

Applications of heavy ion physics methodology

Qipeng Hu (胡启鹏) USTC HAPOF, June 9, 2023

Hadron Physics Online Forum (HAPOF)

Quark-gluon plasma (QGP)

Credit: Antonin Maire, CERN-THESIS-2011-263

Qipeng Hu (USTC), HAPOF, June 9, 2023

What we are learning from QGP

- Property of QGP
- QCD matter phase transition
- Color confinement
- Probing early universe

Heavy ion programs at RHIC and LHC since 2010

- Have we discovered QGP in experiment?
- We have defined QGP as a new phase of QCD matter!

Life of QGP at collider

Application of **soft** sector methodology

Soft particle correlation in heavy ion collisions

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + \left(2\sum_{n} v_{n} \cos\left(n(\phi - \Psi_{n})\right)\right)$$

$$v_n = \langle \cos(n(\phi - \Psi_n)) \rangle \sim \sqrt{\langle \cos(n(\phi_1 - \phi_2)) \rangle}$$

Soft particle correlation in heavy ion collisions

- Observable: azimuthal anisotropy using Fourier decomposition coefficients
- Interpretation: Collective flow from hydrodynamic evolution of $QGP \rightarrow strongly coupled fluid$

Qipeng Hu (USTC), HAPOF, June 9, 2023

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + \left(2\sum_{n} v_{n} \cos\left(n(\phi - \Psi_{n})\right)\right)$$

$$v_n = \langle \cos(n(\phi - \Psi_n)) \rangle \sim \sqrt{\langle \cos(n(\phi_1 - \phi_2)) \rangle}$$

1.02

Pb-Pb s_{NN}=2.76 TeV $L_{int} = 8 \propto b^{-1} 0.5\%$

Construct two particle angular correlation

Two-particle correlations from different collisions

Pb+Pb

Xe+Xe

Large system

Qipeng Hu (USTC), HAPOF, June 9, 2023

p+Pb

 γ +Pb

p+p

Small system

Removing known angular correlation **2.** inter-jet correlation subtraction Long-range^{*} correlation / Ridge Unknown = Measured - Known $\Upsilon(\Delta \phi)$ 5.8 ATLAS 0.5<p_T^{a,b}<5 GeV</td> pp \s=13 TeV, 64 nb⁻¹ 2<|Δη|<5</td> "Flow" = Measured - "non-flow" 5.75⊢N^{rec}≥90 $Y(\Delta \phi)$ $FY^{periph}(\Delta\phi) + G$ 5.7 $\prime^{\text{templ}}(\Delta \phi)$ Resonance 5.65 $(\Delta \phi) + FY^{per}$ Inter-jet correlation decay G + FY'5.6 Intra-jet fragmentation (1). $|\Delta \eta|$ gap: $|\Delta \eta| > 2$ 5.55 2 $\mathbf{0}$ $\sqrt[n]{g}$ ∇u C(∆ŋ,∆∳) C(∆ŋ,∆∳) C(Δη,Δφ) C(Δη,Δφ) correlation at $\Delta \phi \sim \pi$ 0.98 0.98 from low multiplicity collisions 2́ ⊲ø -2 4 $\mathbb{D}^{\mathcal{U}}$ 0 -2 2́ ⊲ø \sum_{0}^{n} of v_n is almost model-independent Qipeng Hu (USTC), HAPOF, June 9, 2023

- With $|\Delta \eta| > 2$, the only known source is inter-jet
- Removed using inter-jet correlation template, often
- Fourier decomposition, extracted v_n magnitude depends on inter-jet correlation modeling, but sign

1D long-range correlation in different systems

Extracted anisotropies in hadronic collisions

Physics implication

Credit: MUSIC arXiv:1209.6330

QGP formed in small collisions:

- What are the boundary conditions? Size/energy threshold?
- Implication for hard-QCD measurements?

No QGP formed in small collisions:

- What is the origin of measured correlation?
- Implication for hard-QCD measurements?
- Implication for large system correlation measurement?

13

Physics implication — cont.

Credit: MUSIC arXiv:1209.6330

QGP formed in small collisions:

- What are the boundary conditions? Size/energy threshold?
 - Long-range azimuthal correlation observed in all examined hadronic collisions
 - Boundary not reached
 - A phenomenon without size/energy threshold (present in hadrons themselves)
- Implication for hard-QCD measurements?

14

p+p collisions in Pythia8

Modeling of hard scattering in p+p collision from Pythia8

Credit: Pythia8.3 arXiv:2203.11601

Qipeng Hu (USTC), HAPOF, June 9, 2023

If there is QGP-like matter created in p+p collisions, we have missed it in our modeling (eg. Pythia8)

Potential impact on general QCD measurements:

- Does the anisotropy created by underlying event depend on presence of hard process?
- Does hard process exhibit the same anisotropy?

Soft particle anisotropy in Z/jet events

• Does the anisotropy created by underlying event depend on presence of hard process?

 \rightarrow Soft particle v₂ shows no obvious dependence on the presence of hard process

ATLAS, EPJC 80 (2020) 64 ATLAS, arXiv:2303.17357, submitted to PRL

- Qipeng Hu (USTC), HAPOF, June 9, 2023

Anisotropy of hard process

- Charm-soft correlation, $v_2 > 0$
- Bottom-soft correlation, $v_2 = 0$
- Jet particle-soft correlation, $v_2 = 0$ \bullet

ATLAS, PRL 124 (2020) 082301 ATLAS, arXiv:2303.17357, submitted to PRL

- Does hard process exhibit the same anisotropy?
 - Charm hadron shows similar anisotropy as inclusive hadrons
 - Very hard process is not correlated with soft particles.

-2

Belle + MIT arXiv:2201.01694 (submitted to PRL) arXiv:2206.09440

- Two-particle angular correlation is also applied to Belle data ($N_{trk}^{rec} \ge 12$)
- meson decay systems

Qipeng Hu (USTC), HAPOF, June 9, 2023

Two-particle correlation in e+e- collider — cont.

Observed ridge yield attribute to special event topology and thrust axis alignment in two B

Summary on small system two-particle correlation

- Azimuthal anisotropy of inclusive particles is observed in all hadronic collisions
- Azimuthal anisotropy of hard QCD process depends on its hardness:
 - Low p_T charm similar anisotropy as soft light hadrons
 - Intermediate p_T charm probing the switch between hard-soft correlation ??
 - Hard jet fragments / bottom no significant anisotropy
- No significant anisotropy observed in e+p or e+e- collisions

Application of hard sector methodology

Hard Probes of QGP

Hard probes:

- Created in the early stages of QGP formation
- Reliable pQCD calculations
- Triggered and detected easily
- Ideal hard probes: energetic jets, heavy flavor hadrons

QGP induced energy loss Transportation

Dissociation due to color screening

Nuclear modification factor

 $R_{AA} < 1$ due to presence of QGP

Centrality in Pb+Pb collisions at ATLAS **Energy deposition in FCal in MinBias Pb+Pb collisions**

PLB 789 (2019) 167

Number of participanting nucleon ~ 34 Number of binary collisions ~ 50

Qipeng Hu (USTC), HAPOF, June 9, 2023

Map to collisions geometry via MC Glauber

Color screening

- Simple quarkonium potential in vacuum:
- Simple static potential with screening:
- Color screening effect depends on resonance size

Temperature of gluonic heat bath

Correlation length between $qar{q}$

 $V(r) = -\frac{\alpha}{r} + kr$ $V(r) = -\frac{\alpha}{-r/\lambda_D}$

Color screening in experiments

Sequential melting of Upsilon(nS)

Qipeng Hu (USTC), HAPOF, June 9, 2023

CMS, PRL 120 (2018) 142301 ATLAS, PRC 107 (2023) 054912

Quarkonium binding energy vs. RAA

CMS, arXiv:2303.17026, submitted to PRL EPJC 78 (2018) 731

$$f_{\rm pp}^{\psi/\Upsilon}(E_{\rm b}) \equiv \left(\frac{\sigma^{\rm dir}(\psi/\Upsilon)}{\sigma(2m_Q)}\right)_{\rm pp} = \left(\frac{E_{\rm b}}{E_0}\right)^{\delta}$$
$$f_{\rm PbPb}^{\psi/\Upsilon}(E_{\rm b},\epsilon) \equiv \left(\frac{\sigma^{\rm dir}(\psi/\Upsilon)}{\sigma(2m_Q)}\right)_{\rm PbPb} = \left(\frac{E_{\rm b}-\epsilon}{E_0}\right)^{\delta}$$

Charmonium-like exotic hadron — X(3872)

- X(3872), aka $\chi_{c1}(3872)$, is the first and most-studied
- Still with unknown structure and production mechanism:

1.7 nb⁻¹ (PbPb 5.02 TeV)

Qipeng Hu (USTC), HAPOF, June 9, 2023

CMS, PRL 128 (2022) 032001

handantadantadantad

However color screening is not the only factor

Color screening

Quark recombination

Other effects:

- Feed down contribution
- Quark recombination
- Parton energy loss

ATLAS, EPJC 78 (2018) 762

Energy loss

X(3872) in HIC — theoretical expectations

Recombination in AMPT at hadronic stage Rate controlled by *D* meson rates

Centrality dependence of X(3872) production could provide critical input

Qipeng Hu (USTC), HAPOF, June 9, 2023

Consider transport in medium at hadronic stage

Eq_{init} Tetraquark Mol T_{diss}=180MeV Eq_{final} _Mol T_{diss}=140MeV N_X/dy/N_{Coll} (10⁻⁶) 3 2 **Tetraquark** σ Molecule 0 100 200 300 400 \mathbf{O} N_{part}

X(3872) in HIC – experimental challenges

 $X(3872) \rightarrow J/\psi \pi \pi$ major background:

• Combinatorial from <u>randomly</u> distributed pions produced from the same vertex!

Every true J/ψ can form ~20 $\psi(2S) \rightarrow J/\psi \pi \pi$ candidates passing realistic selections

Pythia8 + HIJING (heavy ion event generator)

Pythia8

Summary

Heavy ion physics program is rich and growing

Heavy ion collision/methodology is useful for general high energy physics:

- Long-range azimuthal correlation in hadronic collisions (QGP formation, hadron structure)
- Nature of exotic hadrons
- UPC as photo-nuclear, gamma-gamma interaction sources
- Nuclear structure

Backup slides

Heavy ion beam as gamma source

•

-

- $\gamma\gamma \rightarrow \gamma\gamma$
- $\gamma\gamma \rightarrow \tau\tau (\tau g-2)$
- $\gamma\gamma \rightarrow$ exotica
- Monopole search
- Graviton search

Cons:

- Large photon flux
- Negligible pile-up

Pros:

- low luminosity
- No control on photon energy

Recorded Pb+Pb luminosity at ATLAS

ATLAS detector

