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Infroduction

- Hadrons (baryons, mesons) are composite particles with quarks
and gluons being their fundamental constituents

o First evidence of the composite nature of the proton
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o Elastic e-p scattering maps out the charge and magnetization
distribution of the proton
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Infroduction

- Hadrons (baryons, mesons) are composite particles with quarks
and gluons being their fundamental constituents

o Deep-inelastic scattering accesses the momentum density of the
proton’s fundamental constituents via knockout reactions
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o Discovery of spin-1/2 quarks and Nobel prize in 1990

partonic structure of the proton



Theoretical tools for hadron structure

- What have we learnt from non-relativistic systems such as atoms?

~ A quantum mechanical system 1s described by its wave function
|y), which 1s determined from Schrodinger equation

~ Physical observables are usually sensitive to the modulus square
of the wave function | (x|y)|* = |w(x)|*, where the phase
information is washed out

~ The complete information of the system can be obtained by
measuring correlations of wave functions or the density matrix.
For a pure state it 1s defined as

p=lvNwl
> In coordinate space, we have

(x|p|x)y == xlwy){y|x) = w@Oyp*X)



Theoretical tools for hadron structure

~ The Fourier transform of the density matrix provides an
alternative description of a quantum mechanical system. It 1s
called the Wigner function/distribution

vem= e =Sl )

> It 1s the quantum analogue of the classical phase-space
distribution. It is a real function,
W#(r, p) = W(r, p)
but not positive-definite, and cannot be regarded as a probability
distribution

= Nevertheless, physical observables can be computed by taking the

average
(O(r,p)) = [d3rd3pW(r, p)O(r, p)

with the operator being appropriately ordered



Theoretical tools for hadron structure

~ The Fourier transform of the density matrix provides an
alternative description of a quantum mechanical system. It 1s
called the Wigner function/distribution

vem= [ =Sl )

~ Integrating over coordinate or momentum does yield positive-
definite density functions

Jaﬂp W, p) = lw() P = p(o), [d3r W p) = @) I = n(p)

o The former represents the spatial distribution of matter (e.g.,
charge distribution), while the latter represents the density
distribution of its constituents in momentum space

o They provide two types of quantities unraveling the microscopic
structure of matter



Theoretical tools for hadron structure

© The spatial distribution p(r) = |y(r)|*can be probed through elastic
scattering of electrons, photons, etc., off the target, where one
measures the elastic form factor F(A) defined as

p(r) = Jd3AeiA"’F(A)
do do

20 = (50 poin
- The momentum density can be probed through inelastic knockout
scattering, where one measures the structure function related to

the momentum density

n(p) = [

| F(A)|?

d’rd’r
(2m)°

2 eip.(rl—rz)p(l.l’ 1’2)

o These two observables are complementary. The former contains
spatial distribution but not velocity information of the
constituents, while for the latter it 1s the opposite



Nucleon form factors

o The spatial distribution and momentum density can be generalized
to relativistic systems described by quantum field theory

~ Take the nucleon as an example. The spatial distribution can be
probed by its elastic form factors. For example, the

electromagnetic form factor is given by
] o A
(P #O0) 1) = O(p | Fi(8 4= = F (WD | Uy, #0) = T QOO
f

N

o F(A?%), F,(A?) are called Dirac and Pauli form factors. They are

related to the Sachs electric and magnetic form factors by
2

G(A?) = F,(A?) — A
E : 4M3,

which correspond to the charge and magnetization distribution in
the Breit frame (the initial and final nucleons have p, = — p,)

Fy(A?), Gy(A?) = Fy(A2) + Fy(AY)



Nucleon form factors

o The spatial distribution and momentum density can be generalized
to relativistic systems described by quantum field theory

~ Take the nucleon as an example. The spatial distribution can be
probed by its elastic form factors. For example, the

electromagnetic form factor is given by

, _ .. 1o™A
(P10 1) = Opo) |7 Fi(A2)+

M,

“E(AD| Uy, J40) = Y, OOy (0)
f

~This 1s also reflected from the relation to the charge and magnetic
moment of the nucleon

Q E/d3r./0(r), p= /d3r[r x j(r)]
) (p|ulp)

(plOIp s
= F1(0), = (F1(0) + F»2(0))
(p|p) ! (plp) ~ My ! 2

= One can sandwich different current operators in the nucleon state,
yielding different information about the nucleon structure



Nucleon form factors

> In particular, the axial-vector current helps to reveal the nucleon
spin structure

— ) ysAM

(P2 |A*0) | py) = U(p)Ir*ysGu(A)+ 3,

N
A*(0) = w(0)r*ysy;(0)
o G4(A?), Gp(A?) are the axial and (induced) pseudoscalar form factor

GP(Az)] U(py)

> In analogy with the vector case, the axial charge 1s defined as the
zero momentum transfer limit of G,(A?)
g1 = G,(A% = 0)

~ The 1sovector combination gX‘d 1S an important parameter

dictating the strength of weak interactions of nucleons
It can be well determined in neutron beta decay experiments
~ Ideal for benchmark lattice calculations of nucleon structure
> Disconnected contributions cancel
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Nucleon form factors from lattice QCD

= The only systematically improvable tool to study nonperturbative
phenomena of hadrons is lattice QCD

= Calculate physical observables from the path integral

_ 1 — iS(p,yp,A) -
<0I0(l/f,l//,A)I0>=E DADY Dy ™V V20, w, A)

. . k field
in Euclidean space AHar 'e\
—7 1Sy —Sg
b= -, et—e gluon field L

~ Recover physical limit xy.2

hvs —
m,— m” a—0,L— oo L»t a
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Nucleon form factors from lattice QCD

~ Lattice calculation of nucleon axial charge:
= Consider the nucleon 2- and 3-point correlation functions at zero
momentum (Fourier transform factors reduce to 1)
2 —
C2R(t) =) _(0lxa(t,x)X5(0,0)]0), O(x) = G)Tg(x)

X

— I'= i
CR (6, 7) =D (0lxa(t, x)Or(1,x)¥4(0,0)[0) s

x,x’

= with the nucleon interpolating operator

)] e

() = eobe [q;IT(x)c%

For a given flavor, quark contraction yields

SN N

Connected Disconnected
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Nucleon form factors from lattice QCD

~ Lattice calculation of nucleon axial charge:
= Consider the nucleon 2- and 3-point correlation functions at zero
momentum (Fourier transform factors reduce to 1)
2 —
C2R(t) =) _(0lxa(t,x)X5(0,0)]0), O(x) = G)Tg(x)

X

— I'= i
CP Lt ) = (0xa(t,x)Or(r,x')X5(0,0)[0) Yirs

x,x’

= with the nucleon interpolating operator

200 ) | g5()

() = eobe [q%%)c%

For a given flavor, quark contraction yields
Disconnected
contributions

% cancel for u-d
@binaﬁon

Connected Disconnected
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Nucleon form factors from lattice QCD

~ Lattice calculation of nucleon axial charge:
= Consider the nucleon 2- and 3-point correlation functions at zero
momentum (Fourier transform factors reduce to 1)
2 —
C2R(t) =) _(0lxa(t,x)X5(0,0)]0), O(x) = G)Tg(x)

X

— I'= i
CR (6, 7) =D (0lxa(t, x)Or(1,x)¥4(0,0)[0) s

x,x’

= with the nucleon interpolating operator

)] e

() = eobe [q%%)c%

For a given flavor, quark contraction yields Equivalent to

Disconnected
% contributions

cancel for u-d
@binaﬁon

Connected Disconnected




Nucleon form factors from lattice QCD

o Lattice calculation of nucleon axial charge:

~ Consider the nucleon 2- and 3-point correlation functions at zero
momentum (Fourier transform factors reduce to 1)

C2P(t) =) (0xa(t,x)X5(0,0)]0), O (x) = GOOTg(x)

X

— I' = i
CP Lt ) = (0xa(t,x)Or(r,x')X5(0,0)[0) ils

x,x’

o The nucleon charge 1s given by

(N(p, )| OL N (p, s)) = giis(p)Tus(p) Zus = Y+ my

~ To extract the charge, we need the projected correlation functions

C2P (1) = (Tr[Paps C2 (1)]) Popt = (1 +74)/2
CeP'(t,7) = (Tr[Pape CPP* (¢, 7)) Papt = Popt (1 + i7573)
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Nucleon form factors from lattice QCD

~ Lattice calculation of nucleon axial charge:
= Consider the nucleon 2- and 3-point correlation functions at zero

momentum (Fourier transform factors reduce to 1)
Col () = Z<0|Xa(t7 x)x3(0,0)0), O (x) = GOTg(x)

— I' = i
CP Lt ) = (0xa(t,x)Or(r,x')X5(0,0)[0) ils

x,x’

o Two-state fits for the projected 2- and 3-point correlation

functions -
C P (tfa tz) —

(A |2 Molts=t) 4 | Ay [Pe=Mr(tr=t)
CrP*(ts,7,t:) =

|AO|—]\/Io(tf—ti) n

A1 [2(1|Op[1)e=Maltr =t 4

Ag A3 (0|Op|1)e~ Molr=ti) g=Mlts =)

A A1 (1|Op|0)e= Mi(T=ti) g=Molts =7)
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= Lattice calculation of nucleon axial charge:

Nucleon form factors from lattice QCD

0-76 I I I I I I I 1 I 1 1 I
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Bhattacharya et al, PRD 16’
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Nucleon form factors from lattice QCD

o Lattice calculation of nucleon axial charge:

- Renormalization constant

ID Z A ZalZyv

al2 0.95(3) 1.045(09) s
a09 0.95(4) 1.034(11) vy
a06 0.97(3) 1.025(09)

- To compare with experimental measurements, we need to
extrapolate to the continuum (a — 0), physical pion mass
) and the infinite volume limit (L —» o)

(mjz = m;r,phys

gX‘d(a, m,,L)=c + ca+ c3m,% + c4m,%e —m,L

18
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Nucleon form factors from lattice QCD

= Lattice calculation of nucleon axial charge:

b
T
1 35 4 Model average gk (e a=0) U'C'FLC;?Z = |
$ ghPG=1.2723(23) [
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Parton distribution functions

~ Parton distribution functions describe momentum densities of
partons 1nside the nucleon, can be accessed in inclusive DIS

o Scattering amplitude

. «

_ Differential cross section can be written as 7,9

2 / ‘
do _« Ee“.W/»“' ) % ¥
dQdE Q4 E "

o with leptonic and hadronic tensors

1
L, = 42kl + Kk, — g k- k), W, = o Z (P|J,1X)(X|J,| PY2m)*6*(P + q — Py)
X

- General decomposition of W, in terms of structure functions

9.9, 1 ) )
Wuv=_(g,uv_ éz E(XB’Q2)+E(p,u_qﬁl pq2q)(pv_qv ‘Dqu)F;(xB’Qz) Q2 — _q2
e Q*
y q)S =15, =
+iMpg,ttvp(7qp ‘S_ggl (XB,Q2)+ (p q) o (2 q)pa g, (XB,Qz) B 2p . q
P4 (p.q)




Parton distribution functions
< Collinear approximation Q ~ xn - p > ky, Vi

)

/d_l Y n s (. E-n\ d*k
- Lowest order: |~ —l F%'”( =) @
q

/, M \ a4 k2 k E +UVeT
AP z[H+O(Q72 )]®[ ]

Universal

o A simple example of factorization
~ Parton transverse momentum integrated over in the collinear PDFs
o It also provides an estimate of certain power corrections
~ In the Bjorken limit Q% — oo, x; fixed
R0 = Y atw), Fitin 0=, Y, eZa)
up to higher-order perlturbative and high—povlver corrections
~ Bjorken scaling and Feynman’s parton model



Parton distribution functions
- How do PDFs look like?




Parton distribution functions

_ PDFs from correlation matrix

- Example: The quark PDFs are obtained by applying certain
projection to the quark-quark correlation matrix

(k. P,$) = | d*€e™(PS | 7O(&)| PS)

THI®D) = | d*ee™s(PS| F Oy (&) | PS)

~ Not gauge invariant y(x) — ey (x), F(x) = P(x)e ™
- Needs a gauge link
Wy, X;) = @e—igf;?dx.A(x), W(xy, x;) = €W (x,, x;)e ™)

~ This correlation matrix satisfies certain constraints from
hermiticity, parity and time-reversal invariance

o'k, P,S) = y'®(k,P,S)y®  Hermiticity
Ok, P,S) = '@k, P,— S)y°  Parity k= (k° — k)
D*(k, P,S) = ysCD(k, P, S)CTys Time reversal



Parton distribution functions
o @ can be decomposed in terms of Dirac matrices

Dk, P,S)=;{S 1+ V)" + A sy +1Psys + 3175,0" s}

~ with the coefficients of each matrix
g =1Tr(®)=Cy,
7 h =1 Tr(y" @) = CP" + C3k*,

A" =3 Tr(y'ys®) = C4S* + Csk - SP* + Cek - Sk*,

1
Ps = i Tr(ys®) =0,

1
T = 5= Tr(o"ys@) = Cy PUUS" 4 Cklis + Cok - SPI k"

o C,=C(k? k- P) are real functions



Parton distribution functions

~ In the collinear approximation
PH
K R xPY, SR Iy + S
© To leading-power accuracy, only three terms are left

1= [ RSO Y IPS) =P,

1

=3 / d*& k< (PSI(0 )y ps(E)|PS) = Ay A2 PP,

: 1 .. - w LoV
g :i/d“fekg(PSh//(O)a‘ y5Y(E)|PS) = A3 IS,

~and
D(k,P,S) = 3{A1 P + A2in7)sP + A3P7ys 8. }
1 I | o I .
A= SpT Tr(y™ @), INAy = P Tr(y"ysP), S A3 = 2P Tr(ic' "ys®) = T Tr(y"y'ys®).
d™ pre 7O\ -

o (AP o [ G e SO 0. 0

Af@) = [ 5 kP 46 (- ) = [ G PSR 00, 0L)IPS)
Az f(x) As(k2, k - P) "

IS
'/ O PSIO) 7 590,67, 0L )IPS)



|

1)
Af(x) } /

Arf(x)

Parton distribution functions

= In the collinear approximation
PH
K R xPY, SR Iy + S

~ To leading-power accuracy, only three terms are left

=5 [ @ et PSIBOy ) &> O

Quark density/unpolarized
1 . -
— 4 ¢ Jik-C U ;
=5 [de PSR G s
{ Helicity
TH = /d“dfe‘k S(PS|y(0)a*"ysy longitudinally polarized

~and
d(k,P,S) = 2{,41 P + AxAnysk

1 Transversity

_ + - i
=5pr 1117 P), Andz = 2p+ Tr(y"ys®), ~ transversely polarized ~ TT(2"7'75®).

df_n_ &P S (PSH(0Yy (0, E, 0, )|PS)

A(k%k - P) " / g
Ak - P) ("‘ p—+>= Y [ e SO s 0.6, 0,)1PS)

o

d4k
(2m

As(k? k- P)
—— e PS|Y(0)y Ty ysy(0,E7,0.)|PS)



Parton distribution functions

= Global determination of PDFs from experimental data

Minimize Chi2

Input DPFs atQ, «
Vary {al}
P (x,{(zl.}) I S
i ) DIS (fixed target) | 1
i HERA ('94) 1
DY
\ 102 |- W-asymmetry
i o Direct-y
B Jets
S I :
s | 2
o e 2 2 A 24
| ] pGLAP o b
I 100 1 I Ll 1 1 [ A | 1 1 11l 1 1 a1l
10° 10’ 102 10° 10*
1/X
7 (x) ata>Q, QCD calculation Comp.arlson with Data
S/ » |at various x and Q

Procedure: Iterate to find the best set of {a;} for the input DPFs



Parton distribution functions

o Theory prediction from lattice QCD
- Example: i
q(x) = h—ﬂe (Pw(O)n - yL(0,An)y (An) | P) (n%=0)
~ When reinterpreted in Feynman’s parton picture

dl .
1) = | 2P = oW @O P = ), [P =) = UALIP=0)

- The boost operator can be applied either to the static operator or to
the external state, projecting out the same physics

- In practice, parton physics can be approximated .. ..
by static correlations at large Lorentz boost "

(Large-Momentum Effective Theory)
Ji, PRL 13’ & SCPMA 14, Ji, Liu, Liu, JHZ, Zhao, RMP 21’

~ dz —iyzP* _
3y, P9 =NJ4—ﬂe PP 0y L0,y (2) | P) X,

G(y, P?) = C(y/x, p/xP?) @ q(x, 1)+ O(Agep! (WP, Ajep! (1 = y)P9)?)

28



Parton distribution functions

o Theory prediction from lattice QCD
- Example: nucleon isovector (u-d) quark transversity PDF

du(x, p)—dd(x, pn)

28I s This Work

2.4f JAM 22
2| JAM 20

1.6
1.2r

-075 -05 -0.25 0. 0.25 0.5 0.75 1.

Yao et al (LPC), 22’



Generalizations: GPDs and TMDs

- PDFs can be generalized to include more kinematic dependence.
The generalized quantities play an important role in describing

three-dim. structure of nucleons
Wigner Distributions

2
d kll

Parton Distribution Functions Form Factors

30



Generalizations: GPDs and TMDs

- PDFs can be generalized to include more kinematic dependence.
The generalized quantities play an important role in describing

1-D Scotty
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: N
C_a_]_g_llllll_ P

- —~— -
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>

Angeqo xd

Parton Distribution Functions
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ner Distrib
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Generalizations: GPDs and TMDs

= The GPDs are given by non-forward matrix elements of nonlocal
parton correlators, e.g.

F L [44 e~ UP O .(An) | P) = ! W(PYH tLE oA, P
(6,60) = o | ——e TP 0,4 () | P) = it (P [ HOx, & Dy 4+ E (e, & D——u(P)

P An in An _ P +P , 5 AT
0,.(An) = w(—)y (— ——)w(——) P = 5 , A=P —P, t =A% 5=—2p+

~ Access through exclusive processes 7 L
like deeply virtual Compton
scattering and meson production

_ Factorization formula

Her@)= [\ X o (§ 5 as () (o)

a=g,u,d f.uF

= Various models for GPD parametrization have been used for
extraction from experimental data 0



Generalizations: GPDs and TMD

1
~ Form factors from nucleon GPDs (") = J dx x""'F(x, 1)
-1

10f ' XPNDME192+1+1f 0.06fm = - o« DNDMEL72+1+1£009fm
[ ¥ * PNDME19 2+1+1f 0.09fm * PNDME17 2+1+1f 0.06fm 8
X A ETMC18 2+1+1f v PACS18 241f
08F T Vou v PACS18 2+1f ] ® LHPC172+1f |
! i ® LHPC17 2+1f i m RQCD18 2f -
R ] % A ETMC17 2f ]
& 06 G, %} & Mainz17 2f
- é - -
0.4 . ﬁi . %3z )
ek
- A 4 } 0.6 % % ${ i
0.2 - }
NI R RN R R B R 0.44 L L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.2 0.4 0.6 0.8 1.0
Q* (GeV?) Q* (Gev?)
T
- * PNDME19 2+1+1f 0.06fm + ) —
[ * PNDME19 2+1+1f 0.09fm j <N(pf)|vu (2)[N(pi)) =
A % A ETMC18 2+1+1f - N , ¢’ , '
i v PACS18 2+1f ] i F o, — uneld®
[ M ® LHPC17 2+1f [’)/” l(q ) + HV 2]\/[]\[ 2(q ) N
| .
S 3r ] +
| ﬂ& | (N ()| Af ()N (p:)) =
[ %A I . 2 . 2 iqg-x
of "aay, ] un (195G alq”) +ig,5G p(a”)] une™
- a4 }
) T T T T T Constantinou, JHZ et al, Prog. Part. Nucl. Phys. 21’
0 0.1 0.2 0.3 0.4 0.5 0.6
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Generalizations: GPDs and TMDs

- Apart from the form factors, the entire distribution can also be
accessed from suitable spatial correlations on lattice

i 4
Yy _’

Cgpt(?l’ ?f’ t Sep)
= | Ay [2(0] Op | 0Ye~Bken 4 | A, |2(1] O | 1)e~Erter
+A1A6k<1 | OF | 0>e —E)(tep—1) e~ Eot + A0A1*<0 | OFl 1>€ —Ey(tyep— )e_Elt

~ via the factorization (after Fourier transform)

Z

x ¢
vy

>Hu_d(y, Et,u)+h.t.

1
ﬁu—d(-xa 57 t’PZHd) = ‘A —C < ﬁ
1yl po

U
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Generalizations: GPDs and TMDs

~ Nucleon GPDs (unpolarized)

3 n : K o o A [T N A B B B ]
— — H(z)-GPD, £ =0 i\ - ! Q% = 0.39 GeV*? ]
— — H(z)-GPD, { = [1/3]| | \ 2.5 ¢ | I quasi-GPD E
otz = hl@) ‘\ \ Py=1.25GeV - 2ok ! B matched GPD E
L\ T \ [ matched GPD extrap |
\ N 1.5 F N -
1 \\ \\ 1 m C \\ ]
~ N - AN -
\N 1.0 7 N\ ;
— — T A N =
0 === EZ::E’E::§ ................................... === O 5 — \\\ 5 O -
5 0 . S~
Ale)liandrou etl al, PRL 2:0, . PR IR TR IR .Llnl’ PIR.L .211., | P T N
-1 -0.5 0 0.5 1 -04 -0.2 0 0.2 0.4 0.6 0.8 1.0

X

o Impact parameter distribution
q(z,b) = / dq H(z,& =0,t= —q2)eiq'b

(2m)?

x=03 x =05




Generalizations: GPDs and TMDs

- TMDs are relevant for multi-scale processes where low transverse
momentum transfer 1s important

o Example: Drell-Yan process

o If transverse momentum ¢y of the
lepton pair is not measured

d i'(€a9$ ) A
dQZ Z/ d&.d&p fi/p(Ea)fi/pEb) OdeZ LN [14—0( SCD)] Q=\/E

o If qp 1s measured but |qz| ~ QO > Agcp

~Q > Aqgep :

d Gij(&q, &b) Aqgep Aqep
102d2q Zf d&adép fi/p{Ea)fj/p6b) déZdqu X [1 -I-O( Q0 )]

o If qp1s measured but |q,| < Q
qr < Q :

do 1 - fees G
dQ2d%qy :;HU(Q)/O d&,d&p /dszebrq % fi/p(Ea. br)fp(Ep. br) X [1+O( QD’ ar)]
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Generalizations: GPDs and TMDs

- We need to take into account the transverse momentum of quarks
PH
K R xPH 4 kY, " & Ay— + ]

~ To leading-power accuracy, we have
¥ = A, P*,

1 ~
oAM= JnAP* + A_lAlkL -S| PH,

, g AN a1 s .
T = PUST + TP + 5 dsk - S PUEY,



Generalizations: GPDs and TMDs

- We need to take into account the transverse momentum of quarks
PH
K R xPH 4 kY, " & Ay— + ]

© To leading-power accuracy, we have if time-reversal is relaxed
1
V= APl A AT P kS

1 ~
oAM= JnAP* + A_lAlkL -S| PH,

. g N gl . L s g 1
T = AsPUS) + T APURY] + s Ask - S PUEY, - ALMTP K,

~ And

1 1 -~ 1
Pk, P,S) = 5 {AIP +A2inysP + AsPysSi + oAk - SJ_VSP"‘MAieﬂUpG}/ﬂPUkJ_pSJ_G

i 2 -
‘*‘WAQEWPGPpkLa%u?’S—F A MNF’/SIQ + WA_?JQ ' SLPVS/‘L} :

o Leading-power projection is again given by

Tr(y*®) LTr(yW D) LTr(ia”y D)
2P+  2p+ U7 op+ >



Generalizations: GPDs and TMDs

- We need to take into account the transverse momentum of quarks
PH
K R xPH 4 kY, " & Ay— + ]

© To leading-power accuracy, we have if time-reversal is relaxed
1
V= APl A AT P kS

1 ~
oAM= JnAP* + A_lAlkL -S| PH,

. g N gl . L s g 1
T = AsPUS) + T APURY] + s Ask - S PUEY, - ALMTP K,

~ And

1 -
&(k,P,S) = {AJ]’ HANYsP + A3 Pys§ + MAlkL - 8175

i _ -
‘*‘WAQEWPGPpkLa%u?’S—F A MNF’/SIQ + WA_?JQ ' SLPVS/‘L} :

o Leading-power projection is again given by

1 |
Tr(ytys®),  ——Tr(ic" ysP)
: 2P+ >



Generalizations: GPDs and TMDs

- We need to take into account the transverse momentum of quarks
PH
K R xPH 4 kY, " & Ay— + ]

© To leading-power accuracy, we have if time-reversal is relaxed
1
V= APl A AT P kS

1 ~
oAM= JnAP* + A_lAlkL -S| PH,

. g N gl . L s g 1
T = AsPUS) + T APURY] + s Ask - S PUEY, - ALMTP K,

~ And

1 1 ~ 1
&(k,P,S) = 5 {AJ]’ ArinysP)+ Az PysSi + MAlkL - S1ysP+

i 2 -
+ M A" PP k| ;0,,¥s+ A; MNF VskiL + WA_?JQ -8 Pysk.

Aieﬂypayﬂpvklpsla

o Leading-power projection is again given by

1 |
Tr(y "), ,  ——Tr(ic""y;®)
2P+ 2P+



Generalizations: GPDs and TMDs

- We need to take into account the transverse momentum of quarks
PH
k’u%XP’u-ijf, SH N/lNﬁ-FSJ'Lf
© To leading-power accuracy, we have if time-reversal is relaxed
1
V= APl A AT P kS

1 ~
oAM= JnAP* + A_lAlkL -S| PH,

. g N ot s 1 oa g 1
T =4sPUS] + S APVK] + oAk, - SLPYEY, AP,

1 ~ L,
A3PVS$L + A_JAlkL ’ SLY5E)+MA1€'M P y//lPl/kJ_pSJ_G

- And
&(k,P,S) = % {All? + A2/nysP

! JUUPO
— A" P k| 0,




Generalizations: GPDs and TMDs
o These projections define the eight leading-twist quark TMDPDFs

_ Introduce )
iy 1 [dkTdk™ B
? "2/0(2)4 Tr(I@)o(k™ —xP)
_ [ded P ek E L) - .
- Then ‘/ 2(2n)} (PS|Y(0)IY(0,&,€,)|PS)

N eijkuSL j
Ol = fi(x, k) — TJfIJ_T(x’ k7)

QA = Iy () — Lo 12
M 1T L

GLkJ_ j
Y hi-(x, k)

Ay
Qlie"rsl = §i p (x, K> )+—klhiL(x k2 )+—( g’sz — KLKD)S, ik (x, K3) —

o The leading-twist TMDPDFs can be interpreted as number
densities

- When FT to coordinate space, the correlations exhibit certain
symmetries



Generalizations: GPDs and TMDs
o These projections define the eight leading-twist quark TMDPDFs

_ Introduce o
d)[F] = % dlzznd)lj Tr(r¢)5(k+ . XP+)
dé— d2e. oo i
Then - / §<z—n>§L P TR (PSY(0)TY(0,67, € )|PS)

N eijkuSL j
Ol = fi(x, k) — TJflJ_T(x’ k7)

N S,
O = 71,06, 18) — = — gl e k)

€J_'kJ_ j
v hi(x, k%)

Ay
L1l = St (x, K2) +—kl Thi (x,k2) +—( g’fk2 — kiKk])S, hiz(x, k3 —
~ Again, gauge links are needed o
to ensure gauge invariance. ‘Q e

Now they are staple-shaped ///0




Generalizations: GPDs and TMDs

1) f, : unpol. TMDPDF quark pol.

2) gy : helicity TMDPDF U L T

3) h, : transversity TMDPDF _

4) fllT : Sivers function (T-odd) 2 Ul A hll

5) hi" : Boer-Mulders function (T-odd) S g | Y
6) gi; : worm-gear T/transversal helicity TMDPDF P N A
7) hllL : worm-gear L/longitudinal transversity TMDPDF = i | &ir | by | by

8) hllT : pretzelosity TMDPDF

f = Oy —
—Q-} @ nucleon with transverse or longitudinal spin ‘ O

=P (®) parton with transverse or longitudinal spin

parl()n transverse momentum l | — - le

- (5 s

SONO e @ -
o m e <o Le

~



Generalizations: GPDs and TMDs
= Global analyses also exist for TMDs

~ Also lattice calculations

Xf (x' b.l.! K, ( )

f1(x, kt; Q%2 =1 GeV?)
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Constantinou, JHZ et al, Prog. Part. Nucl. Phys. 21’

He et al, LPC 22’



Multiparton distributions

> Relevant for multiparton scattering processes

> Related to joint probability of finding two or more partons
carrying momentum fractions x; at given relative transverse

separation
- Example: double parton distributions

fQICI2 L1,22,Y

1

d d L
opt / / e 2" ho(y, 21, 22, P)

2 27

ho(yazl’z2’P) - <P|OQ1(yaz1)Oqz(07 Z2)|P>’

+ z

04y, 2) =Ygy — 2) LW (y— 59+ )¢q(y+ 2)

27 2 2

_ Factorization

f~(xi7 His y2) = Cl(xla Xi, /’llz/(xipz)z) ® Cz(xz/xéa

U3 1X5PHH) @ f(x], i, )+

JHZ, 23’



Summary

> Understanding the partonic structure of hadrons 1s an important goal
of hadron physics, and is also relevant to collider phenomenology

> Lattice QCD can now be used to access dynamical properties of
hadrons, and plays an important complementary role to
phenomenological determinations of partonic observables

~ Form factors
> PDFs, GPDs, TMDs...
~ Multiparton distributions

> Both analytical and numerical inputs are needed to realize such
calculations

> Alot more to be explored...



