμνρσPρk⊥σ
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2P+

Tr(γ+Φ),
1

2P+
Tr(γ+γ5Φ),

1
2P+

Tr(iσi+γ5Φ)

kμ ≈ xPμ + kμ
⊥, Sμ ≈ λN

Pμ

M
+ Sμ

⊥

Generalizations: GPDs and TMDs



We need to take into account the transverse momentum of quarks
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Leading-power projection is again given by
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M

A′ 1ϵμνρσγμPνk⊥ρS⊥σ
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i

2M
A′ 2ϵμνρσPρk⊥σσμνγ5
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1
M
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1
M
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1
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Generalizations: GPDs and TMDs



We need to take into account the transverse momentum of quarks

To leading-power accuracy, we have if time-reversal is relaxed

And

Leading-power projection is again given by

+
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M

A′ 1ϵμνρσγμPνk⊥ρS⊥σ
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i

2M
A′ 2ϵμνρσPρk⊥σσμνγ5
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1
M
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M
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Generalizations: GPDs and TMDs



These projections define the eight leading-twist quark TMDPDFs
Introduce

Then

The leading-twist TMDPDFs can be interpreted as number 
densities
When FT to coordinate space, the correlations exhibit certain 
symmetries

Φ[γ+] = f1(x, k2
⊥) −

ϵij
⊥k⊥iS⊥ j

M
f⊥
1T(x, k2

⊥)

Φ[γ+γ5] = λNg1L(x, k2
⊥) −

k⊥ ⋅ S⊥

M
g⊥

1T(x, k2
⊥)

Φ[iσ i+γ5] = Si
⊥h1(x, k2

⊥) +
λN

M
ki

⊥h⊥
1L(x, k2

⊥) +
1

M2
(

1
2

gij
⊥k2

⊥ − ki
⊥k j

⊥)S⊥ jh⊥
1T(x, k2

⊥) −
ϵij

⊥k⊥ j

M
h⊥

1 (x, k2
⊥)

Generalizations: GPDs and TMDs



These projections define the eight leading-twist quark TMDPDFs
Introduce

Then

Again, gauge links are needed  
to ensure gauge invariance.  
Now they are staple-shaped

Φ[γ+] = f1(x, k2
⊥) −

ϵij
⊥k⊥iS⊥ j

M
f⊥
1T(x, k2

⊥)

Φ[γ+γ5] = λNg1L(x, k2
⊥) −

k⊥ ⋅ S⊥

M
g⊥

1T(x, k2
⊥)

Φ[iσ i+γ5] = Si
⊥h1(x, k2

⊥) +
λN

M
ki

⊥h⊥
1L(x, k2

⊥) +
1

M2
(

1
2

gij
⊥k2

⊥ − ki
⊥k j

⊥)S⊥ jh⊥
1T(x, k2

⊥) −
ϵij

⊥k⊥ j

M
h⊥

1 (x, k2
⊥)

Generalizations: GPDs and TMDs



1)  unpol. TMDPDF
2)  helicity TMDPDF
3)  transversity TMDPDF
4)  Sivers function (T-odd)
5)  Boer-Mulders function (T-odd)
6)  worm-gear T/transversal helicity TMDPDF
7)  worm-gear L/longitudinal transversity TMDPDF
8)  pretzelosity TMDPDF

f1 :
g1L :
h1 :
f⊥
1T :
h⊥

1 :
g⊥

1T :
h⊥

1L :
h⊥

1T :

Generalizations: GPDs and TMDs



Global analyses also exist for TMDs

Also lattice calculations 

Generalizations: GPDs and TMDs

Constantinou, JHZ et al, Prog. Part. Nucl. Phys. 21’

He et al, LPC 22’ 



Relevant for multiparton scattering processes
Related to joint probability of finding two or more partons 
carrying momentum fractions  at given relative transverse 
separation
Example: double parton distributions 

Factorization

xi

Multiparton distributions

f̃ (xi, μi, y2) = C1(x1, x′ 1, μ2
1 /(x′ 1Pz)2) ⊗ C2(x2 /x′ 2, μ2

2 /x′ 2Pz)2) ⊗ f (x′ i, μi, y2)+ . . .

JHZ, 23’



Summary
Understanding the partonic structure of hadrons is an important goal 
of hadron physics, and is also relevant to collider phenomenology

Lattice QCD can now be used to access dynamical properties of 
hadrons, and plays an important complementary role to 
phenomenological determinations of partonic observables 

Form factors
PDFs, GPDs, TMDs…
Multiparton distributions

Both analytical and numerical inputs are needed to realize such 
calculations

A lot more to be explored…


