第六届格点量子色动力学夏令营

强子的质量与自旋:

从格点QCD看强子结构

ICTP-AP International Centre for Theoretical Physics Asia-Pacific 国际理论物理中心-亚太地区

。2019年1月11-13日

o 主要组织者: 季向东

- o 内容
- 数值积分与统计分析基础
- 作为格点场论的1维谐振子
- 1+1维标量场论的情形
- o 经验
- 如果和出题人的电波对不上,填空题 也非常困难
- 3天时间只够完成前两项内容

基础要求:

量子力学(一学期)、分析力学、C++、自备笔记型电脑 (有Linux使用经验者尤佳)。

课程目标:

运 用 超 级 计 算 机 解 决 物 理 问 题 是 当 今 研 究 前 沿 的 一 个 重 要 分 支, 例 如 应 用 于 基 本 量 子 场 论 、 凝 聚 态 物 理 及 天 文 模 拟 。 此 次 训 练 营 让 同 学 们 能 实 机 演 练 利 用 数 值 方 法 求 解 简 单 量 子 场 论 问 题, 但 不 需 要 学 过 量 子 场 论 。

课程内容:

平行运算、蒙地卡罗演算法、马可夫链、路径积分、 量子力学与简单场论模拟。完成课程的同学将颁发证书。

报名方式:

请在https://indico.leeinst.sjtu.edu.cn/event/51/注册报名, 报名截止日期为12月31日。 外地本科生免食宿费用并在财务规定内报销火车票。

主办人:

李政道研究所 季向东 上海交通大学粒子与核物理研究所 王伟 中科院理论所 杨一玻

主办单位: 李政道研究所、上海交通大学粒子所

2019.7.22-7.26

杰础要求:

本科生学习过量子力学(一学期)、分析力学, 具备C++编程基础, 需自备笔记型电脑 (有Linux使用经验者尤佳)。

裸斑目标:

运用超级计算机解决物理问题是当今研究前沿 的一个重要分支,例如应用于基本量子场论、 凝聚态物理及天文模拟。此次训练营让同学们 能实机演练利用数值方法求解简单量子场论问题, 但不需要学过量子场论。

裸般内容:

路径积分、蒙地卡罗算法、马可夫链、 量子力学与简单场论模拟。完成课程的同学 将颁发证书。 请在https://indico. leeinst. sjtu. edu. cn/event/59 注册,报名日期为2019年3月31日起至5月31日止。 报名时须同时提交测验答案,请提前作答。(招收数名 研究生,毕业课题与数值计算相关,帮忙训练营的活动事务,路费 与住宿自行负责)

外地本科生免食宿费用并在财务规定内报销火车票。

王办人:

李政道研究所 季向东 上海交通大学粒子与核物理研究所 王伟 中国科学院理论物理研究所 杨一玻 中国科学院近代物理研究所 刘柳明 李政道研究所 刘于圣

主办单位:李政道研究所、 上海交通大学粒子与核物理研究所、 中国科学院理论物理研究所

。2019年7月22-26日

- 主要组织者: 刘于圣
- 内容
- 数值积分与统计分析基础
- 作为格点场论的1维谐振子
- 1+1维标量场论的情形
- o 经验
- 对营员进行分组,并提供专人指导,可
 以有效地提高学习效率
- 5天时间在理想状态下可以完成所有内容

2020.8.17-8.22

基础要求:

本次训练营为进阶班,要求本科生或低年级研究生 学习过量子力学(至少一学期)、分析力学,具备 C++程序设计基础,需自备笔记本电脑(有Linux使用 经验、粒子物理与量子场论初步概念尤佳)。

课程目标:

运用超级计算机解决物理问题是当今研究前沿的 一个重要分支,例如应用于基本量子场论、凝聚态 物理及天文模拟。此次训练营让同学们能实机演练 数值方法求解简单量子场论问题,及其在粒子物理 强相互作用问题中的简单应用。

课程内容:

路径积分、蒙特卡罗算法、马可夫链、量子力学 与粒子物理中的量子场论模拟。完成课程的同学 将颁发证书。

李政道研究听

Tsung-Dao Lee Institute

请在https://indico-tdli.sjtu.edu.cn/event/179/ 注册报名,报名截止日期为2020年6月30日。报名时 请扼要描述选择该训练营理由,尤其是计算机与量子 物理基础。为了保证训练营的教学效果,我们可能会 对报名人员进行初选。

主办人:

桂龙成	湖南师范大学
季向东	李政道研究所
刘柳明	中国科学院近代物理研究所
孙鹏	南京师范大学
王伟	上海交通大学粒子与核物理研究所
熊小努	中南大学
杨一玻	中国科学院理论物理研究所
张建辉	北京师范大学

主办单位:李政道研究所、 上海交通大学粒子与核物理研究所

。2020年8月17-22日

o 内容

- 作为格点场论的1维谐振子
- LQCD中的两点函数与强子质量
- 4维SU(3)纯规范场的产生
- 4维SU(3)纯规范场的静态势
- o 经验
- 在线上活动达到理想效果需要更多努力
- 课程内容激发了部分营员彻夜奋战克服
 难题的豪情

2021.8.1-8.6

基础要求

要求本科生学习过分稀力学、量子力学初步, 具备Python或者C++程序设计基础,需自备笔 记本电脑(如有Linux使用经验、粒子物理与量子 场论初步概念更佳)。

课报目标

运用超级计算机解决物理问题是当今研究前沿 的一个重要分支,例如应用于基本量子场论、 凝聚态物理及天文模拟。此次训练营让同学们 能实机演练利用数值方法求解简单量子场论问题, 例如粒子物理中强相互作用问题。

课程内容

路径积分、蒙地卡罗算法、马可夫链、 量子力学与简单场论模拟。完成课程的同学 将颁发证书。

۲

TDLI

请在https://indico-tdli.sjtu.edu.cn/event/496/ 注册报名, 摇名截止日期为2021年6月30日。报名时请 扼要描述选择该训练营理由, 尤其是计算机与量子物理 基础。为了保证训练营的教学效果, 我们可能会对报名 人员进行初选。

主办人

Ð

杜龙成 湖南师范大学 李向东 李政道研究所 刘柳明 中国科学院近代物理研究所 孙鹛 南京师范大学 王伟 上海交通大学粒子与核物理研究所 熊小努 中南大学 杨一玻 中国科学院理论物理研究所 张建辉 北京师范大学

主办单位: 李政道研究所、 上海交通大学粒子与核物理研究所、 国科大杭州高等研究院 。2021年8月1-6日

o 内容

- 数值积分与统计分析基础
- 作为格点场论的1维谐振子
- 1+1维U(1)规范场论及电子偶素计算
- o 经验
- 疫情期间进行线下活动具有很大不确定性
- 1+1维规范场论是很好的教学素
 材,除了程序要从头写

。2021年8月22-26日

o 内容

- 数值积分与统计分析基础
- LQCD中的两点函数与强子质量
- LQCD中的三点函数与强子结构
- LQCD组态产生简介
- o 经验
- 啥时候能办一次该下啊……

第五届数值量子场论训练营

课程目标: 运用超级计算机解决物理问题是当今研究前 沿的一个重要分支,在量子场论、粒子物理、凝聚态物理 及天文模拟中均有应用。此次训练营让学员们能实机演练 利用格点量子色动力学 (LQCD) 的数值方法求解强子谱 和中子β衰变宽度等问题。

课程内容: 格点量子场论基础、路径积分与蒙特卡罗算法、以及使用Chroma+QUDA套件基于国产自主LQCD组态进行含有u/d/s/c夸克的强子质量和跃迁矩阵元的计算和数据分析。

基础要求: 本次训练营为进阶班,主要面向高能物理背景的研究生、博士后与研究人员,也欢迎高年级本科生参加。需要具备C++程序设计基础,并自备电脑(有Linux使用经验、粒子物理与量子场论初步概念尤佳)。

报名方式: 请在<u>https://indico.itp.ac.cn/event/132/</u>注册 报名,报名截止日期为2022年8月7日。为了保证训练营的 教学效果,报名时请扼要描述研究方向,以及计算机与量 子物理方面的基础。我们可能会据此对报名人员进行初选。

Lattice Parton Collaboration

主办单位:

- 北京航空航天大学
- 北京师范大学
- 湖南师范大学
- 华南师范大学
- 上海交通大学
- 中国科学院近代物理研究所
- 中国科学院理论物理研究所
- 中南大学

微扰量子色动力学

杨-米尔斯存在性与质量间隙难题:

○ 对任意紧致、单的规范群,四维欧几里得空间中的量子杨→米尔斯理论存在一个正的质量间隙。 o 这一间隙对于量子色动力学,就是夸克质量趋于0时的质子质量。

微扰格点量子色动力学

如果认为世界定义在离散的格子之上,也可以消除场 论中相互作用的无穷大,可惜不是一般地难算

$$G_{\mu\nu}(k) = \frac{1}{k^4} \left(\alpha k_{\mu} k_{\mu} + (g_{\mu\nu} k^2 - k_{\mu} k_{\mu}) \right) - \frac{1}{k_{\mu\nu}} \frac{k_{\mu\nu} k_{\mu\nu}}{k_{\mu\nu}}$$

可以算到 $O(g^8)$ 以上

High Energy Physics – Experiment (hep-ex new, recent, search) High Energy Physics – Lattice (hep-lat new, recent, search) High Energy Physics – Phenomenology (hep-ph new, recent, search) High Energy Physics – Theory (hep-th new, recent, search)

高能物理中和实验、唯象与理论并列的四个方向之一

$$G_{\mu
u}(k) = rac{1}{(\widehat{k}^2)^2} igg(lpha \widehat{k}_\mu \widehat{k}_
u + \sum_\sigma (\widehat{k}_\sigma \delta_{\mu
u} - \widehat{k}_
u \delta_{\mu\sigma}) \widehat{k}_\sigma A_{\sigma
u}(k) igg),$$

with

 $A_{\mu
u}(k) \;\;=\;\; A_{
u\mu}(k) = (1-\delta_{\mu
u})\,\Delta(k)^{-1} \left[(\widehat{k}^2)^2 - c_1 \widehat{k}^2 igg(2\sum_
ho \widehat{k}^4_
ho + \widehat{k}^2 \sum_{
ho
eq \mu,
u} \widehat{k}^2_
ho
ight)$ $+c_1^2 \bigg(\Big(\sum_{
ho} \widehat{k}^4_{
ho}\Big)^2 + \widehat{k}^2 \sum_{
ho} \widehat{k}^4_{
ho} \sum_{ au
eq \mu,
u} \widehat{k}^2_{ au} + (\widehat{k}^2)^2 \prod_{
ho
eq \mu,
u} \widehat{k}^2_{
ho} \bigg) \bigg],$

$$\begin{split} \Delta(k) &= \Big(\widehat{k}^2 - c_1 \sum_{\rho} \widehat{k}^4_{\rho} \Big) \bigg[\widehat{k}^2 - c_1 \bigg((\widehat{k}^2)^2 + \sum_{\tau} \widehat{k}^4_{\tau} \bigg) + \frac{1}{2} c_1^2 \bigg((\widehat{k}^2)^3 + 2 \sum_{\tau} \widehat{k}^6_{\tau} - \widehat{k}^2 \sum_{\tau} \widehat{k}^4_{\tau} \bigg) \\ &- 4 c_1^3 \sum_{\rho} \widehat{k}^4_{\rho} \sum_{\tau \neq \rho} \widehat{k}^2_{\tau}. \end{split}$$

算到 $\mathcal{O}(g^4)$ 都非常困难

场论到 场论

where

漱微扰格点量子色动力学

......但是也不一定非要逐阶用手算

- 格点量子色动力学是目前唯一能精确 描述质子半径尺度的强相互作用性质 的量子规范场论框架
- 结合巧妙的算法和超级计算机的算 力,可以精确计算强子的各种性质。

可以算到 $O(g^8)$ 以上

BMWc, Science 347:1452,2015; 1406.4088

质子与中子的质量差

BMWc, Nature 593:7857,2021; 2002.12347

格点量子色动力学基础

强子自旋

 μ

格点正规化

Lattice

$$\left(\phi(x+\hat{n}_{\mu})+\phi(x-\hat{n}_{\mu})\right)+(m^{2}a^{2}-2)\phi(x)=0$$

$$S_L = \frac{1}{4\sum_{\mu} \operatorname{Sin}^2(\frac{ap_{\mu}}{2})/a^2 + m^2}$$
$$\int_{-\pi/a}^{\pi/a} \mathrm{d}^4 p$$

The divergence has been regularized into the $1/a^n$ and log(a) terms

连续理论里面的QCD作用量有如下形式: $\bar{\psi}(\gamma_{\mu}(\partial_{\mu} - igA_{\mu}) - m)\psi + F_{\mu\nu}F_{\mu\nu}, \qquad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig[A_{\mu}, A_{\nu}]$

Wilson引入的格点正规化把规范场的基本变量从规范势A变成了规范link:

$$A_{\mu}(x + \frac{1}{2}\hat{n}_{\mu}) = a^4 \frac{U_{\mu}(x) - U_{\mu}^{\dagger}(x)}{2ig_0 a}$$

 $U(x) \equiv e^{ig_0 \int_x^{x+a\hat{\mu}} dy A_{\mu}}$

格点上的规范场

微扰论可以在g很小的时候对这个理论做微扰展开和圈图计算。

 $- + \mathcal{O}(a^2g^2), U(x) \equiv e^{ig_0 \int_x^{x+a\hat{\mu}} dy A_{\mu}(y)};$

$$u^{(y)}, U^{\dagger}(x) \equiv e^{ig_0 \int_{x+a\hat{\mu}}^x dy A_{\mu}(y)}$$

$$x + a\hat{\mu}$$

 $U(x) \equiv \epsilon$ $g^{-1}(x) - - - - \frac{1}{2}$

- 连续理论中的规范变换: $A'_{\mu}(x) = g^{-1}(x)$
- 格点上的规范变换: $U'_{\mu}(x) = g^{-1}(x)U_{\mu}(x)g(x + a\hat{\mu})$

 $1 + ig_0 a A'_{\mu}(x) = g^{-1}(x) \left(1 + ig_0 a A_{\mu}(x)\right) \left(g(x) + a \partial_{\mu} g(x)\right)$

- 格点上的规范协变性表现为在link两端可以乘任何规范转动矩阵;
- 格点上的规范**不变性**表现为若干link连成一个闭合的圈。

格点上的规范变换

$$e^{ig_0 \int_x^{x+a\hat{\mu}} dy A_{\mu}(y)} \rightarrow g(x + a\hat{\mu})$$

$$A_{\mu}(x)g(x) - \frac{i}{g_0}g^{-1}(x)\partial_{\mu}g(x)$$

$$f(x) = 1 + ig_0 a \left(g^{-1}(x) A_\mu(x) g(x) - \frac{ia}{g_0} g^{-1}(x) \partial_\mu g(x) \right) + \mathcal{O}(a)$$

• $\mathscr{P}_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+a\hat{\mu})U_{\mu}^{\dagger}(x+a\hat{\nu})U_{\mu}$ 也可以被用来定义格点上的胶子作用量 $\mathcal{S}_g = \frac{1}{2g_0^2} \sum_{\nu} \operatorname{Re}\left[1 - \operatorname{Tr}[\mathscr{P}_{\mu\nu}(x)]\right] = \frac{1}{2} \operatorname{Tr} \int \mathrm{d}^4 x F_{\mu\nu} F_{\mu\nu} + \frac{1}{2} \operatorname{Tr} \int \mathrm{d}^4 x F_{\mu\nu} + \frac{1}{2} \operatorname{Tr} \int \mathrm{d}^4$

- 这个作用量具有 $\mathcal{O}(a^2)$ 的离散误差。
- 可以进一步与1x2的loop $\mathscr{P}_{\mu\nu}^{Rect}(x) = U_{\mu}(x)U_{\mu}(x+a\hat{\mu})U_{\nu}(x+2a\hat{\mu})U_{\mu}^{\dagger}(x+a\hat{\mu}+a\hat{\nu})U_{\mu}^{\dagger}(x+a\hat{\nu})U_{\nu}^{\dagger}(x)$ 组合,构造Symanzik或者Iwasaki作用量,把离散误 差压低到 $\mathcal{O}(a^4)$ 。 $S_g^{\text{Symanzik}} = \frac{5}{3}S_g^{1x1} - \frac{1}{12}S_g^{1x2}$ $S_g^{\text{Iwasaki}} = (1 + 8 \times 0.331)S_g^{1x1} - 0.331S_g^{1x2}$

规范场作用量

$$\mathcal{P}_{\nu}^{\dagger}(x)$$
.
 $\mathbb{P}_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+a\hat{\mu})U_{\mu}^{\dagger}(x+a\hat{\nu})U_{\nu}^{\dagger}(x)$
 $+ \mathcal{O}(a^2) = 1 + ig_0 a^2 F_{\mu\nu}(x + \frac{a}{2}(\hat{\mu} + \hat{\nu}))$
 $-\frac{1}{2}a^4 g_0^2 F_{\mu\nu}(x + \frac{a}{2}(\hat{\mu} + \hat{\nu}))F_{\mu\nu}(x + \frac{a}{2}(\hat{\mu} + \hat{\nu})) + i$

Discretized QCD

• The naive discretization suffers from the doubling problem:

•
$$\mathcal{S}_q^{Naive}(m) = \sum_{x,y} \bar{\psi}(x) D_{Naive}(m; x, y) \psi(y), \ D_{Naive}(m; x, y) = \frac{1}{2a} \sum_{\mu} \sum_{\mu} \frac{1}{2a} \sum_{\mu} \frac{$$

- The propagator has 1/m IR poles at $pa = (0/\pi, 0/\pi, 0/\pi, 0/\pi)$, which is different from the continuum theory.
- Staggered fermion:
- $\psi^{\text{st}}(x) = \gamma_4^{x_4} \gamma_1^{x_1} \gamma_2^{x_2} \gamma_3^{x_3} \psi(x), \{\gamma_1^{\text{st}}, \gamma_2^{\text{st}}, \gamma_3^{\text{st}}, \gamma_4^{\text{st}}\} = \{(-1)^{x_4} \psi(x), \{\gamma_1^{\text{st}}, \gamma_2^{\text{st}}, \gamma_3^{\text{st}}, \gamma_4^{\text{st}}\}\}$
- 16 IR poles \rightarrow 4 IR poles.

Cost x10

Naive and Staggered actions

 $\gamma_{\mu} \left(U_{\mu}(x) \delta_{y,x+a\hat{\mu}} - U_{\mu}^{\dagger}(x-a\hat{\mu}) \delta_{y,x-a\hat{\mu}} \right) + m \delta_{y,x}$

$$x_4, (-1)^{x_1+x_4}, (-1)^{x_1+x_2+x_4}, 1\};$$

Mixing between IR poles can be suppressed with kinds of the improvement, likes the so-call highly-improved staggered quark (HISQ).

Discretized QCD

- Wilson fermion action: 0
- $D + m \rightarrow D + aD^2 + m$
- Clover fermion action:
- $D + m \rightarrow D + aD^2 + m + ac_{sw}\sigma_{\mu\nu}F^{\mu\nu}$
- Suppress the additional chiral symmetry breaking at $\mathcal{O}(\alpha_s^2/a)$.
- ^o The cost of either Wilson or Clover action is $\mathcal{O}(10)$ of the Staggered fermion.

Wilson and clover actions

• It removes the unphysical IR pole at $p_i = \pi/a$, while introduce the additional chiral symmetry breaking at $\mathcal{O}(\alpha_s/a)$.

Discretized QCD

- Ginsparg-Wilson relation: $\gamma_5 D_{GW} + D_{GW} \gamma_5 = \frac{1}{\rho} D_{GW} \gamma_5 D_{GW}$ •
- Overlap fermion as a possible solution: $\mathcal{S}_q^{ov}(m) = \sum_{x,v} \bar{\psi}(x) \Big(\delta_{xy} m + \sum_z D_{ov}(\rho; x, z) \frac{\rho/a}{\delta_{zv} - D_{ov}(\rho; z, y)/2} \Big) \psi(y)$
- In $p \to 0$ region, $D_{ov} \to a \gamma_{\mu} p_{\mu}$;
- $\ln p \to \pi/a$ region, $D_{ov} \to \mathcal{O}(1)$.

- But approximate the sign function $\frac{\gamma_5 D_w(-\rho)}{\sqrt{D_w(-\rho)D_W^\dagger(-\rho)}}$ action.

Staggered/HISQ

Cost x10

Ginsparg-Wilson action

y),
$$D_{ov}(\rho) = 1 + \frac{D_w(-\rho)}{\sqrt{D_w(-\rho)D_W^{\dagger}(-\rho)}}$$

$$\frac{1}{|\gamma_5 D_w(-\rho)|} = \frac{\gamma_5 D_w(-\rho)}{|\gamma_5 D_w(-\rho)|} \text{ need } \mathcal{O}(100) \text{ cost of the Wilson/Clov}$$

• Domain wall fermion action is an approximation of overlap fermion with O(10) cost of the Wilson/Clover action.

ver

- 格点QCD的短程行为显著地依赖于离散 化。
- 而通常的实验唯象分析是在修改维度的MSbar方案下进行的。
- 不改变维度的格点正规化无法直接引入这个 维度,从而无法直接得到MS-bar下的结 果。
- 所以我们必须在"安全的区域"内,把格点计 lacksquare算的短程部分替换成维数正规化下的结果, 同时消除离散化效应的短程影响。

短程格点QCI

首先我们需要引 。然后在这个能

Tr[$\Gamma^{\dagger}\Lambda(p,p,$

D
RI/MON方
入一个在微扰区域的新能标
$$Q^2 = -p^2$$
,
标下计算夸克传播子 $S(p) = \sum_{x} e^{-i(p \cdot x)} \langle \psi(x)\overline{\psi}(0) \rangle_{x}$

$$S^{-1}(p)\sum_{x,y} e^{-ip\cdot(x-y)} \langle \psi(x)\bar{\psi}(0)\Gamma\psi(0)\bar{\psi}(y)\rangle S^{-1}(p)$$

o 最后就可以定义一个"与正规化无关的动量减除方案(RI/MOM)"下的

$$\frac{1}{[\Gamma]_{p^{2}=-Q^{2}}} = \frac{C_{0}}{m_{q}^{n}} + Z_{S}^{MOM}(Q) + \mathcal{O}(m_{q}).$$

o 这个方案可以在任意正规化下计算。

第二个阶段是在维数正规化下微扰计算相同能标下的矩阵元,得到上述减除方案与 MS 方案的差异,从而等效地将 上述重整化常数转换到 MS 方案。以标量流的重整化为例,第一个阶段的 RI/MOM 方案在格点正规化下单圈水平得 到的重整化常数具有如下形式:

$$Z_S^{\text{MOM,Lat}}(Q,a) = 1 - \frac{\alpha_s C_F}{4\pi} |$$

RI/MOM 方案的重整化常数,可以得到

$$Z_S^{\text{MOM,Dim}}(Q,\mu) = 1 - \frac{\alpha_s C_F}{4\pi} \left[\frac{3}{\tilde{\epsilon}} - 3\log(\frac{Q^2}{\mu^2}) - \xi + 5\right] + \mathcal{O}(\alpha_s^2),$$
$$Z_S^{\overline{\text{MS,Dim}}}(Q,\mu) = 1 - \frac{\alpha_s C_F}{4\pi} \frac{3}{\tilde{\epsilon}} + \mathcal{O}(\alpha_s^2).$$

所以格点正规化下等效的 MS 方案重整化常数就可以定义为:

$$Z_S^{\overline{\mathrm{MS}},\mathrm{Lat}}(\mu,a) \equiv \frac{Z_S^{\mathrm{MOM},\mathrm{Lat}}(Q,a)}{Z_S^{\mathrm{MOM},\mathrm{Dim}}(Q,\mu)} Z_S^{\overline{\mathrm{MS}},\mathrm{Dim}}(Q,\mu) = 1 - \frac{\alpha_s C_F}{4\pi} [-3\log(a^2\mu^2) - 5 + b_S] + \mathcal{O}(\alpha_s^2, a^2Q^2).$$

从微扰论看RI/MOM

 $[-3\log(a^2Q^2) - \xi + b_S] + \mathcal{O}(\alpha_s^2, a^2Q^2),$

其中 ξ 是胶子传播子 $D_{\mu\nu} = \frac{1}{k^2} (\delta_{\mu\nu} - \xi \frac{k_{\mu}k_{\nu}}{k^2})$ 中的规范依赖参数。 b_S 是依赖于夸克与胶子离散化方案的有限项,不同的离散化方案下的值和符号都会有差异(具体的数值可以参考 hep-lat/0404007)。那么对应地,在维数正规化下计算

由于 RI/MOM 方案包括了所有有限项,所以同等能标下在确定的 α_s^n 阶修正远大于 $\overline{\text{MS}}$ 方案。所以实践上说,第 二阶段通常会分成两步操作: 首先在比较高的能标 Q 把 $Z_S^{MOM,Lat}(Q,a)$ 转换为 $Z_S^{\overline{MS},Lat}(Q,a)$,

$$Z_S^{\overline{\mathrm{MS}},\mathrm{Lat}}(Q,a) = \frac{Z_S^{\mathrm{MOM},\mathrm{Lat}}(Q,a)}{1 - \frac{\alpha_s^{\overline{\mathrm{MS}}}(Q)C_F}{4\pi}[5-\xi]} + \mathcal{O}(\alpha_s^2, a^2Q^2),$$

来转换重整化方案而避免在低能标下使用 RI/MOM 方案进行计算,然后再利用重整化群方法在 MS 方案下把能标依 赖重求和并演化到目标能标 μ :

$$Z_S^{\overline{\mathrm{MS}},\mathrm{Lat}}(\mu,a) = \left(\frac{\alpha_s^{\overline{\mathrm{MS}}}(\mu)}{\alpha_s^{\overline{\mathrm{MS}}}(Q)}\right)^{\frac{4}{11-\frac{2n_f}{3}}} Z_S^{\overline{\mathrm{MS}}}$$

非微扰RI/MOM

 $Z_{S}^{MS, Lat}(\mu)$ 依然对RI/MOM能标Q有剩余的依赖。这些剩余依赖的性质可以通过在不同 格距上重复计算来分辨其来源。

- 在小Q上弯的行为不依赖于格距,来自于高圈修正或非微扰效应;
- 在大Q下斜的行为随格距减小而减小,是一个离散误差。

残余的Q依赖

长程格点QCD 组态的马尔可夫链蒙特卡罗模拟

- 路径积分在作用量中对空间点积分,同时路径积 分本身也需要对规范场的各种可能性积分。
- 以标量场为例,就是要对每个空间点上的场强积分。
- 考虑一个10⁴ = 10000的格子,每个空间点取10
 种可能的值,那么就有10¹⁰⁰⁰⁰种可能性。
- 但是这些可能性并不是平权的,出现概率正比于 e^{-S_g} .
- 所以实践层面上说,我们可以也只能使用蒙特拉
 罗方法,对这些可能性做重点抽样。

$$\langle O[\phi] \rangle = \frac{\int [\Pi_{y} d\phi(y)] O[\phi] e^{-S[\phi]}}{\int [\Pi_{y} d\phi(y)] e^{-S[\phi]}} = \frac{1}{n} \sum_{i} O[\phi_{i}] + \mathcal{O}(\frac{1}{\sqrt{n}})$$

长程格点QCD

$$\langle U_p \rangle = \frac{1}{Z} \int [\Pi_y \mathrm{d}U(y)] U_p[U_y] e^{-\frac{6}{g^2} \sum_z (1 - \operatorname{Re}\{U_p[U_z]\})}$$

- 我们考虑一个有趣的特例:
- 对于U(1)规范场,1x1Wilson圈 U_p 的取值在-1到1之间;
- 当且仅当 $U_p = 1$ 时,作用量取极小;
- 所以如果只考虑作用量取极小的贡献, $\langle U_p \rangle = 1$ 。这也是耦合强度无限小时的极限。
- 但是当耦合强度增大时,偏离作用量极小的 $U_p < 1$ 的可能性就越来越多,从而使 $\langle U_p \rangle$ 随之减小;
- 当耦合强度无穷大时,所有可能性近似于平权,这时 $\langle U_p \rangle = 0$ 。
- 强耦合场论中,偏离"最短路径"的路径也非常重要!

强耦合体系

Basic unit of Lattice C
$$(\gamma_4(\partial_\tau - igA_4)\psi + \sum (\partial_i - igA_i)\gamma_i - m)\psi = 0$$

The discretized Dirac equation with the coupling with the non-abelian SU(3) gauge field:

- $\gamma_{1,2,3,4}$ are 4 × 4 complex matrices, $A_{1,2,3,4}$ are space-time dependent 3x3 complex matrices;
- Can be converted to a problem of sparse matrix inversion.

)CD

Computer cores

Internal sites

Boundary sites requiring information from the other cores;

- $L^3 \times T = 4^3 \times 4$ lattice:
- Red point: 12×12 diagonal matrix
- Black point: 12×12 sparse matrix

Basic flow of Lattice QCD

Analysis the configurations to get the physical results

- physical analysis!

$$\langle O[U] \rangle = \frac{\int [\Pi_y \mathrm{d}U(y)] O[U] e^{-S[U]}}{\int [\Pi_y \mathrm{d}U(y)] e^{-S[U]}} = \frac{1}{n} \sum_i O[U] + \mathcal{O}(\frac{1}{\sqrt{n}})$$

长程格点QCD

组态平均

.

在每个组态上重复计算并统计平均,就可以对完整QCD路径积分的估计值。

长程格点QCD

生成真实组态的成本

•Case 1:

- Clover+Symanzik,
- 24³x72, a=0.108 fm, $m_{\pi}=300$ MeV,
- 8 V100 GPUs:
- One week for warn-up;
- Another week for 200 configurations (5 traj. per conf.)
- And 13 GB storage.

•Case 2:

- Mobius DWF+Iwasaki,
- 96³x192, a=0.071 fm, $m_{\pi}=140$ MeV,
- 512 V100 GPUs:
- One year for warn-up;
- Another year for 200 configurations (5 traj. per conf.)
- And 2,278 GB storage.

附表: 美国目前的高能物理高性能计算应用情况及未来的E级计算需求 (以CPU核小时为单位做数量级估计) (ASCR/HEP Exascale requirement review report, <u>http://arxiv.org/pdf/1603.09303.pdf</u>)

Computational	Current	2025	Current	2025	2025 Network	
Task	Usage	Usage	Storage (Disk)	Storage (Disk)	Requirements (WAN)	
Accelerator	$\sim 10 {\rm M} - 100 {\rm M}$	$\sim 10 \mathrm{G} - 100 \mathrm{G}$				
Modeling	core-hrs/yr	$\operatorname{core-hrs}/\operatorname{yr}$				
Computational	$\sim 100 \mathrm{M} - 1 \mathrm{G}$	$\sim 100 {\rm G} - 1000 {\rm G}$	$\sim 10 \text{PB}$	>100PB	$300 { m Gb/s}$	
Cosmology	$\operatorname{core-hrs}/\operatorname{yr}$	$\operatorname{core-hrs}/\operatorname{yr}$			(burst)	
Lattice	$\sim 1 \mathrm{G}$	$\sim 100 {\rm G} - 1000 {\rm G}$	$\sim 1 \text{PB}$	>10PB		
QCD	$\operatorname{core-hrs}/\operatorname{yr}$	$\operatorname{core-hrs}/\operatorname{yr}$				
Theory	$\sim 1 {\rm M} - 10 {\rm M}$	$\sim 100 {\rm M} - 1 {\rm G}$				
	$\operatorname{core-hrs}/\operatorname{yr}$	$\operatorname{core-hrs}/\operatorname{yr}$				
Cosmic Frontier	$\sim 10 {\rm M} - 100 {\rm M}$	$\sim 1 {\rm G} - 10 {\rm G}$	$\sim 1 \text{PB}$	10 - 100 PB		
Experiments	$\operatorname{core-hrs}/\operatorname{yr}$	$\operatorname{core-hrs}/\operatorname{yr}$				
Energy Frontier	$\sim 100 {\rm M}$	$\sim 10 {\rm G} - 100 {\rm G}$	$\sim 1 \text{PB}$	>100PB	$300 { m Gb/s}$	
Experiments	$\operatorname{core-hrs}/\operatorname{yr}$	$\operatorname{core-hrs}/\operatorname{yr}$				
Intensity Frontier	$\sim 10 {\rm M}$	$\sim 100 \mathrm{M} - 1 \mathrm{G}$	$\sim 1 \text{PB}$	10 - 100 PB	$300 { m Gb/s}$	
Experiments	core-hrs/yr	$\operatorname{core-hrs}/\operatorname{yr}$				

现在: 1G core-hrs/yr 意味着 101 2025年: 再乘10-100倍 ! ! !

1G core-hrs/yr 意味着 10 た CPU核小时/年= 百万核机器运行1000小时

长程格点QCD

31

长程格点QCD 中国的泛用性组态 *a* = 0.0774fm χ PT relation a = 0.1053fm Ж 5.8 m²/m_q(GeV) CLQCD m_{π} 5.2 0.005 0.010 0.020 0.025 0.000 0.015 - 300 MeV $m_q(GeV)$

- 150 MeV			
0	0.05 fm	0.10 fm	

	C24P34	C24P31	C32P31	C32P23	C48P23	C48P14	F32P31	F48P31	F32P21	F48P21	H48P
$\tilde{L}^3 \times \tilde{T}$	$24^3 \times 64$	$24^3 \times 72$	$32^3 \times 64$	$32^{3} \times 64$	$48^3 \times 96$	$48^{3} \times 96$	$32^{3} \times 96$	$48^3 \times 96$	$32^{3} \times 64$	$48^{3} \times 96$	$48^3 \times 1$
$\hat{oldsymbol{eta}}$			6.20				6.41			6.72	
$a \ (fm)$			0.10530(18)				0.07746(18)				0.05187(2
$ ilde{m}^b_l$	-0.2770	-0.2770	-0.2770	-0.2790	-0.2790	-0.2825	-0.2295	-0.2295	-0.2320	-0.2320	-0.18
$ ilde{m}^b_s$	-0.2310	-0.2400	-0.2400	-0.2400	-0.2400	-0.2310	-0.2050	-0.2050	-0.2050	-0.2050	-0.17
m_l^R (MeV)	22.90(19)	16.94(12)	17.35(11)	10.55(11)	10.27(10)	3.638(83)	18.54(12)	18.511(92)	8.58(16)	8.587(89)	19.667(4
m_s^R (MeV)	109.39(16)	86.37(09)	87.01(10)	84.69(07)	84.36(08)	101.41(05)	90.19(10)	90.45(08)	87.84(09)	87.88(07)	94.55(0
m_{π} (MeV)	340.5(1.7)	292.7(1.2)	292.4(1.1)	228.0(1.2)	225.61(86)	135.5(1.6)	303.2(1.3)	303.44(86)	210.9(2.2)	207.2(1.1)	321.44(7
$m_{\eta_s}~({ m MeV})$	748.7(0.9)	657.4(0.6)	658.0(0.7)	643.5(0.5)	643.2(0.5)	706.3(0.3)	681.6(0.9)	679.9(0.6)	665.6(0.7)	667.7(0.7)	709.0(0
	-						-				-

格点量子色动力学基础

强子自旋

Hadron mass from Lattice QCD

- From the time order product ($\mathcal{O}=ar{\psi}$ $\langle \mathcal{O}(t)\mathcal{O}^{\dagger}(0)\rangle = \sum \langle \mathcal{O}(t) | n \rangle \frac{e^{-E_n t}}{2E_n} \langle n | \mathcal{O}^{\dagger}(0) \rangle_{\overline{t \to 0}}$
- From the path integral (S(x; y) = (D(x; y))) $\langle \mathcal{O}(t)\mathcal{O}^{\dagger}(0) \rangle = \sum \langle \operatorname{Tr}[S(\vec{0}, 0; \vec{x}, t)\gamma_5 S(\vec{x}, t; \vec{0}, 0)\gamma_5 S(\vec{x$
- All the ground state hadron masses can be obtained with different O and m.

$$\frac{\gamma_5 \psi}{|\langle \mathcal{O}(t) | 0 \rangle|^2} e^{-E_0 t} \frac{|\langle \mathcal{O}(t) | 0 \rangle|^2}{2E_0}$$

$$|\psi_{5}| + m)^{-1}$$
:
 $|\psi_{5}| \rangle = \sum_{\vec{x}} \langle \text{Tr}[S^{\dagger}(\vec{x}, t; \vec{0}, 0)S(\vec{x}, t; \vec{0}, 0)] \rangle$

$$m_{\rm N}^{\rm eff} = \frac{1}{a} \log \frac{\langle \mathcal{O}(t-a)\mathcal{O}^{\dagger}(0) \rangle}{\langle \mathcal{O}(t)\mathcal{O}^{\dagger}(0) \rangle}$$

C. Alexandrou, et,al. ETMC, PRD104(2021)074515

The light quark masses

P.Zyla et,al, PTEP(2020)083C01 (PDG2020):

• $m_p = 938.27 \text{ MeV} = m_{p,\text{OCD}} + 1.00(16) \text{ MeV} + \dots;$

•
$$m_n = 939.57$$
 MeV;

•
$$m_{\pi}^0 = 134.98$$
 MeV;

 $(m_{p,\text{QCD}} + m_n)/2 = 938.4(1) \text{ MeV}$

• $m_{\pi}^+ = 139.57 \text{ MeV} = m_{\pi}^0 + 4.53(6) \text{ MeV} + \dots;$

X. Feng, et,al. PRL128(2022)062003

• $m_K^0 = 497.61(1) \text{ MeV} = m_{K,QCD}^0 + 0.17(02) \text{ MeV} + \dots$

• $m_K^+ = 493.68(2) \text{ MeV} = m_{K,\text{QCD}}^+ + 2.07(15) \text{ MeV} + \dots$

D. Giusti, et,al. PRD95(2017)114504

From lattice QCD

The light quark masses

Lattice spacing dependence

 The lattice spacing a is very sensitive to the bare coupling;

> mass to satisfy the condition is very

 Renormalization is needed to convert the result to MS-bar.

 $\alpha_{\rm s}^{\rm bare}$

The light quark masses

m_{π} and f_{π}

The light quark masses

m_K and f_K

The light quark masses

m_{D_s} and f_{D_s}

- 在Q小于~2 GeV时, 矢量流 和轴矢流就会有很明显的破 缺;
- 同时赝标流由于 $Z_p^{-1}m = m^{RI}$ 的恒等式,会有反比与夸克质量的巨大红外修正,从而使赝标流与标量流在更高的能标就变得非常不同。

Q (GeV)

长程格点QCD "动力学质量" 在 $Q \sim \Lambda_{OCD}$ 区域,RI/MOM方案Landau规范下的手征极限下夸克会像是有一个320 MeV左右的mass,而胶子像是有一个400 MeV左右的mass。

这个值对规范的依赖,尚不清楚;与色禁闭是否有关也有争议。

m^{RI}(a, m_a) (GeV)

- 格点QCD预言轻夸克质量在MS-bar 2 GeV为大约3-4 MeV;
- 但是质子质量是938 MeV,
- 而且对夸克质量并不敏感: lacksquare
- 1. 在手征极限附近约为常数+15 $m_q^{\overline{MS}(2GeV)}$;
- 2. 在重夸克极限下约为~3 $m_{q}^{\overline{MS}(m_{q})}$ 。

YBY, J. Liang, et. al., χ QCD Collaboration, PRL121(2018)212001

ViewPoint and Editor's suggestion

- QCD能动量张量 (EMT), $T_{\mu\nu} = \frac{i}{2} \bar{\psi} \overleftrightarrow{D}_{(\mu} \gamma_{\nu)} \psi + \frac{1}{4} g_{\mu\nu} F^2 - F_{\mu\rho} F_{\rho\nu}$ 的迹在经典水平上只有夸克质量项 myy。
- 但是圈图修正的量子效应,会引入标度反常 $T^{\mu}_{\mu} = m\bar{\psi}\psi - 2\epsilon\frac{F^2}{4} + \mathcal{O}(\epsilon^2) = \left[1 + \frac{2}{\pi}\alpha_s + \mathcal{O}(\alpha_s^2)\right]m\bar{\psi}\psi$ 其中正比于 α_s 的两项都是QCD的量子修正。
- 因而质子质量可以分解为如下形式:

订页:
$$\mu + \left[\left(-\frac{11}{8\pi} + \frac{N_f}{12\pi}\right)\alpha_s + \mathcal{O}(\alpha_s^2)\right]F^2,$$

J.Collins et,al. PRD16(1977) 438

M.A. SHIFMAN et,al. PLB78(1978)

$$\frac{N_f}{2\pi}$$
) $\alpha_s + \mathcal{O}(\alpha_s^2)] \langle F^2 \rangle_N.$

通过计算可以得到
$$\gamma_m = 0.38(3)$$
 以及 $\frac{\beta}{g^3} = -0.056(6).$
 1.2

• 和MS-bar方案下的值大体相当:
•
$$\gamma_m(1/a) = 0.325(10),.$$

• $\frac{\beta}{g^3} = -0.057 + O(\alpha_s)$ 0.8

同时求和规则

$$(1 + \gamma_m)m\langle \bar{\psi}\psi \rangle_H + \frac{\beta}{2g}\langle F^2 \rangle_H$$
 m_H
 有强子态都满足。

0.6

验证求和规则

Supported by Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDC01040100

长程格点QCD

 $m_N = m \langle \bar{\psi}\psi \rangle_N + \left[\frac{2}{\pi}\alpha_s + \mathcal{O}(\alpha_s^2)\right] m \langle \bar{\psi}\psi \rangle_N + \left[\left(-\frac{11}{8\pi} + \frac{N_f}{12\pi}\right)\alpha_s + \mathcal{O}(\alpha_s^2)\right] \langle F^2 \rangle_N.$

- 对各种强子质量的胶子贡献 $\frac{\beta}{2g} \langle F^2 \rangle_H \vdots$
- $\frac{\beta}{2g}\langle F^2\rangle_N$ 在手征极限下约为800 MeV;
- $\frac{\beta}{2g} \langle F^2 \rangle_{\pi}$ 在手征极限下小于100 **MeV**。
- 与理论预期完全符合。 \bigcirc

胶子贡献

Supported by Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDC01040100

The trace less part of EMT

Let us go back to the ME of the traceless EMT:

$$\frac{\langle P \,|\, \bar{T}^{q,g}_{\mu\nu} \,|\, P \rangle}{\langle P \,|\, P \rangle} = A^{q,g} \frac{P_{\mu}P_{\nu} + \frac{1}{d}g_{\mu\nu}m_{N}^{2}}{P_{0}},$$

where

The Lorentz quark/gluon momentum fraction A can be obtained in any frame, likes the rest frame:

$$\frac{\langle P \,|\, \bar{T}_{44}^{q,g} \,|\, P \rangle}{\langle P \,|\, P \rangle}_{P_{x,y,z}=0,}$$

or on the light-cone as:

$$\frac{\langle P \,|\, \bar{T}^{q,g}_{++} \,|\, P \rangle}{\langle P \,|\, P \rangle} = 0,$$

$$= \bar{T}^q_{\mu\nu} = \frac{1}{4} \bar{\psi} \gamma_{(\mu} \overleftrightarrow{D}_{\nu)} \psi - \frac{1}{d} g_{\mu\nu} m \bar{\psi} \psi, \ \bar{T}^g_{\mu\nu} = F_{\mu\rho} F_{\nu}^{\ \rho} - \frac{1}{d} g_{\mu\nu} F^2 \,.$$

$$\frac{d-1}{d}A^{q,g}m_N,$$

$$A^{q,g}P_+$$
, where $\bar{T}^q_{++} = \frac{1}{2}\bar{\psi}\gamma_+\overleftrightarrow{D}_+\psi$, $\bar{T}^g_{++} = F_{+\rho}F_+^{\ \rho}$.

The trace terms are omitted as $P_+ >> m_N$

Momentum fractions

On the light-cone, the quark and gluon unpolarized parton distribution function (PDF) are defined by:

$$q(x) = \int \frac{\mathrm{d}\xi^{-}}{4\pi} e^{-ix\xi^{-}P^{+}} \langle P | \bar{\psi}(\xi^{-})\gamma_{+}U(\xi^{-},0)\psi(0) | P \rangle,$$

$$g(x) = \int \frac{\mathrm{d}\xi^{-}}{2x\pi} e^{-ix\xi^{-}P^{+}} \langle P | \mathrm{Tr} \left[F_{+\rho}(\xi^{-})U(\xi^{-},0)F_{+}^{\rho}(0)U(0,\xi^{-}) \right] \langle P \rangle,$$

and it is easy to obtain that,

$$\int_{-1}^{1} xq(x) dx = \frac{\langle P \,|\, \bar{T}_{++}^{q} \,|\, P \rangle}{P_{+} \langle P \,|\, P \rangle} = A^{q}, \ \int_{-1}^{1}$$

Thus the momentum fractions we moments of the unpolarized PDF.

as the moments of PDF

with
$$\bar{T}_{++}^q = \frac{1}{2} \bar{\psi} \gamma_+ \overleftrightarrow{D}_+ \psi, \ \bar{T}_{++}^g = F_{+\rho} F_+^{\rho}$$

Thus the momentum fractions we obtained in the rest frame is directly the

The decompositions of the QCD EMT

Thus one can have the following Ji's decomposition of the nucleon mass (the energy in the rest frame) :

$$\begin{split} m_N &= -\langle T_{44} \rangle_{P_{x,y,z}=0, d \to 4} = -\langle \bar{T}_{44}^q \rangle - \langle \bar{T}_{44}^g \rangle + \frac{1}{4} (1 + \gamma_m) \langle H_m \rangle + \frac{\beta}{8g} \langle F^2 \rangle \\ &= -\langle \bar{\psi} \gamma_4 \overrightarrow{D}_4 \psi \rangle + \langle -\bar{T}_{44}^g \rangle + \frac{1}{4} \gamma_m \langle H_m \rangle + \frac{\beta}{8g} \langle F^2 \rangle \\ &= \langle \sum_i \bar{\psi} \gamma_i \overrightarrow{D}_i \psi \rangle + \langle -\bar{T}_{44}^g \rangle + \langle H_m \rangle + \frac{1}{4} \gamma_m \langle H_m \rangle + \frac{\beta}{8g} \langle F^2 \rangle \end{split}$$

Or the following decomposition of EMT following the structure of perfect fluid,

$$\langle P | T_{i,\mu,\nu} | P \rangle = \frac{\langle P | P \rangle}{2E} \left(2P_{\mu}P_{\nu}\langle x \rangle_{i} - 2m_{N}g_{\mu\nu}\bar{p}_{i} \right), \ \bar{p}_{i} = \left(-\langle x \rangle_{i} + \langle H_{m,i} \rangle \right)/4.$$

Xiangdong Ji, PRL 74(1995)1071

C. Lorce, EPJC78(2018)120

Ji's decomposition of proton mass

$$M = -\langle \hat{T}_{44} \rangle = \langle H_m \rangle +$$

With

The QCD anomaly

$$H_a = H_g^a + H_m^\gamma$$
, The glue
anomaly
 $H_g^a = \int d^3x \, \frac{-\beta(g)}{g} (E^2 + B^2)$,
 $H_m^\gamma = \sum_{u,d,s\cdots} \int d^3x \, \gamma_m m \, \overline{\psi} \psi$.
The quark mass anomaly

YBY, et. al., χ QCD collaboration, Phys. Rev. D 91(2015)074516

Proton mass decomposition

Then we have

$$M~=~-\langle \hat{T}_{44}
angle =$$

$$H_m = \sum_{u,d,s\cdots} \int d$$

• Renormalization scheme/scale independent in continuum; also in discrete case when the chiral fermion is used.

 $\sigma_{\pi N} = \langle H_m(u) + H_m(d) \rangle = 45.9(7.4)(2.8) \text{ MeV}$

 $\langle H_m(u,d,s) \rangle / M_N = 9(2)\%$ The best lattice result free of the systematic uncertainty from the explicit chiral symmetry breaking

 $M = -\langle T_{44} \rangle = \langle H_q \rangle + \langle H_g \rangle + \langle H_q^a \rangle + \langle H_m^\gamma \rangle$ $= \langle H_E \rangle + \langle H_m \rangle + \langle H_g \rangle + \frac{1}{4} \langle H_a \rangle,$

 $\langle H_m \rangle + \langle H_a \rangle$, in the rest frame.

The quark $d^3x m \overline{\psi} \psi$, mass

 $f_{s^N}M_N = \langle H_m(s) \rangle = 40.2(11.7)(3.5) MeV$

YBY, et.al. χ QCD Collaboration, PRD94(2016)054503

Proton mass decomposition

Then we have

 $M = -\langle T_{44} \rangle = \langle H_q \rangle + \langle H_g \rangle + \langle H_q^a \rangle + \langle H_m^\gamma \rangle$ $= \langle H_E \rangle + \langle H_m \rangle + \langle H_a \rangle + \frac{1}{4} \langle H_a \rangle,$

 $M = -\langle \hat{T}_{44} \rangle = \langle H_m \rangle + \langle H_a \rangle,$

- rule above.
- The total QCD anomaly is renormalization scheme/scale independent.

 $H_a/(4M_N)= 23(1)\%$

The joint contribution of the QCD anomaly can be deduced from the quark mass term, with the sum

Proton mass decomposition The quark/gluon energy

 $M = -\langle T_{44} \rangle = \langle H_{q} \rangle + \langle H_{q} \rangle + \langle H_{a}^{a} \rangle + \langle H_{m}^{\gamma} \rangle$ Then we have $= \langle H_E \rangle + \langle H_m \rangle + \langle H_g \rangle + \frac{1}{4} \langle H_a \rangle,$

 $M = -\langle \hat{T}_{44} \rangle = \langle H_m \rangle + \langle H_a \rangle,$

The quark/glue energy can be deduced from the momentum fraction,

$$\begin{array}{l} \left\langle \boldsymbol{H_E} \right\rangle \ = \ \frac{3}{4} \langle x \rangle_q M - \frac{3}{4} \langle \boldsymbol{H_m} \rangle \\ \left\langle \boldsymbol{H_g} \right\rangle \ = \ \frac{3}{4} \langle x \rangle_q M + \frac{1}{4} \langle \boldsymbol{H_m} \rangle \end{array} \quad \begin{array}{l} \left\langle \boldsymbol{H_g} \right\rangle \ = \ \frac{3}{4} \langle x \rangle_g M \end{array}$$

- The renormalization of the quark momentum fraction is much more trivial, which is just mixed with the glue one.
- It is more straightforward to obtain the quark/ glue momentum fraction first, and convert it to the quark/glue energy.

The total energy $\int d^3x \ \overline{\psi} (\vec{D}\cdot\vec{\gamma})\psi,$ $H_E = \sum$ The quark energy $\int d^3x \ \frac{1}{2}(B^2-E^2),$ $H_g =$ The glue field energy

Renormalization

The MS-bar renormalization matrix can be obtained through the RI/MOM scheme,

 $\begin{pmatrix} R_{QQ}(\frac{\mu}{\mu_R})\\ R_C \end{pmatrix}$

 $= \begin{cases} \begin{pmatrix} (Z_{QQ}R_{QQ}) + N_f (\delta Z_{QQ}R_{QQ} + Z_{QG}R_{GQ}) & N_f \\ (Z_{GQ}R_{QQ} + Z_{GG}R_{GQ}) \end{pmatrix} \end{cases}$

- Perturbative calculation is necessary to get the R's.

of the momentum fractions

$$\begin{bmatrix} \begin{pmatrix} Z_{QQ}(\mu_R) + N_f \delta Z_{QQ} & N_f Z_{QG}(\mu_R) \\ Z_{GQ}(\mu_R) & Z_{GG}(\mu_R) \end{pmatrix} \\ + \mathcal{O}(N_f \alpha_s^2) & N_f R_{QG}(\frac{\mu}{\mu_R}) \\ R_{QG}(\frac{\mu}{\mu_R}) & R_{GG}(\frac{\mu}{\mu_R}) \end{pmatrix} \end{bmatrix} |_{a^2 \mu_R^2 \to 0} \right\}^{-1}$$

$$\left\{ \begin{pmatrix} (Z_{QQ} + N_f \delta R_{QQ}) R_{QG} + Z_{QG} R_{GG}) \\ (N_f Z_{GQ} R_{QG} + Z_{GG} R_{GG}) \end{pmatrix} (\mu_R, \frac{\mu}{\mu_R}) |_{a^2 \mu_R^2 \to 0} \right\}^{-1}$$

• All the Z's can be calculated non-perturbatively with Lattice QCD simulation;

YBY, J. Liang, et. al., χ QCD Collaboration, PRL121(2018)212001 **ViewPoint and Editor's suggestion**

Renormalized glue momentum fraction?

Seem to be impossible to obtain the renormalization of the glue operators **nonperturbatively?**

Gluon renormalization

- Calculate the renormalization factor of the glue EMT non-perturbatively on a ~5 fm box will require ~30,000,000 configurations to make the uncertainty to be ~0.01;
- Taking the localization of the correlations between the glue fields/ operators into account, the uncertainty can be reduced by a factor ~200;

 Use reasonable computer resource (~1M CPU hours) to increase the statistics, the ~0.01 uncertainty goal can be obtained with 365 configurations.

YBY, et. al., χ QCD collaboration, PRD98(2018) 074506

with CDER

W. Sun, et.al, χQCD collaboration, CPC42, 063102(2018), 1507.02541 K. Liu, J. Liang, **YBY**, PRD96, 114504(2017), 1805.00531

Non-perturbative renormalized glue momentum fraction

• The lattice regularization effects are **fully cancelled** within the statistical uncertainties;

• The non-perturbative renormalized quark/glue AM results will come out soon.

YBY, et. al., χ QCD collaboration, PRD98(2018) 074506

Proton mass decomposition

Momentum fractions of u and d quarks

Proton mass decomposition Pure DI momentum fractions: strange quark and glue ones

- The glue momentum fraction become larger when the quark mass is lighter;
- The strange one is small as expected.

Proton mass decomposition

Comparing the momentum fractions

YBY, J. Liang, et. al., XQCD Collaboration, PRL121(2018)212001, ViewPoint and Editor's suggestion

from the experiment

S. Dulat et al, PRD93(2016)033006

- Direct calculation of the quark/glue momentum fraction with non-perturbative renormalization and normalization.
- Trace anomaly contribution deduced by the direct calculation of the quark scalar condensate in nucleon, based on the sum rule

进一步的研究表明:

- 在各种粲偶素中, 夸克总能量 $\langle H_q \rangle_H = \langle H_m \rangle_H + \langle H_E \rangle_H$ 几乎不依 赖干强子态;
- 粲夸克动量分数 $\langle x_c \rangle_H$ 在各种正常量 子数的粲偶素中均较大,而在反常量 子数的疑似混杂态中较小。

基于中科院战略先导专项C类No. XDC01040100的支持

格点量子色动力学基础

强子自旋

http://flag.unibe.ch/2021/

	V	S	Α	Т
u	2	6.9(7)	0.77(4)	0.78(3)
d	1	5.8(7)	-0.44(4)	-0.20(2)
S	0	0.53(7)	-0.05(1)	-0.003(2)
u-d	1	1.1(1)	1.27(1)	0.98(3)

电荷数 质子-中子质量差 中子弱衰变

核子矩阵元

- $\overline{\text{MS}}$ 2GeV, $N_{1/2}^+$:
- 标量荷远大于矢量荷;
- 轴矢和张量荷的结果相似(d夸 克贡献反号)
- s中贡献相对较小。

$S = \bar{q}q = \bar{q}_{1/2}^+ q_{1/2}^+ + \bar{q}_{-1/2}^+ q_{-1/2}^+ + \bar{q}_{1/2}^- q_{1/2}^- + \bar{q}_{-1/2}^- q_{-1/2}^-;$ $V_4 = \bar{q}\gamma_4 q = \bar{q}_{1/2}^+ q_{1/2}^+ + \bar{q}_{-1/2}^+ q_{-1/2}^+ - \bar{q}_{1/2}^- q_{1/2}^- - \bar{q}_{-1/2}^- q_{-1/2}^- q_{-1/2}^-;$ $A_3 = \bar{q}_{1/2} \gamma_3 q = \bar{q}_{1/2}^+ q_{1/2}^+ - \bar{q}_{-1/2}^+ q_{-1/2}^+ - \bar{q}_{1/2}^- q_{-1/2}^+ - \bar{q}_{1/2}^- q_{-1/2}^+ - \bar{q}_{1/2}^- q_{-1/2}^- q_{-1/2}^ T_3 = \bar{q}_{1/2} \gamma_4 \gamma_3 q = \bar{q}_{1/2}^+ q_{1/2}^+ - \bar{q}_{-1/2}^+ q_{-1/2}^+ + \bar{q}_{1/2}^- q_{-1/2}^+ q_{-1/2}^+ q_{-1/2}^+ q_{-1/2}^- q_{-1/2}^- q_{-1/2}^+ q_{-1/2}^- q_{$

自旋向上的quark 自旋向下的quark 自旋向上的反quark 自旋向下的反quark

核子矩阵元的Dirac基分解

 $\frac{1+\gamma_4}{2} = \left[\begin{array}{cc} I_2 & 0\\ 0 & 0 \end{array} \right]$ 非极化投影 $\operatorname{Tr}\left[\frac{1+\gamma_4}{2}\langle N | \bar{q} \Gamma q | N \rangle\right]$

$$q_{1/2}^- + \bar{q}_{-1/2}^- q_{-1/2}^-;$$

$$i\gamma_{3}\gamma_{5} = \begin{bmatrix} \sigma_{3} & 0 \\ 0 & -\sigma_{3} \end{bmatrix} \qquad \text{极化投影}$$
$$\Gamma[\frac{1 + \gamma_{4}}{2}i\gamma_{5}\gamma_{3}\langle N | \bar{q}\Gamma q | N \rangle]$$

$$q_{1/2}^- - \bar{q}_{-1/2}^- q_{-1/2}^-;$$

 $= 2 \text{Tr}[\langle N_{1/2}^{+} | \bar{q} \Gamma q | N_{1/2}^{+} \rangle]$

	V	S	Α	Т	$\bar{q}_{1/2}^+ q_{1/2}^+$	$\bar{q}^+_{-1/2}q^+_{-1/2}$	$\bar{q}_{1/2}\bar{q}_{1/2}$	$\bar{q}_{-1/2}^- q_{-1/2}^-$
u	2	6.9(7)	0.77(4)	0.78(3)	~2.6 ~0.	.6 ~1.8	~1.2	~1.2
d	1	5.8(7)	-0.44(4)	-0.20(2)	~1.5 ~0.	.5 ~1.9	~1.3	~1.1
S	0	0.53(7)	-0.05(1)	-0.003(2)	~0.12	~0.15	~0.15	~0.12
u-d	1	1.1(1)	1.27(1)	0.98(3)	~1.1 ~0.	1 ~-0.04	~-0.05	~0.1

- $\overline{\text{MS}}$ 2GeV, $N_{1/2}^+$:
- 反夸克中自旋向上/向下的量差不多;
- s中各种分量贡献都接近;

核子矩阵元的Dirac基分解

- u-d中主要的贡献是来自于自旋向上的quark。
- 也许可以定义出一个对u和d差不多的"sea"贡献

	V	S	Α	Т	$\bar{q}_{1/2}^+ q_{1/2}^+$	$\bar{q}^+_{-1/2}q^+_{-1/2}$	$\bar{q}_{1/2}\bar{q}_{1/2}$	$\bar{q}_{-1/2}^- q_{-1/2}^-$
u	2	6.9(7)	0.77(4)	0.78(3)	~2.6 ~0	.6 ~1.8	~1.2	~1.2
d	1	5.8(7)	-0.44(4)	-0.20(2)	~1.5 ~0	.5 ~1.9	~1.3	~1.1
S	0	0.53(7)	-0.05(1)	-0.003(2)	~0.12	~0.15	~0.15	~0.12
u-d	1	1.1(1)	1.27(1)	0.98(3)	~1.1 ~0	.1 ~-0.04	~-0.05	~0.1

- 上述结果是标度依赖的;
- 重夸克极限下的形式并不清楚;
- 如何与光锥上的部分子分布函数联系也不完全清楚。

核子矩阵元的Dirac基分解

Х

自旋与极化的部分子分布函数

夸克极化 *(u,d,s…): 夸克极化分布函* $\Delta q = \int_0^1 dx \Delta q(x)$ 数 (PDF) 的积分:

胶子极化 (g): 胶子极化分布函数 的积分

0.7

$$\Delta G = \int_0^1 dx \Delta g(x)$$

 夸克模型预言Δu→4/3, Δd→-1/3, Δs→0, $\Delta g \rightarrow 0;$

PDG, CPC40, 100001 (2016)

 但是中子衰变常数要求Δu-Δd ≈ 1.2723(23), 而夸克极化分布函数的唯象分析给出 $\Delta u \sim 0.8$, $\Delta d \sim -0.4$, $\Delta s \sim -0.1$, $\Delta g \sim 0.4$; EPJA52, 268 (2016), 1212.1701

D. Florian, PRL 113, 012001 (2014), 1404.4293

• 核心在于夸克质量很轻, 在质子中可以高速运 动!

The decomposition of the proton spin

Quark spin/helicity: the integration of the quark helicity distribution

$$\Delta q = \int_0^1 dx \Delta q(x) = \int_0^1 dx \int \frac{d\xi^-}{2\pi} e^{-ixP^+\xi^-} \langle PS | \psi_q(\xi^-) \gamma_5 \gamma^+ \mathcal{L}(\xi^-, 0) \psi_q(0) | PS \rangle$$

Glue helicity: that of the quark helicity distribution

$$\Delta G = \int_0^1 dx \Delta g(x) = \int_0^1 dx \frac{i}{2xP^+} \int \frac{d\xi^-}{2\pi} e^{-ixP^+\xi^-} \langle PS|F_a^{+\alpha}(\xi^-)\mathcal{L}^{ab}(\xi^-,0)\tilde{F}_{\alpha,b}^+(0)|PS\rangle$$

The rest parts should be the orbital angular momentums,

$$L_q + L_g = \frac{1}{2} - \frac{1}{2} \sum_{q=u,\bar{u},d,\bar{d},s..} \Delta q - \Delta G$$

Longitudinal proton spin structure

 $\int d^3x \psi^\dagger \left\{ ec{x} imes (iec{
abla})
ight\} \psi$

+ $\int d^3x 2 \operatorname{Tr}[E^i \vec{x} \times \vec{\nabla} A^i]$

Quark and gluon OAM

Naïve spin sum rule:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + l_q^z + l_q^z$$

Proton Spin decomposition From the experiments

Quark spin

$$egin{aligned} &\left\langle ps \left| \left. ec{\mathcal{A}}_{\mu} \cdot ec{s}
ight| ps
ight
angle \ &= \lim_{p'-p o 0} rac{i|ec{s}|}{(ec{p'}-ec{p}) \cdot ec{s}} \langle p', ec{s}
ight
angle \ &= 2m_f \langle p, s| \int d^3x \; ec{x} \cdot ec{s} \; ec{s} \end{aligned}$$

a story behind Δc

 $s|2m_f \mathcal{P}-2irac{lpha_s}{4\pi}F ilde{F}\left|p,s
ight
angle$

 $\mathcal{P}(x)|p,s\rangle - 2i\langle p,s| \int d^3x \ \vec{x} \cdot \vec{s} \ \frac{\alpha_s}{4\pi} F(x)\tilde{F}(x)|p,s\rangle$

Glue helicity

The glue helicity is defined as,

$$\Delta G = \int_0^1 dx \Delta g(x) = \int_0^1 dx \frac{i}{2xP^+} \int \frac{d\xi^-}{2\pi} e^{-ixP^+\xi^-} \langle PS|F_a^{+\alpha}(\xi^-)\mathcal{L}^{ab}(\xi^-,0)\tilde{F}_{\alpha,b}^+(0)|PS\rangle$$

and the glue helicity operator itself can be rewritten into,

$$\begin{split} \tilde{S}_{g} &= \int dx \frac{i}{2xP^{+}} \int \frac{d\xi^{-}}{2\pi} e^{-ixP^{+}\xi^{-}} F_{a}^{+\alpha}(\xi^{-}) \mathcal{L}^{ab}(\xi^{-}, 0) \tilde{F}_{\alpha, b}^{+}(0) & \text{Lett. 111 112002} \\ &= \int dx \frac{i}{2xP^{+}} \int \frac{d\xi^{-}}{2\pi} e^{-ixP^{+}\xi^{-}} 2 \text{Tr}[F^{+\alpha}(\xi^{-})\mathcal{L}(\xi^{-}, 0) \tilde{F}_{\alpha, b}^{+}(0)\mathcal{L}(0, \xi^{-})] \\ &= 2 \text{Tr}\left[\vec{E}(0) \times (\vec{A}(0) - \int \frac{d\xi^{-}}{2\pi} \int dx \ i \frac{e^{-ixP^{+}\xi^{-}}}{2xP^{+}} \mathcal{L}(0, \xi^{-}) \vec{\nabla} A^{+}(\xi^{-})\mathcal{L}(\xi^{-}, 0)) \right] \\ \xrightarrow{A^{+}=0} 2 \text{Tr}[\vec{E}(0) \times \vec{A}(0)] = \vec{E}^{a}(0) \times \vec{A}^{a}(0) \end{split}$$

A possible simplification

A. V. Manohar, Phys. Lett. B255, 579 (1991)

Y. Hatta, Phys. Rev. D84, 041701 (2011),
X. Ji, J.H. Zhang, and Y. Zhao, Phys. Rev.
Lett. 111 112002 (2013)

But it can not be calculated on the lattice directly.

cone gauge. $O_{\Delta_G} = egin{bmatrix} ec{E}^a(0) imes (ec{A}^a(0) - rac{1}{
abla^+} (ec{
abla} A^+) \ ec{A}^+ (ec{A}^+) \ ec{A}^+ (ec{A}^+) \ ec{A}^+ (ec{A}^+) \ ec{A}^+) \ ec{A}^+ (ec{A}^+) \ ec{A}^+ (ec{A}^+) \ ec{A}^+ (ec{A}^+) \ ec{A}^+) \ ec{A}^+ (ec{A}^+) \ ec{A}^+ (ec{A}^+) \ ec{A}^+) \ ec{A}^+ (ec{A}^+) \ ec{A}^+ (ec{A}^+) \ ec{A}^+ (ec{A}^+) \ ec{A}^+) \ ec{A}^+)$

Coulomb gauge

The available gauge conditions

The glue helicity operator equivalent to ExA under the light

$$^{+,b}) \mathcal{L}^{ba}(\xi^{-},0)) igg|^{z} = ec{E}_{LC} imes ec{A}_{LC}, \; A^{+}_{LC} = 0$$

• We have to use the Lorentz in-covariant glue spin (quasi-glue **helicity)** operators to reach it in the large momentum limit:

Or

Hatta, Ji and Zhao, Phys. Lett. B743, 180 (2015)

$$O_{S^t_G}=ec{E}^t imesec{A}^t,\ A^t_0=0$$

Axial gauge

Temporal gauge

or something else...

Glue spin The renormalization and mixing

$$\begin{split} S_{G,(1)}^{\overline{MS}} &= \left(1 - \frac{g^2 N_f}{16\pi^2} [\frac{2}{3} \text{log}(\mu^2 a^2) + 2.41] + \frac{g^2 C_A}{16\pi^2} [- \\ &+ \frac{g^2 C_F}{16\pi^2} [\frac{5}{3} \text{log}(\mu^2 a^2) + 6.99] \sum_{q=u,d,s...} \Delta_q^L \right] \end{split}$$

The scale used by the experiment for the glue helicity is $\mu^2=10 \text{ GeV}^2$

 $-\frac{4}{3}\log(\mu^2 a^2) + \sim 2])S^L_{G,(1)}$

The overlap fermion and Iwasaki gluon with HYP smearing

The dependence

Y. Yang, R. S. Sufian, et al,

 *χ*QCD Collaboration,
 arXiv 1609.05937.

of m_{π} , a, and V

 $\mu^2 = 10 \ GeV^2$

In the rest frame, the pion mass (both valence and sea), lattice spacing and volume dependences are mild.

From glue spin to helicity with Large-momentum effective field theory

- The large finite pieces indicates a convergence problem
- Large frame dependence need resummation.

X. Ji, J.-H. Zhang, and Y. Zhao, Phys. Lett. B743, 180 (2015)

$$\begin{split} S_G(|\vec{p}|,\mu) &= \left[1 + \frac{g^2 C_A}{16\pi^2} \left(\frac{7}{3} \log \frac{(\vec{p})^2}{\mu^2} - 10.2098 \right) \right] \Delta G(\mu) \\ &+ \frac{g^2 C_F}{16\pi^2} \left(\frac{4}{3} \log \frac{(\vec{p})^2}{\mu^2} - 5.2627 \right) \Delta \Sigma(\mu) \\ &+ O(g^4) + O(\frac{1}{(\vec{p})^2}) \;. \end{split}$$

2

At $\mu^2 = 10 \text{ GeV}^2$ and $|\vec{p}| = 1.5 \text{ GeV}$, the factor before ΔG is 0.22, It means that ΔG will be ~ 3 if we apply this matching.

长程格点QCD

据此可以预言胶子极化在 $\mu^2 = 10 \text{GeV}^2$ 的值为

 $S_{G}=0.251(47)(16).$

YBY, R. Sufian, et al., χ QCD collaboration, PRL118, 042001(2017), 1609.05937 ViewPoint and Editor's suggestion

拟合格点数据给出 (忽略紫外圈图修正) :

 $\int_{0.001}^{0.05} \mathrm{d}x \Delta g(x) + \int_{0.05}^{1} \mathrm{d}x \Delta g(x) \simeq S_g$

Proton spin Connections between decompositions

$$\vec{J} = \int d^3x \, \frac{1}{2} \, \overline{\psi} \, \vec{\gamma} \, \gamma^5 \, \psi + \int d^3x \psi^\dagger \, \{\vec{x}, \vec{y}, \vec{y},$$

R. L. Jaffe and A. V. Manohar, NPB337(1990)509

X. Ji, PRL78 (1997) 610, hep-ph/9603249

Proton Spin decomposition Calculation through the EMT form factors

Ji's angular momentum (AM) can be written in terms of the symmetrized energy momentum tensor (EMT) as,

$$J^{q,g}=\langle p,s|\,\int d^3x\,x imes \mathcal{T}^{\{0i\}q,g}|p,s
angle,\qquad \mathcal{T}^{\{0i\}q}=rac{1}{4}ar{\psi}\gamma^{(0}\overleftrightarrow{D}^{i)},\;\mathcal{T}^{\{0i\}g}=ec{E} imesec{B}.$$

, with the form factors of the off-diagonal part of EMT defined by,

$$\begin{aligned} (p',s'|\mathcal{T}^{\{0i\}q,g}|p,s) &= \left(\frac{1}{2}\right)\bar{u}(p',s') \left[T_1(q^2)(\gamma^0 \bar{p}^i + \gamma^i \bar{p}^0) + \frac{1}{2m}T_2(q^2)\left(\bar{p}^0(i\sigma^{i\alpha}) + \bar{p}^i(i\sigma^{0\alpha})\right)q_\alpha \right. \\ &+ \left.\frac{1}{m}T_3(q^2)q^0q^i\right]^{q,g}u(p,s), \end{aligned}$$

Ji's quark and glue AM correspond to the forward limit of the form factor combination,

$$J^{q,g} = \frac{1}{2} [T_1(0)]$$

X. Ji, PRL78 (1997) 610, hep-ph/9603249

Angular momenta **YBY**, χQCD collaboration, 1904.04138 as the second moment of GPDs

Proton spin

Glue **AM** Quark **AM** $\vec{J} \equiv \int d^3x \, \frac{1}{2} \, \overline{\psi} \, \vec{\gamma} \, \gamma^5 \, \psi + \int d^3x \psi^\dagger \left\{ \vec{x} \times (i\vec{D}) \right\} \psi \ + \ \int d^3x 2 \left\{ \vec{x} \times \text{Tr}[\vec{E} \times \vec{B}] \right\}$

Quenched result

2-flavor result

1-loop perturbative renormalized

Lattice result of Ji AM

Proton spin

	$u(\mathrm{CI})$	$d(ext{CI})$	$u/d({ m DI})$	$s(\mathrm{DI})$	Sum^q	glue	Sum
$\langle x angle$	0.233(12)(26)	0.085(5)(3)	0.065(6)(2)	0.043(6)(4)	0.491(20)(23)	0.509(20)(23)	1.0
2J	0.319(22)(63)	0.017(9)(23)	0.075(7)(16)	0.052(6)(10)	0.539(22)(44)	0.461(22)(44)	1.0
T_2	0.086(22)(37)	-0.067(9)(26)	0.010(7)(14)	0.010(6)(14)	0.048(22)(21)	-0.048(22)(21)	0.0
g_A [13]	0.917(13)(28)	-0.337(10)(10)	-0.070(12)(15)	-0.035(6)(7)	0.405(25)(37)	•••	•••
2L	-0.598(22)(63)	0.354(9)(23)	0.145(7)(16)	0.087(6)(10)	0.134(22)(44)	•••	•••

Lattice result of Ji AM

G. Wang, χ QCD collaboration, PRD106(2022) 014512

Charmonia spin Lattice result of Ji AM

- 粲偶素中的夸克更重,从而更接近传统的夸克模型;
- 自旋的Ji分解中的夸克自旋与轨道角动量,在粲偶素中应该具有更清晰的物理含义。

	J^{PC}	quark spin (S_q^R)	quark orbital angular momentum (L_q^R)	gluon angular momentum
S = 1, L = 0	1	0.893(2)	-0.11(04)	0.21(04)
S = 1, L = 1	1^{++}	0.448(25)	0.36(15)	0.19(15)
S = 0, L = 1	1^{+-}	0.12(12)	0.70(19)	0.18(19)
S = 1, L = 1	$2^{++}(J_z = 1)$	0.436(11)	0.37(15)	0.19(15)
$S = 1, L = 0, L_g = 0$?	0.44(22)		
$J \qquad f \qquad S \qquad 1^{}$	$J \qquad f \qquad L \\ 1^{+-}$	J $\frac{1}{1^{++}}, 2^{++}$	•初步结果显示, 粲偶素中满足极	夸克自旋与轨道角动量 化投影定则。

总结

- 供与实验独立的窗口,揭示强相互作用的奥秘:
- 有很大的贡献;
- 中已经不太重要。

• 格点量子色动力学(格点QCD)依托超级计算机,能够提

• 在包括质子与粲偶素在内的各种强子的质量中,胶子都

• 在质子自旋中非微扰效应非常明显, 但是在基态粲偶素