Introduction to Partonic Structure of Hadrons

Jianhui Zhang

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

第六届格点量子色动力学夏令营,2023.07.20

Introduction

 Hadrons (baryons, mesons) are composite particles with quarks and gluons being their fundamental constituents

• First evidence of the composite nature of the proton

Otto Stern

$$\mu_p = g_p \left(\frac{e\hbar}{2m_p}\right)$$

$$g_p = 2.792847356(23) \neq 2!$$

 Elastic e-p scattering maps out the charge and magnetization distribution of the proton

R. Hofstadter

Nobel prize in 1961

Proton 0.5 1.0 1.5 2.0 b [fm] 2

Introduction

- Hadrons (baryons, mesons) are composite particles with quarks and gluons being their fundamental constituents
- Deep-inelastic scattering accesses the momentum density of the proton's fundamental constituents via knockout reactions

Discovery of spin-1/2 quarks and partonic structure of the proton

J. Friedman H. Kendall R. Taylor

Nobel prize in 1990

- What have we learnt from non-relativistic systems such as atoms?
- A quantum mechanical system is described by its wave function $|\psi\rangle$, which is determined from Schrödinger equation
- Physical observables are usually sensitive to the modulus square of the wave function $|\langle x | \psi \rangle|^2 = |\psi(x)|^2$, where the phase information is washed out
- The complete information of the system can be obtained by measuring correlations of wave functions or the density matrix.
 For a pure state it is defined as

 $\rho = |\psi\rangle\langle\psi|$

In coordinate space, we have

 $\langle x \, | \, \rho \, | \, x' \rangle = = \langle x \, | \, \psi \rangle \langle \psi \, | \, x' \rangle = \psi(x) \psi^*(x')$

The Fourier transform of the density matrix provides an alternative description of a quantum mechanical system. It is called the Wigner function/distribution

$$W(\mathbf{r},\mathbf{p}) = \int \frac{d^3 \mathbf{R}}{(2\pi)^3} e^{-i\mathbf{p}\cdot\mathbf{R}} \psi^* \left(\mathbf{r} - \frac{\mathbf{R}}{2}\right) \psi \left(\mathbf{r} + \frac{\mathbf{R}}{2}\right)$$

It is the quantum analogue of the classical phase-space distribution. It is a real function,

 $W^*(\mathbf{r},\mathbf{p}) = W(\mathbf{r},\mathbf{p})$

but not positive-definite, and cannot be regarded as a probability distribution

• Nevertheless, physical observables can be computed by taking the average $\langle O(\mathbf{r}, \mathbf{p}) \rangle = \int d^3\mathbf{r} d^3\mathbf{p} W(\mathbf{r}, \mathbf{p}) O(\mathbf{r}, \mathbf{p})$

with the operator being appropriately ordered

 The Fourier transform of the density matrix provides an alternative description of a quantum mechanical system. It is called the Wigner function/distribution

$$W(\mathbf{r},\mathbf{p}) = \int \frac{d^3 \mathbf{R}}{(2\pi)^3} e^{-i\mathbf{p}\cdot\mathbf{R}} \psi^* \left(\mathbf{r} - \frac{\mathbf{R}}{2}\right) \psi \left(\mathbf{r} + \frac{\mathbf{R}}{2}\right)$$

 Integrating over coordinate or momentum does yield positivedefinite density functions

$$\int d^3 \mathbf{p} W(\mathbf{r}, \mathbf{p}) = |\psi(\mathbf{r})|^2 = \rho(\mathbf{r}), \qquad \int d^3 \mathbf{r} W(\mathbf{r}, \mathbf{p}) = |\psi(\mathbf{p})|^2 = n(\mathbf{p})$$

- The former represents the spatial distribution of matter (e.g., charge distribution), while the latter represents the density distribution of its constituents in momentum space
- They provide two types of quantities unraveling the microscopic structure of matter

• The spatial distribution $\rho(\mathbf{r}) = |\psi(\mathbf{r})|^2$ can be probed through elastic scattering of electrons, photons, etc., off the target, where one measures the elastic form factor $F(\Delta)$ defined as

$$\rho(\mathbf{r}) = \int d^3 \Delta e^{i \Delta \cdot \mathbf{r}} F(\Delta)$$
$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{point}} |F(\Delta)|^2$$

The momentum density can be probed through inelastic knockout scattering, where one measures the structure function related to the momentum density

$$n(\mathbf{p}) = \int \frac{d^3 \mathbf{r_1} d^3 \mathbf{r_2}}{(2\pi)^6} e^{i\mathbf{p} \cdot (\mathbf{r_1} - \mathbf{r_2})} \rho(\mathbf{r_1}, \mathbf{r_2})$$

 These two observables are complementary. The former contains spatial distribution but not velocity information of the constituents, while for the latter it is the opposite

Nucleon form factors

- The spatial distribution and momentum density can be generalized to relativistic systems described by quantum field theory
- Take the nucleon as an example. The spatial distribution can be probed by its elastic form factors. For example, the electromagnetic form factor is given by

$$\langle p_2 | j^{\mu}(0) | p_1 \rangle = \bar{U}(p_2) \Big[\gamma^{\mu} F_1(\Delta^2) + \frac{i \sigma^{\mu\nu} \Delta_{\nu}}{2M_N} F_2(\Delta^2) \Big] U(p_1), \quad j^{\mu}(0) = \sum_f Q_f \bar{\psi}_f(0) \gamma^{\mu} \psi_f(0)$$

• $F_1(\Delta^2), F_2(\Delta^2)$ are called Dirac and Pauli form factors. They are related to the Sachs electric and magnetic form factors by

$$G_E(\Delta^2) = F_1(\Delta^2) - \frac{\Delta^2}{4M_N^2}F_2(\Delta^2), \quad G_M(\Delta^2) = F_1(\Delta^2) + F_2(\Delta^2)$$

which correspond to the charge and magnetization distribution in the Breit frame (the initial and final nucleons have $\mathbf{p}_1 = -\mathbf{p}_2$)

Nucleon form factors

- The spatial distribution and momentum density can be generalized to relativistic systems described by quantum field theory
- Take the nucleon as an example. The spatial distribution can be probed by its elastic form factors. For example, the electromagnetic form factor is given by

$$\langle p_2 | j^{\mu}(0) | p_1 \rangle = \bar{U}(p_2) \Big[\gamma^{\mu} F_1(\Delta^2) + \frac{i\sigma^{\mu\nu} \Delta_{\nu}}{2M_N} F_2(\Delta^2) \Big] U(p_1), \quad j^{\mu}(0) = \sum_f Q_f \bar{\psi}_f(0) \gamma^{\mu} \psi_f(0)$$

This is also reflected from the relation to the charge and magnetic moment of the nucleon

$$Q \equiv \int d^3 r j^0(r), \quad \mu \equiv \int d^3 r [r \times j(r)]$$
$$\frac{\langle p | Q | p \rangle}{\langle p | p \rangle} = F_1(0), \quad \frac{\langle p | \mu | p \rangle}{\langle p | p \rangle} = \frac{s}{M_N} (F_1(0) + F_2(0))$$

One can sandwich different current operators in the nucleon state, yielding different information about the nucleon structure

Nucleon form factors

In particular, the axial-vector current helps to reveal the nucleon spin structure

$$\langle p_2 | A^{\mu}(0) | p_1 \rangle = \overline{U}(p_2) [\gamma^{\mu} \gamma_5 G_A(\Delta^2) + \frac{\gamma_5 \Delta^{\mu}}{2M_N} G_P(\Delta^2)] U(p_1)$$

$$A^{\mu}(0) = \overline{\psi}_f(0) \gamma^{\mu} \gamma_5 \psi_f(0)$$

G_A(Δ²), G_P(Δ²) are the axial and (induced) pseudoscalar form factor
 In analogy with the vector case, the axial charge is defined as the zero momentum transfer limit of G_A(Δ²)

$$g_A = G_A(\Delta^2 = 0)$$

- The isovector combination g_A^{u-d} is an important parameter dictating the strength of weak interactions of nucleons
- It can be well determined in neutron beta decay experiments
- Ideal for benchmark lattice calculations of nucleon structure
- Disconnected contributions cancel

- The only systematically improvable tool to study nonperturbative phenomena of hadrons is lattice QCD
- Calculate physical observables from the path integral $\langle 0 | O(\bar{\psi}, \psi, A) | 0 \rangle = \frac{1}{Z} \int \mathscr{D}A \mathscr{D}\bar{\psi} \mathscr{D}\psi \, e^{iS(\bar{\psi}, \psi, A)} O(\bar{\psi}, \psi, A)$ quark field in Euclidean space $t \rightarrow -i\tau, e^{iS_M} \rightarrow e^{-S_E}$ gluon field L Recover physical limit x, y, z

$$m_{\pi} \rightarrow m_{\pi}^{phys}, a \rightarrow 0, L \rightarrow \infty$$

- Lattice calculation of nucleon axial charge:
- Consider the nucleon 2- and 3-point correlation functions at zero momentum (Fourier transform factors reduce to 1)

$$\mathbf{C}_{\alpha\beta}^{2\mathrm{pt}}(t) = \sum_{\mathbf{x}} \langle 0 | \chi_{\alpha}(t, \mathbf{x}) \overline{\chi}_{\beta}(0, \mathbf{0}) | 0 \rangle, \qquad \mathcal{O}_{\Gamma}(x) = \bar{q}(x) \Gamma q(x)$$
$$\mathbf{C}_{\Gamma;\alpha\beta}^{3\mathrm{pt}}(t, \tau) = \sum_{\mathbf{x}, \mathbf{x}'} \langle 0 | \chi_{\alpha}(t, \mathbf{x}) \mathcal{O}_{\Gamma}(\tau, \mathbf{x}') \overline{\chi}_{\beta}(0, \mathbf{0}) | 0 \rangle \qquad \Gamma = \gamma_{i} \gamma_{5}$$

with the nucleon interpolating operator

$$\chi(x) = \epsilon^{abc} \left[q_1^{aT}(x) C \gamma_5 \frac{(1 \pm \gamma_4)}{2} q_2^b(x) \right] q_1^c(x)$$

For a given flavor, quark contraction yields

- Lattice calculation of nucleon axial charge:
- Consider the nucleon 2- and 3-point correlation functions at zero momentum (Fourier transform factors reduce to 1)

$$\mathbf{C}_{\alpha\beta}^{2\mathrm{pt}}(t) = \sum_{\mathbf{x}} \langle 0 | \chi_{\alpha}(t, \mathbf{x}) \overline{\chi}_{\beta}(0, \mathbf{0}) | 0 \rangle, \qquad \mathcal{O}_{\Gamma}(x) = \bar{q}(x) \Gamma q(x)$$
$$\mathbf{C}_{\Gamma;\alpha\beta}^{3\mathrm{pt}}(t, \tau) = \sum_{\mathbf{x}, \mathbf{x}'} \langle 0 | \chi_{\alpha}(t, \mathbf{x}) \mathcal{O}_{\Gamma}(\tau, \mathbf{x}') \overline{\chi}_{\beta}(0, \mathbf{0}) | 0 \rangle \qquad \Gamma = \gamma_{i} \gamma_{5}$$

with the nucleon interpolating operator

$$\chi(x) = \epsilon^{abc} \left[q_1^{aT}(x) C \gamma_5 \frac{(1 \pm \gamma_4)}{2} q_2^b(x) \right] q_1^c(x)$$

For a given flavor, quark contraction yields

- Lattice calculation of nucleon axial charge:
- Consider the nucleon 2- and 3-point correlation functions at zero momentum (Fourier transform factors reduce to 1)

$$\mathbf{C}_{\alpha\beta}^{2\mathrm{pt}}(t) = \sum_{\mathbf{x}} \langle 0 | \chi_{\alpha}(t, \mathbf{x}) \overline{\chi}_{\beta}(0, \mathbf{0}) | 0 \rangle, \qquad \mathcal{O}_{\Gamma}(x) = \bar{q}(x) \Gamma q(x)$$
$$\mathbf{C}_{\Gamma;\alpha\beta}^{3\mathrm{pt}}(t, \tau) = \sum_{\mathbf{x}, \mathbf{x}'} \langle 0 | \chi_{\alpha}(t, \mathbf{x}) \mathcal{O}_{\Gamma}(\tau, \mathbf{x}') \overline{\chi}_{\beta}(0, \mathbf{0}) | 0 \rangle \qquad \Gamma = \gamma_{i} \gamma_{5}$$

• with the nucleon interpolating operator

$$\chi(x) = \epsilon^{abc} \left[q_1^{aT}(x) C \gamma_5 \frac{(1 \pm \gamma_4)}{2} q_2^b(x) \right] q_1^c(x)$$

Equivalent to

14

- Lattice calculation of nucleon axial charge:
- Consider the nucleon 2- and 3-point correlation functions at zero momentum (Fourier transform factors reduce to 1)

$$\mathbf{C}_{\alpha\beta}^{2\mathrm{pt}}(t) = \sum_{\mathbf{x}} \langle 0 | \chi_{\alpha}(t, \mathbf{x}) \overline{\chi}_{\beta}(0, \mathbf{0}) | 0 \rangle , \qquad \mathcal{O}_{\Gamma}(x) = \bar{q}(x) \Gamma q(x)$$
$$\mathbf{C}_{\Gamma;\alpha\beta}^{3\mathrm{pt}}(t, \tau) = \sum_{\mathbf{x}, \mathbf{x}'} \langle 0 | \chi_{\alpha}(t, \mathbf{x}) \mathcal{O}_{\Gamma}(\tau, \mathbf{x}') \overline{\chi}_{\beta}(0, \mathbf{0}) | 0 \rangle \qquad \Gamma = \gamma_{i} \gamma_{5}$$

• The nucleon charge is given by

$$\langle N(p,s)|\mathcal{O}_{\Gamma}^{q}|N(p,s)\rangle = g_{\Gamma}^{q}\bar{u}_{s}(p)\Gamma u_{s}(p) \qquad \sum_{s} u_{s}(\mathbf{p})\bar{u}_{s}(\mathbf{p}) = \not p + m_{N}$$

To extract the charge, we need the projected correlation functions

$$C^{2\text{pt}}(t) = \langle \text{Tr}[\mathcal{P}_{2\text{pt}} \mathbf{C}^{2\text{pt}}(t)] \rangle \qquad \qquad \mathcal{P}_{2\text{pt}} = (1+\gamma_4)/2$$
$$C^{3\text{pt}}_{\Gamma}(t,\tau) = \langle \text{Tr}[\mathcal{P}_{3\text{pt}} \mathbf{C}^{3\text{pt}}_{\Gamma}(t,\tau)] \rangle \qquad \qquad \mathcal{P}_{3\text{pt}} = \mathcal{P}_{2\text{pt}}(1+i\gamma_5\gamma_3)$$

- Lattice calculation of nucleon axial charge:
- Consider the nucleon 2- and 3-point correlation functions at zero momentum (Fourier transform factors reduce to 1)

$$\mathbf{C}_{\alpha\beta}^{2\mathrm{pt}}(t) = \sum_{\mathbf{x}} \langle 0 | \chi_{\alpha}(t, \mathbf{x}) \overline{\chi}_{\beta}(0, \mathbf{0}) | 0 \rangle, \qquad \mathcal{O}_{\Gamma}(x) = \bar{q}(x) \Gamma q(x)$$
$$\mathbf{C}_{\Gamma;\alpha\beta}^{3\mathrm{pt}}(t, \tau) = \sum_{\mathbf{x}, \mathbf{x}'} \langle 0 | \chi_{\alpha}(t, \mathbf{x}) \mathcal{O}_{\Gamma}(\tau, \mathbf{x}') \overline{\chi}_{\beta}(0, \mathbf{0}) | 0 \rangle \qquad \Gamma = \gamma_{i} \gamma_{5}$$

Two-state fits for the projected 2- and 3-point correlation functions

$$C^{2\text{pt}}(t_{f}, t_{i}) = |\mathcal{A}_{0}|^{2} e^{-M_{0}(t_{f} - t_{i})} + |\mathcal{A}_{1}|^{2} e^{-M_{1}(t_{f} - t_{i})},$$

$$C_{\Gamma}^{3\text{pt}}(t_{f}, \tau, t_{i}) = |\mathcal{A}_{0}|^{2} \sqrt{0|\mathcal{O}_{\Gamma}|0} e^{-M_{0}(t_{f} - t_{i})} + |\mathcal{A}_{1}|^{2} \sqrt{1|\mathcal{O}_{\Gamma}|1} e^{-M_{1}(t_{f} - t_{i})} + \mathcal{A}_{0}\mathcal{A}_{1}^{*} \langle 0|\mathcal{O}_{\Gamma}|1\rangle e^{-M_{0}(\tau - t_{i})} e^{-M_{1}(t_{f} - \tau)} + \mathcal{A}_{0}^{*}\mathcal{A}_{1} \langle 1|\mathcal{O}_{\Gamma}|0\rangle e^{-M_{1}(\tau - t_{i})} e^{-M_{0}(t_{f} - \tau)},$$

Lattice calculation of nucleon axial charge:

Effective mass plot

2-state fit of unrenormalized g_A^{u-d}

Bhattacharya et al, PRD 16'

- Lattice calculation of nucleon axial charge:
- Renormalization constant

ID	Z_A	Z_A/Z_V
a12	0.95(3)	1.045(09)
a09	0.95(4)	1.034(11)
a06	0.97(3)	1.025(09)

• To compare with experimental measurements, we need to extrapolate to the continuum $(a \rightarrow 0)$, physical pion mass $(m_{\pi} = m_{\pi,\text{phys}})$ and the infinite volume limit $(L \rightarrow \infty)$

$$g_A^{u-d}(a, m_\pi, L) = c_1 + c_2 a + c_3 m_\pi^2 + c_4 m_\pi^2 e^{-m_\pi L}$$

 $Z_V g_V^{u-d} = 1$

Lattice calculation of nucleon axial charge:

Chang et al, Nature 18'

Parton distribution functions describe momentum densities of partons inside the nucleon, can be accessed in inclusive DIS
 Scattering amplitude

$$\mathcal{M} = \bar{u}(k')(-ie\gamma_{\mu})u(k)\frac{-i}{q^2}\langle X | J^{\mu} | P \rangle$$

• Differential cross section can be written as

$$\frac{d\sigma}{d\Omega dE} = \frac{\alpha^2}{Q^4} \frac{E'}{E} \ell_{\mu\nu} W^{\mu\nu}$$

with leptonic and hadronic tensors

$$l_{\mu\nu} = 4e^2 (k_{\mu}k_{\nu}' + k_{\mu}'k_{\nu} - g_{\mu\nu}k \cdot k'), \quad W_{\mu\nu} = \frac{1}{4\pi} \sum_{X} \langle P | J_{\mu} | X \rangle \langle X | J_{\nu} | P \rangle (2\pi)^4 \delta^4 (P + q - P_X)$$

• General decomposition of $W_{\mu\nu}$ in terms of structure functions

• Collinear approximation $Q \sim xn \cdot p \gg k_T, \sqrt{k^2}$

A simple example of factorization

Parton transverse momentum integrated over in the collinear PDFs
It also provides an estimate of certain power corrections
In the Bjorken limit Q² → ∞, x_B fixed

$$F_1(x_B, Q^2) = \frac{1}{2} \sum_i e_i^2 q_i(x_B), \quad F_2(x_B, Q^2) = x_B \sum_i e_i^2 q_i(x_B)$$

up to higher-order perturbative and high-power correctionsBjorken scaling and Feynman's parton model

How do PDFs look like?

- PDFs from correlation matrix
- Example: The quark PDFs are obtained by applying certain projection to the quark-quark correlation matrix

$$\Phi_{ij}(k,P,S) = \int d^{4}\xi e^{ik\cdot\xi} \langle PS | \bar{\psi}_{j}(0)\psi_{i}(\xi) | PS \rangle$$
$$\operatorname{Tr}(\Gamma\Phi) = \int d^{4}\xi e^{ik\cdot\xi} \langle PS | \bar{\psi}(0)\Gamma\psi(\xi) | PS \rangle$$

Not gauge invariant ψ(x) → e^{iα(x)}ψ(x), ψ̄(x) → ψ̄(x)e^{-iα(x)}
 Needs a gauge link

$$W(x_2, x_1) = \mathscr{P}e^{-ig \int_{x_1}^{x_2} dx \cdot A(x)}, \quad W(x_2, x_1) \to e^{i\alpha(x_2)}W(x_2, x_1)e^{-i\alpha(x_1)}$$

 This correlation matrix satisfies certain constraints from hermiticity, parity and time-reversal invariance

$$\begin{split} \Phi^{\dagger}(k,P,S) &= \gamma^{0} \Phi(k,P,S) \gamma^{0} & \text{Hermiticity} \\ \Phi(k,P,S) &= \gamma^{0} \Phi(\tilde{k},\tilde{P},-\tilde{S}) \gamma^{0} & \text{Parity} & \tilde{k}^{\mu} = (k^{0},-\mathbf{k}) \\ \Phi^{*}(k,P,S) &= \gamma_{5} C \Phi(\tilde{k},\tilde{P},\tilde{S}) C^{\dagger} \gamma_{5} & \text{Time reversal} \end{split}$$

$\bullet \Phi$ can be decomposed in terms of Dirac matrices

 $\Phi(k,P,S) = \frac{1}{2} \{ \mathscr{S}\mathbb{1} + \mathscr{V}_{\mu}\gamma^{\mu} + \mathscr{A}_{\mu}\gamma_{5}\gamma^{\mu} + \mathrm{i}\mathscr{P}_{5}\gamma_{5} + \frac{1}{2}\mathrm{i}\mathscr{T}_{\mu\nu}\sigma^{\mu\nu}\gamma_{5} \}$

with the coefficients of each matrix

$$\mathcal{S} = \frac{1}{2} \operatorname{Tr}(\Phi) = C_{1},$$

$$\mathcal{V}^{\mu} = \frac{1}{2} \operatorname{Tr}(\gamma^{\mu} \Phi) = C_{2} P^{\mu} + C_{3} k^{\mu},$$

$$\mathcal{A}^{\mu} = \frac{1}{2} \operatorname{Tr}(\gamma^{\mu} \gamma_{5} \Phi) = C_{4} S^{\mu} + C_{5} k \cdot S P^{\mu} + C_{6} k \cdot S k^{\mu},$$

$$\mathcal{P}_{5} = \frac{1}{2i} \operatorname{Tr}(\gamma_{5} \Phi) = 0,$$

$$\mathcal{T}^{\mu\nu} = \frac{1}{2i} \operatorname{Tr}(\sigma^{\mu\nu} \gamma_{5} \Phi) = C_{7} P^{[\mu} S^{\nu]} + C_{8} k^{[\mu} S^{\nu]} + C_{9} k \cdot S P^{[\mu} k^{\nu]},$$

• $C_i = C_i(k^2, k \cdot P)$ are real functions

• In the collinear approximation

$$k^{\mu} \approx x P^{\mu}, \ S^{\mu} \approx \lambda_N \frac{P^{\mu}}{M} + S^{\mu}_{\perp}$$

• To leading-power accuracy, only three terms are left

$$\mathscr{V}^{\mu} = \frac{1}{2} \int \mathrm{d}^{4} \xi \, \mathrm{e}^{\mathrm{i}k \cdot \xi} \langle PS | \bar{\psi}(0) \gamma^{\mu} \psi(\xi) | PS \rangle = A_{1} P^{\mu},$$

$$\mathscr{A}^{\mu} = \frac{1}{2} \int \mathrm{d}^{4} \xi \, \mathrm{e}^{\mathrm{i}k \cdot \xi} \langle PS | \bar{\psi}(0) \gamma^{\mu} \gamma_{5} \psi(\xi) | PS \rangle = \lambda_{N} A_{2} P^{\mu},$$

$$\mathscr{T}^{\mu\nu} = \frac{1}{2\mathrm{i}} \int \mathrm{d}^{4}\xi \,\mathrm{e}^{\mathrm{i}k\cdot\xi} \langle PS|\bar{\psi}(0)\sigma^{\mu\nu}\gamma_{5}\psi(\xi)|PS\rangle = A_{3}P^{[\mu}S_{\perp}^{\nu]},$$

and

$$\Phi(k,P,S) = \frac{1}{2} \{ A_1 \mathbb{P} + A_2 \lambda_N \gamma_5 \mathbb{P} + A_3 \mathbb{P} \gamma_5 \mathbb{S}_{\perp} \}$$

$$A_{1} = \frac{1}{2P^{+}} \operatorname{Tr}(\gamma^{+} \Phi), \qquad \lambda_{N} A_{2} = \frac{1}{2P^{+}} \operatorname{Tr}(\gamma^{+} \gamma_{5} \Phi), \qquad S_{\perp}^{i} A_{3} = \frac{1}{2P^{+}} \operatorname{Tr}(i\sigma^{i+} \gamma_{5} \Phi) = \frac{1}{2P^{+}} \operatorname{Tr}(\gamma^{+} \gamma^{i} \gamma_{5} \Phi), \\ \begin{pmatrix} f(x) \\ \Delta f(x) \\ \Delta_{T} f(x) \end{pmatrix} = \int \frac{d^{4}k}{(2\pi)^{4}} \begin{cases} A_{1}(k^{2}, k \cdot P) \\ A_{2}(k^{2}, k \cdot P) \\ A_{3}(k^{2}, k \cdot P) \end{cases} \delta\left(x - \frac{k^{+}}{P^{+}}\right) = \begin{cases} \int \frac{d\xi^{-}}{4\pi} e^{ixP^{+}\xi^{-}} \langle PS|\bar{\psi}(0)\gamma^{+}\psi(0, \xi^{-}, 0_{\perp})|PS\rangle, \\ \int \frac{d\xi^{-}}{4\pi} e^{ixP^{+}\xi^{-}} \langle PS|\bar{\psi}(0)\gamma^{+}\gamma_{5}\psi(0, \xi^{-}, 0_{\perp})|PS\rangle, \\ \int \frac{d\xi^{-}}{4\pi} e^{ixP^{+}\xi^{-}} \langle PS|\bar{\psi}(0)\gamma^{+}\gamma_{5}\psi(0, \xi^{-}, 0_{\perp})|PS\rangle \end{cases}$$

In the collinear approximation

$$k^{\mu} \approx x P^{\mu}, \ S^{\mu} \approx \lambda_N \frac{P^{\mu}}{M} + S^{\mu}_{\perp}$$

• To leading-power accuracy, only three terms are left

$$\mathscr{V}^{\mu} = \frac{1}{2} \int d^{4}\xi \, \mathrm{e}^{\mathrm{i}k \cdot \xi} \langle PS | \bar{\psi}(0) \gamma^{\mu} \psi(\xi) |$$

Quark density/unpolarized

$$\mathscr{A}^{\mu} = \frac{1}{2} \int \mathrm{d}^{4} \xi \, \mathrm{e}^{\mathrm{i}k \cdot \xi} \langle PS | \bar{\psi}(0) \gamma^{\mu} \gamma_{5} \psi(\xi) \rangle$$

and

$$\mathcal{T}^{\mu\nu} = \frac{1}{2i} \int d^{4}\xi \, e^{ik \cdot \xi} \langle PS | \bar{\psi}(0) \sigma^{\mu\nu} \gamma_{5} \psi \text{ longitudinally polarized}$$

$$A_{1} = \frac{1}{2P^{+}} \operatorname{Tr}(\gamma^{+} \Phi), \qquad \lambda_{N} A_{2} = \frac{1}{2P^{+}} \operatorname{Tr}(\gamma^{+} \gamma_{5} \Phi), \qquad \begin{array}{c} \operatorname{Transversity} \\ \operatorname{transversely polarized} & \operatorname{Tr}(\gamma^{+} \gamma^{i} \gamma_{5} \Phi). \\ \left(\begin{array}{c} f(x) \\ \Delta f(x) \\ \Delta f(x) \\ \Delta T f(x) \end{array} \right) = \int \frac{\mathrm{d}^{4}k}{(2\pi)^{4}} \begin{cases} A_{1}(k^{2}, k \cdot P) \\ A_{2}(k^{2}, k \cdot P) \\ A_{3}(k^{2}, k \cdot P) \end{cases} \delta\left(x - \frac{k^{+}}{P^{+}}\right) = \begin{cases} \int \frac{\mathrm{d}\xi^{-}}{4\pi} e^{\mathrm{i}xP^{+}\xi^{-}} \langle PS|\bar{\psi}(0)\gamma^{+}\psi(0,\xi^{-},0_{\perp})|PS\rangle, \\ \int \frac{\mathrm{d}\xi^{-}}{4\pi} e^{\mathrm{i}xP^{+}\xi^{-}} \langle PS|\bar{\psi}(0)\gamma^{+}\gamma_{5}\psi(0,\xi^{-},0_{\perp})|PS\rangle, \\ \int \frac{\mathrm{d}\xi^{-}}{4\pi} e^{\mathrm{i}xP^{+}\xi^{-}} \langle PS|\bar{\psi}(0)\gamma^{+}\gamma^{1}\gamma_{5}\psi(0,\xi^{-},0_{\perp})|PS\rangle \end{cases}$$

 4π

Global determination of PDFs from experimental data

Procedure: Iterate to find the best set of **{a_i}** for the input DPFs

Theory prediction from lattice QCD
Example:

$$q(x) = \int \frac{d\lambda}{4\pi} e^{ix\lambda} \langle P | \bar{\psi}(0)n \cdot \gamma L(0,\lambda n)\psi(\lambda n) | P \rangle \qquad (n^2 = 0)$$

• When reinterpreted in Feynman's parton picture

$$q(x) = \int \frac{d\lambda}{2\pi} e^{ix\lambda} \langle P = \infty | \psi^{\dagger}(z)\psi(0) | P = \infty \rangle, \qquad |P = \infty \rangle = U(\Lambda_{\infty}) | P = 0 \rangle$$

- The boost operator can be applied either to the static operator or to the external state, projecting out the same physics
- In practice, parton physics can be approximated by static correlations at large Lorentz boost (Large-Momentum Effective Theory) Ji, PRL 13' & SCPMA 14', Ji, Liu, Liu, JHZ, Zhao, RMP 21'

$$\tilde{q}(y, P^z) = N \int \frac{dz}{4\pi} e^{-iyzP^z} \langle P | \bar{\psi}(0) \gamma^0 L(0, z) \psi(z) | P \rangle$$

 $\tilde{q}(y, P^z) = C(y/x, \mu/xP^z) \otimes q(x, \mu) + \mathcal{O}(\Lambda_{QCD}^2/(yP^z)^2, \Lambda_{QCD}^2/((1-y)P^z)^2)$

Theory prediction from lattice QCD

Example: nucleon isovector (u-d) quark transversity PDF

Yao et al (LPC), 22'

 PDFs can be generalized to include more kinematic dependence. The generalized quantities play an important role in describing three-dim. structure of nucleons

Wigner Distributions

PDFs can be generalized to include more kinematic dependence.
 The generalized quantities play an important role in describing

The GPDs are given by non-forward matrix elements of nonlocal parton correlators, e.g.

$$F(x,\xi,t) = \frac{1}{2\bar{P}^{+}} \int \frac{d\lambda}{2\pi} e^{-ix\lambda} \langle P' | O_{\gamma^{+}}(\lambda n) | P \rangle = \frac{1}{2\bar{P}^{+}} \bar{u}(P') \Big[H(x,\xi,t)\gamma^{+} + E(x,\xi,t) \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} \Big] u(P)$$

$$O_{\gamma^{+}}(\lambda n) = \bar{\psi}(\frac{\lambda n}{2})\gamma^{+}W(\frac{\lambda n}{2}, -\frac{\lambda n}{2})\psi(-\frac{\lambda n}{2}), \quad \bar{P} = \frac{P'+P}{2}, \quad \Delta = P'-P, \quad t = \Delta^{2}, \quad \xi = -\frac{\Delta^{+}}{2\bar{P}^{+}}$$

 Access through exclusive processes like deeply virtual Compton scattering and meson production

Factorization formula

$$\mathcal{H}\left(\xi, t, Q^2\right) = \int_{-1}^{1} \frac{\mathrm{d}x}{\xi} \sum_{a=g,u,d,\dots} C^a\left(\frac{x}{\xi}, \frac{Q^2}{\mu_F^2}, \alpha_S\left(\mu_F^2\right)\right) H^a\left(x, \xi, t, \mu_F^2\right)$$

 Various models for GPD parametrization have been used for extraction from experimental data

Form factors from nucleon GPDs

$$\langle N(p_f) | V^+_{\mu}(x) | N(p_i) \rangle =$$

$$\bar{u}^N \left[\gamma_{\mu} F_1(q^2) + i \sigma_{\mu\nu} \frac{q^{\nu}}{2M_N} F_2(q^2) \right] u_N e^{iq \cdot x}$$

$$\langle N(p_f) | A^+_{\mu}(x) | N(p_i) \rangle =$$

$$\bar{u}_N \left[\gamma_{\mu} \gamma_5 G_A(q^2) + i q_{\mu} \gamma_5 G_P(q^2) \right] u_N e^{iq \cdot x}$$

Constantinou, JHZ et al, Prog. Part. Nucl. Phys. 21'

 Apart from the form factors, the entire distribution can also be accessed from suitable spatial correlations on lattice

$$N(P_z - \vec{q}/2)$$

$$C_{\Gamma}^{3\text{pt}}(\overrightarrow{p}_{i}, \overrightarrow{p}_{f}, t, t_{\text{sep}})$$

= $|A_{0}|^{2} \langle 0 | O_{\Gamma} | 0 \rangle e^{-E_{0}t_{\text{sep}}} + |A_{1}|^{2} \langle 1 | O_{\Gamma} | 1 \rangle e^{-E_{1}t_{\text{sep}}}$
+ $A_{1}A_{0}^{*} \langle 1 | O_{\Gamma} | 0 \rangle e^{-E_{1}(t_{\text{sep}}-t)} e^{-E_{0}t} + A_{0}A_{1}^{*} \langle 0 | O_{\Gamma} | 1 \rangle e^{-E_{0}(t_{\text{sep}}-t)} e^{-E_{1}t}$

• via the factorization (after Fourier transform)

$$\tilde{H}_{u-d}(x,\xi,t,P^z,\tilde{\mu}) = \int_{-1}^1 \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\xi}{y},\frac{\tilde{\mu}}{\mu},\frac{yP^z}{\mu}\right) H_{u-d}(y,\xi,t,\mu) + h \cdot t \,.$$

Nucleon GPDs (unpolarized)

- TMDs are relevant for multi-scale processes where low transverse momentum transfer is important
- Example: Drell-Yan process
- If transverse momentum q_T of the lepton pair is not measured

$$h_{a}$$

$$q$$

$$q$$

$$\gamma^{*}$$

$$l$$

$$r$$

$$\frac{d\sigma}{dQ^2} = \sum_{i,j} \int_0^1 d\xi_a d\xi_b f_{i/P_a}(\xi_a) f_{j/P_b}(\xi_b) \frac{d\hat{\sigma}_{ij}(\xi_a, \xi_b)}{dQ^2} \times \left[1 + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{Q}\right) \right] \qquad Q = \sqrt{q^2}$$

• If $\mathbf{q}_{\mathbf{T}}$ is measured but $|\mathbf{q}_T| \sim Q \gg \Lambda_{\text{QCD}}$

$$q_{T} \sim Q \gg \Lambda_{\text{QCD}}:$$

$$\frac{d\sigma}{dQ^{2}d^{2}\mathbf{q_{T}}} = \sum_{i,j} \int_{0}^{1} d\xi_{a} d\xi_{b} f_{i/P_{a}}(\xi_{a}) f_{j/P_{b}}(\xi_{b}) \frac{d\hat{\sigma}_{ij}(\xi_{a},\xi_{b})}{dQ^{2}d^{2}\mathbf{q_{T}}} \times \left[1 + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{Q},\frac{\Lambda_{\text{QCD}}}{q_{T}}\right)\right]$$

• If $\mathbf{q}_{\mathbf{T}}$ is measured but $|\mathbf{q}_T| \ll Q$ $q_T \ll Q$:

$$\frac{d\sigma}{dQ^2 d^2 \mathbf{q_T}} = \sum_{i,j} H_{ij}(Q) \int_0^1 d\xi_a d\xi_b \int d^2 \mathbf{b_T} e^{i\mathbf{b_T} \cdot \mathbf{q_T}} \times f_{i/P}(\xi_a, \mathbf{b_T}) f_{j/P}(\xi_b, \mathbf{b_T}) \times \left[1 + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{Q}, \frac{q_T}{Q}\right) \right]_{36}$$

• We need to take into account the transverse momentum of quarks $k^{\mu} \approx xP^{\mu} + k_{\perp}^{\mu}, S^{\mu} \approx \lambda_{N} \frac{P^{\mu}}{M} + S_{\perp}^{\mu}$

To leading-power accuracy, we have

$$\begin{aligned} \mathscr{V}^{\mu} &= A_1 P^{\mu}, \\ \mathscr{A}^{\mu} &= \lambda_N A_2 P^{\mu} + \frac{1}{M} \tilde{A}_1 \mathbf{k}_{\perp} \cdot \mathbf{S}_{\perp} P^{\mu}, \\ \mathscr{T}^{\mu\nu} &= A_3 P^{[\mu} S_{\perp}^{\nu]} + \frac{\lambda_N}{M} \tilde{A}_2 P^{[\mu} k_{\perp}^{\nu]} + \frac{1}{M^2} \tilde{A}_3 \mathbf{k}_{\perp} \cdot \mathbf{S}_{\perp} P^{[\mu} k_{\perp}^{\nu]}, \end{aligned}$$

• We need to take into account the transverse momentum of quarks $k^{\mu} \approx xP^{\mu} + k_{\perp}^{\mu}, S^{\mu} \approx \lambda_{N} \frac{P^{\mu}}{M} + S_{\perp}^{\mu}$

• To leading-power accuracy, we have if time-reversal is relaxed

$$\mathcal{V}^{\mu} = A_{1}P^{\mu}, + \frac{1}{M}A_{1}^{\prime}\epsilon^{\mu\nu\rho\sigma}P_{\nu}k_{\perp\rho}S_{\perp\sigma}$$
$$\mathcal{A}^{\mu} = \lambda_{N}A_{2}P^{\mu} + \frac{1}{M}\tilde{A}_{1}\mathbf{k}_{\perp} \cdot \mathbf{S}_{\perp}P^{\mu},$$
$$\mathcal{T}^{\mu\nu} = A_{3}P^{[\mu}S_{\perp}^{\nu]} + \frac{\lambda_{N}}{M}\tilde{A}_{2}P^{[\mu}k_{\perp}^{\nu]} + \frac{1}{M^{2}}\tilde{A}_{3}\mathbf{k}_{\perp} \cdot \mathbf{S}_{\perp}P^{[\mu}k_{\perp}^{\nu]}, + \frac{1}{M}A_{2}^{\prime}\epsilon^{\mu\nu\rho\sigma}P_{\rho}k_{\perp\sigma}$$

And

$$\Phi(k,P,S) = \frac{1}{2} \left\{ A_1 \not\!\!P + A_2 \lambda_N \gamma_5 \not\!\!P + A_3 \not\!\!P \gamma_5 \not\!\!S_\perp + \frac{1}{M} \tilde{A}_1 \not\!\!k_\perp \cdot S_\perp \gamma_5 \not\!\!P + \frac{1}{M} A_1' \epsilon^{\mu\nu\rho\sigma} \gamma_\mu P_\nu k_{\perp\rho} S_{\perp\sigma} \right.$$

$$\frac{i}{2M} A_2' \epsilon^{\mu\nu\rho\sigma} P_\rho k_{\perp\sigma} \sigma_{\mu\nu} \gamma_5 + \tilde{A}_2 \frac{\lambda_N}{M} \not\!\!P \gamma_5 \not\!\!k_\perp + \frac{1}{M^2} \tilde{A}_3 \not\!\!k_\perp \cdot S_\perp \not\!\!P \gamma_5 \not\!\!k_\perp \right\}.$$

Leading-power projection is again given by

$$\frac{1}{2P^+} \operatorname{Tr}(\gamma^+ \Phi), \qquad \frac{1}{2P^+} \operatorname{Tr}(\gamma^+ \gamma_5 \Phi), \qquad \frac{1}{2P^+} \operatorname{Tr}(i\sigma^{i+} \gamma_5 \Phi)$$

• We need to take into account the transverse momentum of quarks $k^{\mu} \approx xP^{\mu} + k_{\perp}^{\mu}, S^{\mu} \approx \lambda_{N} \frac{P^{\mu}}{M} + S_{\perp}^{\mu}$

• To leading-power accuracy, we have if time-reversal is relaxed

$$\mathscr{V}^{\mu} = A_{1}P^{\mu}, + \frac{1}{M}A_{1}^{\prime}\epsilon^{\mu\nu\rho\sigma}P_{\nu}k_{\perp\rho}S_{\perp\sigma}$$

$$\mathscr{A}^{\mu} = \lambda_{N}A_{2}P^{\mu} + \frac{1}{M}\tilde{A}_{1}\mathbf{k}_{\perp} \cdot \mathbf{S}_{\perp}P^{\mu},$$

$$\mathscr{T}^{\mu\nu} = A_{3}P^{[\mu}S_{\perp}^{\nu]} + \frac{\lambda_{N}}{M}\tilde{A}_{2}P^{[\mu}k_{\perp}^{\nu]} + \frac{1}{M^{2}}\tilde{A}_{3}\mathbf{k}_{\perp} \cdot \mathbf{S}_{\perp}P^{[\mu}k_{\perp}^{\nu]}, + \frac{1}{M}A_{2}^{\prime}\epsilon^{\mu\nu\rho\sigma}P_{\rho}k_{\perp\sigma}$$
And
$$\Phi(k, P, S) = \left\{ A_{1}P + A_{2}\lambda_{N}\gamma_{5}P + A_{3}P\gamma_{5}S_{\perp} + \frac{1}{M}\tilde{A}_{1}\mathbf{k}_{\perp} \cdot \mathbf{S}_{\perp}\gamma_{5}P + \frac{1}{M}A_{1}^{\prime}\epsilon^{\mu\nu\rho\sigma}\gamma_{\mu}P_{\nu}k_{\perp\rho}S_{\perp\sigma} \right\}$$

$$A_{2}^{\prime}\epsilon^{\mu\nu\rho\sigma}P_{\rho}k_{\perp\sigma}\sigma_{\mu\nu}\gamma_{5} + \tilde{A}_{2}\frac{\lambda_{N}}{M}P\gamma_{5}k_{\perp} + \frac{1}{M^{2}}\tilde{A}_{3}\mathbf{k}_{\perp} \cdot \mathbf{S}_{\perp}P\gamma_{5}k_{\perp} \right\}.$$

Leading-power projection is again given by

$$\frac{1}{2P^+} \operatorname{Tr}(\gamma^+ \Phi), \qquad \frac{1}{2P^+} \operatorname{Tr}(\gamma^+ \gamma_5 \Phi), \qquad \frac{1}{2P^+} \operatorname{Tr}(i\sigma^{i+} \gamma_5 \Phi)$$

• We need to take into account the transverse momentum of quarks $k^{\mu} \approx xP^{\mu} + k_{\perp}^{\mu}, S^{\mu} \approx \lambda_{N} \frac{P^{\mu}}{M} + S_{\perp}^{\mu}$

• To leading-power accuracy, we have if time-reversal is relaxed

$$\mathscr{V}^{\mu} = A_{1}P^{\mu}, + \frac{1}{M}A_{1}^{\prime}\epsilon^{\mu\nu\rho\sigma}P_{\nu}k_{\perp\rho}S_{\perp\sigma}$$

$$\mathscr{A}^{\mu} = \lambda_{N}A_{2}P^{\mu} + \frac{1}{M}\tilde{A}_{1}k_{\perp} \cdot S_{\perp}P^{\mu},$$

$$\mathscr{T}^{\mu\nu} = A_{3}P^{[\mu}S_{\perp}^{\nu]} + \frac{\lambda_{N}}{M}\tilde{A}_{2}P^{[\mu}k_{\perp}^{\nu]} + \frac{1}{M^{2}}\tilde{A}_{3}k_{\perp} \cdot S_{\perp}P^{[\mu}k_{\perp}^{\nu]}, + \frac{1}{M}A_{2}^{\prime}\epsilon^{\mu\nu\rho\sigma}P_{\rho}k_{\perp\sigma}$$

$$\bullet \text{And}$$

$$\Phi(k, P, S) = \frac{1}{2}\left\{A_{1}\mathcal{P} + A_{2}\lambda_{N}\gamma_{5}\mathcal{P} + A_{3}\mathcal{P}\gamma_{5}\mathcal{S} + \frac{1}{M}\tilde{A}_{1}k_{\perp} \cdot S_{\perp}\gamma_{5}\mathcal{P} + \frac{1}{M}A_{1}^{\prime}\epsilon^{\mu\nu\rho\sigma}\gamma_{\mu}P_{\nu}k_{\perp\rho}S_{\perp\sigma}$$

$$+ \frac{i}{2M}A_{2}^{\prime}\epsilon^{\mu\nu\rho\sigma}P_{\rho}k_{\perp\sigma}\sigma_{\mu\nu}\gamma_{5} + \tilde{A}_{2}\frac{\lambda_{N}}{M}\mathcal{P}\gamma_{5}k_{\perp} + \frac{1}{M^{2}}\tilde{A}_{3}k_{\perp} \cdot S_{\perp}\mathcal{P}\gamma_{5}k_{\perp}\right\}.$$

• Leading-power projection is again given by

$$\operatorname{Tr}(\gamma^+\Phi), \qquad \frac{1}{2P^+}\operatorname{Tr}(\gamma^+\gamma_5\Phi), \qquad \frac{1}{2P^+}\operatorname{Tr}(i\sigma^{i+}\gamma_5\Phi)$$

• We need to take into account the transverse momentum of quarks $k^{\mu} \approx xP^{\mu} + k_{\perp}^{\mu}, S^{\mu} \approx \lambda_{N} \frac{P^{\mu}}{M} + S_{\perp}^{\mu}$

• To leading-power accuracy, we have if time-reversal is relaxed

$$\mathcal{V}^{\mu} = A_{1}P^{\mu}, + \frac{1}{M}A_{1}^{\prime}\epsilon^{\mu\nu\rho\sigma}P_{\nu}k_{\perp\rho}S_{\perp\sigma}$$

$$\mathcal{A}^{\mu} = \lambda_{N}A_{2}P^{\mu} + \frac{1}{M}\tilde{A}_{1}\mathbf{k}_{\perp} \cdot S_{\perp}P^{\mu},$$

$$\mathcal{T}^{\mu\nu} = A_{3}P^{[\mu}S_{\perp}^{\nu]} + \frac{\lambda_{N}}{M}\tilde{A}_{2}P^{[\mu}k_{\perp}^{\nu]} + \frac{1}{M^{2}}\tilde{A}_{3}\mathbf{k}_{\perp} \cdot S_{\perp}P^{[\mu}k_{\perp}^{\nu]}, + \frac{1}{M}A_{2}^{\prime}\epsilon^{\mu\nu\rho\sigma}P_{\rho}k_{\perp\sigma}$$
And
$$\Phi(k, P, S) = \frac{1}{2}\left\{A_{1}\mathcal{P} + A_{2}\lambda_{N}\gamma_{5}\mathcal{P} + (A_{3}\mathcal{P}\gamma_{5}S_{\perp}) + \frac{1}{M}\tilde{A}_{1}\mathbf{k}_{\perp} \cdot S_{\perp}\gamma_{5}\mathcal{P} + \frac{1}{M}A_{1}^{\prime}\epsilon^{\mu\nu\rho\sigma}\gamma_{\mu}P_{\nu}k_{\perp\rho}S_{\perp\sigma}$$

$$A_{2}^{\prime}\epsilon^{\mu\nu\rho\sigma}P_{\rho}k_{\perp\sigma}\sigma_{\mu\nu}\gamma_{\delta} + \tilde{A}_{2}\frac{\lambda_{N}}{M}\mathcal{P}\gamma_{5}k_{\perp}\right) \left(\frac{1}{M^{2}}\tilde{A}_{3}\mathbf{k}_{\perp} \cdot S_{\perp}\mathcal{P}\gamma_{5}k_{\perp}\right).$$
Leading-power projection is again given by
$$\frac{1}{2P^{+}}\mathrm{Tr}(\gamma^{+}\Phi), \qquad \frac{1}{2P^{+}}\mathrm{Tr}(\gamma^{+}\gamma_{5}\Phi), \qquad \left(\frac{1}{2P^{+}}\mathrm{Tr}(i\sigma^{i+}\gamma_{5}\Phi)\right)$$

These projections define the eight leading-twist quark TMDPDFs
Introduce

$$\Phi^{[\Gamma]} \equiv \frac{1}{2} \int \frac{\mathrm{d}k^+ \,\mathrm{d}k^-}{(2\pi)^4} \operatorname{Tr}(\Gamma \Phi) \delta(k^+ - xP^+)$$
$$= \int \frac{\mathrm{d}\xi^- \,\mathrm{d}^2 \boldsymbol{\xi}_\perp}{2(2\pi)^3} \,\mathrm{e}^{\mathrm{i}(xP^+ \boldsymbol{\xi}^- - \boldsymbol{k}_\perp \cdot \boldsymbol{\xi}_\perp)} \langle PS | \bar{\psi}(0) \Gamma \psi(0, \boldsymbol{\xi}^-, \boldsymbol{\xi}_\perp) | PS \rangle$$

Then

$$\begin{split} \Phi^{[\gamma^{+}]} &= f_{1}(x, \mathbf{k}_{\perp}^{2}) - \frac{\epsilon_{\perp}^{ij} k_{\perp i} S_{\perp j}}{M} f_{1T}^{\perp}(x, \mathbf{k}_{\perp}^{2}) \\ \Phi^{[\gamma^{+}\gamma_{5}]} &= \lambda_{N} g_{1L}(x, \mathbf{k}_{\perp}^{2}) - \frac{\mathbf{k}_{\perp} \cdot \mathbf{S}_{\perp}}{M} g_{1T}^{\perp}(x, \mathbf{k}_{\perp}^{2}) \\ \Phi^{[i\sigma^{i+}\gamma_{5}]} &= S_{\perp}^{i} h_{1}(x, \mathbf{k}_{\perp}^{2}) + \frac{\lambda_{N}}{M} k_{\perp}^{i} h_{1L}^{\perp}(x, \mathbf{k}_{\perp}^{2}) + \frac{1}{M^{2}} (\frac{1}{2} g_{\perp}^{ij} \mathbf{k}_{\perp}^{2} - k_{\perp}^{i} k_{\perp}^{j}) S_{\perp j} h_{1T}^{\perp}(x, \mathbf{k}_{\perp}^{2}) - \frac{\epsilon_{\perp}^{ij} k_{\perp j}}{M} h_{1}^{\perp}(x, \mathbf{k}_{\perp}^{2}) \end{split}$$

- The leading-twist TMDPDFs can be interpreted as number densities
- When FT to coordinate space, the correlations exhibit certain symmetries

These projections define the eight leading-twist quark TMDPDFs
Introduce

$$\Phi^{[\Gamma]} \equiv \frac{1}{2} \int \frac{\mathrm{d}k^+ \,\mathrm{d}k^-}{(2\pi)^4} \operatorname{Tr}(\Gamma \Phi) \delta(k^+ - xP^+)$$
$$= \int \frac{\mathrm{d}\xi^- \,\mathrm{d}^2 \boldsymbol{\xi}_\perp}{2(2\pi)^3} \,\mathrm{e}^{\mathrm{i}(xP^+ \boldsymbol{\xi}^- - \boldsymbol{k}_\perp \cdot \boldsymbol{\xi}_\perp)} \langle PS | \bar{\psi}(0) \Gamma \psi(0, \boldsymbol{\xi}^-, \boldsymbol{\xi}_\perp) | PS \rangle$$

Then

$$\begin{split} \Phi^{[\gamma^{+}]} &= f_{1}(x, \mathbf{k}_{\perp}^{2}) - \frac{\epsilon_{\perp}^{ij} k_{\perp i} S_{\perp j}}{M} f_{1T}^{\perp}(x, \mathbf{k}_{\perp}^{2}) \\ \Phi^{[\gamma^{+}\gamma_{5}]} &= \lambda_{N} g_{1L}(x, \mathbf{k}_{\perp}^{2}) - \frac{\mathbf{k}_{\perp} \cdot \mathbf{S}_{\perp}}{M} g_{1T}^{\perp}(x, \mathbf{k}_{\perp}^{2}) \\ \Phi^{[i\sigma^{i+}\gamma_{5}]} &= S_{\perp}^{i} h_{1}(x, \mathbf{k}_{\perp}^{2}) + \frac{\lambda_{N}}{M} k_{\perp}^{i} h_{1L}^{\perp}(x, \mathbf{k}_{\perp}^{2}) + \frac{1}{M^{2}} (\frac{1}{2} g_{\perp}^{ij} \mathbf{k}_{\perp}^{2} - k_{\perp}^{i} k_{\perp}^{j}) S_{\perp j} h_{1T}^{\perp}(x, \mathbf{k}_{\perp}^{2}) - \frac{\epsilon_{\perp}^{ij} k_{\perp j}}{M} h_{1}^{\perp}(x, \mathbf{k}_{\perp}^{2}) \end{split}$$

 Again, gauge links are needed to ensure gauge invariance. Now they are staple-shaped

- 1) f_1 : unpol. TMDPDF
- 2) g_{1L} : helicity TMDPDF
- 3) h_1 : transversity TMDPDF
- 4) f_{1T}^{\perp} : Sivers function (T-odd)
- 5) h_1^{\perp} : Boer-Mulders function (T-odd)
- 6) g_{1T}^{\perp} : worm-gear T/transversal helicity TMDPDF
- 7) h_{1L}^{\perp} : worm-gear L/longitudinal transversity TMDPDF
- 8) h_{1T}^{\perp} : pretzelosity TMDPDF
 - nucleon with transverse or longitudinal spin

parton with transverse or longitudinal spin

parton transverse momentum

Global analyses also exist for TMDs

Also lattice calculations

Constantinou, JHZ et al, Prog. Part. Nucl. Phys. 21'

He et al, LPC 22'

Multiparton distributions

- Relevant for multiparton scattering processes
- Related to joint probability of finding two or more partons carrying momentum fractions x_i at given relative transverse separation

 $z_2/2$

• Example: double parton distributions

$$\begin{aligned} f_{q_1q_2}(x_1, x_2, y^2) &= & (1) \\ 2P^+ \int dy^- \int \frac{dz_1^-}{2\pi} \frac{dz_2^-}{2\pi} e^{i(x_1z_1^- + x_2z_2^-)P^+} h_0(y, z_1, z_2, P) \\ h_0(y, z_1, z_2, P) &= \langle P|O_{q_1}(y, z_1)O_{q_2}(0, z_2)|P \rangle, \\ O_q(y, z) &= \bar{\psi}_q(y - \frac{z}{2}) \frac{\gamma^+}{2} W(y - \frac{z}{2}; y + \frac{z}{2}) \psi_q(y + \frac{z}{2}), \end{aligned}$$

$$\begin{aligned} \text{JHZ}, 23' \end{aligned}$$

Factorization

 $\tilde{f}(x_i, \mu_i, y^2) = C_1(x_1, x_1', \mu_1^2 / (x_1' P^z)^2) \otimes C_2(x_2 / x_2', \mu_2^2 / x_2' P^z)^2) \otimes f(x_i', \mu_i, y^2) + \dots$

Summary

- Understanding the partonic structure of hadrons is an important goal of hadron physics, and is also relevant to collider phenomenology
- Lattice QCD can now be used to access dynamical properties of hadrons, and plays an important complementary role to phenomenological determinations of partonic observables
 - Form factors
 - PDFs, GPDs, TMDs...
 - Multiparton distributions
- Both analytical and numerical inputs are needed to realize such calculations
- A lot more to be explored...