

High Precision Proton Charge Radius Experiments at Jefferson Lab

- Weizhi Xiong (熊伟志)
- 山东大学
- 第六十九届强子物理在线论坛
- May 19th 2023

Outline

➢Intro to Proton Charge Radius Puzzle

Recent Progress from *ep* Scattering Experiments

Remaining Issues for Lepton Scattering

Future Lepton Scattering Experiments

≻Summary

General Info on r_p

- Nucleons (protons and neutrons) make up over 99% of the mass of visible universe
- Proton charge radius (r_p) :
 - 1. Related to spacial distribution of proton's charge
 - 2. Important for understanding how QCD works
 - 3. Critical in determining Rydberg constant (R_{∞})
 - 4. Input to the bound state QED calculation for atomic hydrogen energy levels

How to Measure

- Two different methods for measuring *r*_p
 - 1. Hydrogen spectroscopy (atomic physics)
 - Ordinary hydrogen
 - Muonic hydrogen

(a) Electronic absorption transition

How to Measure

- Two different methods for measuring *r*_p
 - 1. Hydrogen spectroscopy (atomic physics)
 - Ordinary hydrogen
 - Muonic hydrogen
 - 2. Lepton-proton elastic scattering (nuclear physics)
 - > *ep* elastic scattering (like PRad)
 - \rightarrow µp elastic scattering (like MUSE)

Weizhi Xiong

 $E_{nj} = mc^2 f(n,j) \,,$

 $E_{nj} = mc^2 f(n,j) \,,$

 $-\frac{1}{2}$

- Lamb shift measured in 1947
- Transition frequency about 1 GHz
- Largely dominated by electron self-energy

- Lamb shift contains (in decreasing order)
 - 1. Radiative correction (RC)
 - 2. Recoil term
 - 3. RC-recoil mixing term

Ordinary Hydrogen v.s. Muonic Hydrogen

- One can do this with ordinary hydrogen or muonic hydrogen
- Muon is ~200 times heavier than electron
- Orbit much closer to proton, more sensitive to proton size

$$\langle r^{\text{orbit}} \rangle \simeq \frac{\hbar}{Z \alpha \, m_r c} \, n^2$$

Proton finite size effect in 2S-2P: 2% in μ H, 0.015% in H

Unpolarized *ep* Elastic Scattering

Elastic ep scattering, in the limit of Born • approximation (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon} G_M^{p\,2}(Q^2)\right)$$

$$Q^2 = 4EE'\sin^2\frac{\theta}{2} \qquad \tau = \frac{Q^2}{4M_p^2} \qquad \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1}$$

- $G_E(G_M)$ is the electric (magnetic) form factor
- Structure-less and spin-less proton:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{\alpha^2 \left[1 - \beta^2 \sin^2 \frac{\theta}{2}\right]}{4k^2 \sin^4 \frac{\theta}{2}}$$

 2θ

Unpolarized ep Elastic Scattering

• Elastic ep scattering, in the limit of Born approximation (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon}G_M^{p\,2}(Q^2)\right)$$

$$Q^2 = 4EE'\sin^2\frac{\theta}{2} \qquad \tau = \frac{Q^2}{4M_p^2} \qquad \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1}$$

- $G_E(G_M)$ is the electric (magnetic) form factor
- Structure-less and spin-less proton:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{\alpha^2 \left[1 - \beta^2 \sin^2 \frac{\theta}{2}\right]}{4k^2 \sin^4 \frac{\theta}{2}}$$

Taylor expansion of G_{E} at low Q^2

$$G^{p}_{E}(Q^{2}) = 1 - \frac{Q^{2}}{6} \langle r^{2} \rangle + \frac{Q^{4}}{120} \langle r^{4} \rangle + \dots$$

Derivative at low Q² limit

$$\left| \left\langle r^2 \right\rangle = - \left. 6 \left. \frac{d G^p_E(Q^2)}{d Q^2} \right|_{Q^2 = 0} \right|_{Q^2 = 0}$$

Weizhi Xiong

Physical Interpretation of G_E

• Classical interpretation: in Breit frame and non-relativistic static system

$$G_{E,M}(Q^2) = \int \rho(\vec{r}) e^{i\vec{q}\cdot\vec{r}} d^3\vec{r} = \int \rho(\vec{r}) d^3\vec{r} - \frac{\vec{q}^2}{6} \int \rho(\vec{r}) \vec{r}^2 d^3\vec{r} + \dots \qquad \underbrace{p_B = \left(E_B, \vec{p}_B = -\frac{1}{2}\vec{q}_B\right)}_{p_B = \left(E_B, \vec{p}_B = -\frac{1}{2}\vec{q}_B\right)} \qquad \underbrace{q_B = (v = 0, \vec{q}_B)}_{q_B = (v = 0, \vec{q}_B)}$$

- Not rigorous, lots of research activities to refine the interpretation:
 - Y. Chen (陈毅) and C. Lorcé, *PRD* 106 (2022) 11, 116024
 - E. Epelbaum *et al. PRL* 129 (2022) 1, 012001
 - R. L. Jaffe *PRD* 103 (2021) 1, 016017

- C. Lorcé *PRL* 125 (2020) 23, 232002
- G. A. Miller, *PRC* 99 (2019) 3, 035202
- Y. Li (李阳)*et al. PLB* 838 (2013) 137676

- Charge radius is defined for FF slope
- For both scattering and hydrogen spectroscopy, we are going after $G'_E(0)$

. . .

Unpolarized ep Elastic Scattering

- Large amount of overlapping data sets
- Statistical error $\leq 0.2\%$
- Luminosity monitoring with spectrometer
- $Q^2 = 0.004 1.0 (GeV/c)^2$
- result: *r_p* =0.8791(79) fm

J.C. Bernauer et al. PRL. 105 (2010) 242001

Proton Charge Radius

Proton Charge Radius Puzzle

Weizhi Xiong

Proton Charge Radius Puzzle

Weizhi Xiong

Outline

>Intro to Proton Charge Radius Puzzle

Recent Progress from *ep* Scattering Experiments

Remaining Issues for Lepton Scattering

Future Lepton Scattering Experiments

≻Summary

Jefferson Lab

- Thomas Jefferson National Accelerator Facility (JLab), Newport News, VA
- Completed 6 GeV to 12 GeV upgrade in 2015
- 4 experimental Halls
- PRad data taking May/June 2016, with 1.1 GeV and 2.2 GeV electron beams

Be

- Two large area **GEM** detectors
- Small overlap region in the middle
- **Excellent** position resolution (72 μ m)

- Hybrid EM calorimeter (HyCal)
 - Inner 1156 PbWO₄ modules
 - Outer 576 lead glass modules
- Scattering angle coverage: $\sim 0.7^{\circ}$ to 7.0°
- Full azimuthal angle coverage
- High resolution and efficiency

Large acceptance, small angle and non-spectrometer apparatus

- At each beam energy, different Q² data collected at the same time
- Covers two orders of magnitude in low Q² with the same detector setting
 - ➤ ~2x10⁻⁴ 6x10⁻² GeV²

Weizhi Xiong

Large acceptance, small angle and non-spectrometer apparatus

- At each beam energy, different *Q*² data collected at the same time
- Covers two orders of magnitude in low Q² with the same detector setting
 - ➤ ~2x10⁻⁴ 6x10⁻² GeV²
- Unprecedented low $Q^2 (\sim 2 \times 10^{-4} \text{ GeV}^2)$

Large acceptance, small angle and non-spectrometer apparatus

- At each beam energy, different Q² data collected at the same time
- Covers two orders of magnitude in low Q² with the same detector setting
 - ➤ ~2x10⁻⁴ 6x10⁻² GeV²
- Unprecedented low $Q^2 (\sim 2 \times 10^{-4} \text{ GeV}^2)$
- Extreme forward angles (0.7° to 7°), minimize G_M contribution

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon}G_M^{p\,2}(Q^2)\right)$$

Large acceptance, small angle and non-spectrometer apparatus

- At each beam energy, different *Q*² data collected at the same time
- Covers two orders of magnitude in low Q² with the same detector setting
 - ~2x10⁻⁴ 6x10⁻² GeV²
- Unprecedented low $Q^2 (\sim 2 \times 10^{-4} \text{ GeV}^2)$
- Extreme forward angles (0.7° to 7°), minimize G_M contribution
- Normalize to the simultaneously measured Møller scattering process

Cluster energy E' vs. scattering angle θ (1.1GeV)

Analysis – Background Subtraction

- Runs with different target condition taken for background subtraction and studies for the systematic uncertainty
- Developed simulation program for target density (COMSOL finite element analysis)

Analysis – Background Subtraction (2.2 GeV)

- ep background rate ~ 10% at forward angle (<1.1 deg, dominated by upstream beam halo blocker), less than 2% otherwise
- ee background rate ~ 0.8% at all angles

Residual hydrogen gas: hydrogen gas filled during background runs

Analysis – Background Subtraction (2.2 GeV)

- ep background rate ~ 10% at forward angle (<1.1 deg, dominated by upstream beam halo blocker), less than 2% otherwise
- ee background rate ~ 0.8% at all angles

Residual hydrogen gas: hydrogen gas filled during background runs

Analysis – Inelastic ep Contribution

- Using Christy 2018 empirical fit to study inelastic ep contribution
- Good agreement between data and simulation
- Negligible for the PbWO₄ region (<3.5°), less than 0.2%(2.0%) for 1.1GeV(2.2GeV) in the Lead glass region

Proton Electric Form Factor G_E^p $r_p = 0.831 + 0.007 \text{ (stat.)} + 0.012 \text{ (syst.) fm}$

W. Xiong et al. Nature 575 (2019) 7781

X. Yan et al. PRC 98, 025204 (2018))
Current Status on Proton Charge Radius

Other Results from Global Analysis and Lattice QCD

Lattice QCD

Weizhi Xiong

WX and Chao Peng (彭潮) arXiv:2302.13818

Outline

➢Intro to Proton Charge Radius Puzzle

Recent Progress from ep Scattering Experiments

Remaining Issues for Lepton Scattering

Future Lepton Scattering Experiments

≻Summary

- Need other experiments to confirm/reject PRad result
- Is r_p the same in lepton scattering and spectroscopy?
 - > C. Peset et al. Prog. Part. Nucl. Phys. 121 (2021) 103901

- Need other experiments to confirm/reject PRad result
- Is r_p the same in lepton scattering and spectroscopy?
 C. Peset *et al. Prog. Part. Nucl. Phys.* 121 (2021) 103901
- Why G_E data are different?
 - 1. Problem with RC?
 - 2. Unknown systematics?

- Need other experiments to confirm/reject PRad result
- Is r_p the same in lepton scattering and spectroscopy?
 C. Peset *et al. Prog. Part. Nucl. Phys.* 121 (2021) 103901
- Why G_E data are different?
 - 1. Problem with RC?
 - 2. Unknown systematics?
 - 3. Problem with fitting procedure?

- Need other experiments to confirm/reject PRad result
- Is r_p the same in lepton scattering and spectroscopy?
 C. Peset *et al. Prog. Part. Nucl. Phys.* 121 (2021) 103901
- Why G_E data are different?
 - 1. Problem with RC?
 - 2. Unknown systematics?
 - 3. Problem with fitting procedure?
 - 4. Problem with G_M and r_M ?
 - 5. ...
- ➢ G. Lee *et al.* PRD 92 013013:
 - 0.776(38) fm for Mainz data
 - 0.914(35) fm for world data excluding Mainz

- Need other experiments to confirm/reject PRad result
- Why G_E data are different?
 - 1. Problem with RC?
 - 2. Unknown systematics?
 - 3. Problem with fitting procedure?
 - 4. Problem with G_M and r_M ?
 - 5. ...
- Maybe new physics is still there...

- Need other experiments to confirm/reject PRad result
- Is r_p the same in lepton scattering and spectroscopy?
 C. Peset *et al. Prog. Part. Nucl. Phys.* 121 (2021) 103901
- Why G_E data are different?
 - 1. Problem with RC?
 - 2. Unknown systematics?
 - 3. Problem with fitting procedure?
 - 4. Problem with G_M and r_M ?
 - 5. ...
- Maybe new physics is still there...

Need future lepton scattering experiments with higher precision!

Outline

➢Intro to Proton Charge Radius Puzzle

Recent Progress from ep Scattering Experiments

Remaining Issues for Lepton Scattering

Future Lepton Scattering Experiments

≻Summary

Highlights of Future Lepton Scattering Experiments

• MUSE experiment at PSI

- First r_p measurement using muon
- ▶ 4 types of incident leptons: e^{\pm} and μ^{\pm}

• AMBER experiment at CERN

- 100 GeV muon beam, detecting scattered muon and recoiled proton
- \succ Ultra-small scattering angle, minimize G_M
- Smaller RC for muon
- PRES experiment at Mainz
 - detecting both scattered electron and recoiled proton
 - Q2 reconstructed using proton, suppress RC
- MAGIX experiment at Mainz
 - Using jet target
 - \succ Strong sensitivity on both G_E and G_M
- ULQ2 experiment at Tohoku University, Japan
 - Normalize to the well-known e-¹²C cross section
 - Strong sensitivity on both G_E and G_M

WX and Chao Peng (彭潮) arXiv:2302.13818

Projected Q² coverage

PRad-II Experiment

- JLab PAC 48 approved PRad-II (PR12-20-004) with the highest scientific rating "A"
- Goal: reach ultra-high precision (~4 times smaller total uncertainty), resolve tension between modern *e-p* scattering results

PRad-II Experiment

- Adding tracking capacity (second GEM plane)
 - Improve GEM efficiency measurement
 - Vertex-z reconstruction for *ep* to reject upstream background

- Upgraded HyCal with all high resolution PbWO₄ modules
 - Better energy resolution: 2.4% v.s. 6.0% from LG
 - Better position resolution
 - Better non-linearity response

- Upgraded HyCal with all high resolution PbWO₄ modules
 - Better energy resolution: 2.4% v.s. 6.0% from LG
 - Better position resolution
 - Better non-linearity response

- Upgraded HyCal with all high resolution PbWO₄ modules
 - Better energy resolution: 2.4% v.s. 6.0% from LG
 - Better position resolution
 - Better non-linearity response
- Currently seeking funding or used modules for the upgrade

spectrum for $6.0^{\circ} < \theta < 7.0^{\circ}$ ($Q^{2} \sim 0.059 \text{ GeV}^{2}$)

- Convert to FADC based readout for HyCal
- Four times smaller stat. uncertainty

- Better RC calculating including NNLO diagrams
- New scintillating detectors, help reaching $Q^2 \sim 10^{-5} \text{ GeV}^2$

Projected Results

Deuteron Charge Radius Puzzle and DRad Experiment

- Similar 7σ discrepancy exists between μD and D spectroscopy ("deuteron charge radius puzzle")
- Previous ed scattering precision not good enough, need better data
- Use mostly PRad setup with additional recoil detector for deuteron detection
- Plan to submit proposal this year to JLab

X17 Particle Search Experiment

- Search for new 3-60 MeV dark hidden sector particle using PRad setup
- Currently approved with highest scientific rating "A"
- Motivated by multiple recent anomalies:
 - 1. ⁸Be anomaly and the X17 particle
 - 2. Astronomical small structure
 - 3. muon g-2

56

X17 Particle Search Experiment

Weizhi Xiong

Summary

- PRad measured r_p using novel scattering technique: $r_p = 0.831 + 0.007 \text{ (stat.)} + 0.012 \text{ (syst.) fm} (Nature 575 (2019) 7781)$
- Puzzle considered partially resolved, but many problems remain, particularly in lepton scattering
 - $> r_p$ definition between scattering and spectroscopy
 - Form factor difference between PRad and Mainz data
- Many future lepton scattering experiments will help address these issues, and push precision frontier
 - PRad-II experiment with $\delta_r \sim 0.0036$ fm, will be most precise scattering result, new search for lepton-universality violation

Summary

- PRad measured r_p using novel scattering technique: $r_p = 0.831 + 0.007 \text{ (stat.)} + 0.012 \text{ (syst.) fm} (Nature 575 (2019) 7781)$
- Puzzle considered partially resolved, but many problems remain, particularly in lepton scattering
 - $> r_p$ definition between scattering and spectroscopy
 - Form factor difference between PRad and Mainz data
- Many future lepton scattering experiments will help address these issues, and push precision frontier
 - PRad-II experiment with $\delta_r \sim 0.0036$ fm, will be most precise scattering result, new search for lepton-universality violation

Thank you for your attention and we welcome all physics ideas

Backup

PRad-II Uncertainty Budget

Item	PRad δr_p [fm]	PRad-II δr_p [fm]	Reason
Stat. uncertainty	0.0075	0.0017	more beam time
GEM efficiency	0.0042	0.0008	2nd GEM detector
Acceptance	0.0026	0.0002	2nd GEM detector
Beam energy related	0.0022	0.0002	2nd GEM detector
Event selection	0.0070	0.0027	2nd GEM + HyCal upgrade
HyCal response	0.0029	negligible	HyCal upgrade
			better vacuum
Beam background	0.0039	0.0016	2nd halo blocker
			vertex res. $(2nd \text{ GEM})$
Radiative correction	0.0069	0.0004	improved calc.
Inelastic ep	0.0009	negligible	_
G_M^p parameterization	0.0006	0.0005	HyCal upgrade
Total syst. uncertainty	0.0115	0.0032	
Total uncertainty	0.0137	0.0036	

Extracting Form Factors

• One of the methods for form factor extraction is the well know Rosenbluth separation:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon}G_M^{p\,2}(Q^2)\right)$$
$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{reduced}} = G_M^{p\,2}(Q^2) + \frac{\epsilon}{\tau}G_E^{p\,2}(Q^2)$$
$$\tau = \frac{Q^2}{4M_p^2} \qquad \varepsilon = \left[1+2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1}$$

Extracting Form Factors

 One of the methods for form factor extraction is the well know Rosenbluth separation:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon} G_M^{p\,2}(Q^2)\right)$$
$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{reduced}} = G_M^{p\,2}(Q^2) + \frac{\epsilon}{\tau} G_E^{p\,2}(Q^2)$$
$$\tau = \frac{Q^2}{4M_p^2} \qquad \varepsilon = \left[1+2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1}$$

- Measure $\sigma_{\rm reduced}$ at same Q² but different values of ϵ
- G_E^p and G_M^p determined as slope and intersection from fits

C. F. Perdrisat, V. Punjabi and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 59, 694 (2007)

Ordinary Hydrogen Measurement

Ordinary Hydrogen v.s. Muonic Hydrogen

Hydrogen Spectroscopy

- Small splitting measurements:
 - States with the same n
 - Precise knowledge of R_{∞} not required
- 2. Large splitting measurements:
 - States with different n
 - Precision on R_{∞} not good enough
 - At least need two different transition
 - Solve for r_p and R_{∞} at the same time

Polarized ep Elastic Scattering

(longitudinally polarized electron beam and recoil proton polarization measurement)

• Extract form factor ratio by measuring polarization of recoil proton:

$$\frac{G_E}{G_M} = -\frac{P_y}{P_z} \frac{E+E'}{2m} \tan \frac{\theta_e}{2}.$$

- Couple with cross section measurement to separate form factors
- Reduce many typical systematics for RS

Polarized *ep* Elastic Scattering (Polarized electron – polarized proton measurement)

• Elastic scattering asymmetry (longitudinally polarized beam, polarized target):

$$A_{phys} = \frac{v_z \cos \theta^* G_M^{p-2} + v_x \sin \theta^* \cos \phi^* G_M^p G_E^p}{(\tau G_M^{p-2} + \epsilon G_E^{p-2}) / [\epsilon (1+\tau)]},$$
$$A_{exp} = P_b P_t A_{phys}$$

 Form factor ratio can be obtained from two experimental asymmetries (A_l and A_r), at same Q² but with different target spin orientations

BLAST pioneered the technique, later also used in Jlab Hall A experiment

Timelike Form Factor

Unpolarized *ep* Elastic Scattering (First measurement of proton charge radius)

- started with Robert Hofstadter
 - Nobel prize in physics (1961): ... for his pioneering studies of electron scattering in atomic nuclei and for his consequent discoveries concerning the structure of nucleons ..."

Unpolarized *ep* Elastic Scattering (First measurement of proton charge radius)

- started with Robert Hofstadter
 - Nobel prize in physics (1961): ... for his pioneering studies of electron scattering in atomic nuclei and for his consequent discoveries concerning the structure of nucleons ..."
- The Proton rms charge radius in 1956 was measured to be:
 - > 7.8 10⁻¹⁴ cm (0.78 fm)

Hofstadter, McAllister, Phys. Rev. 102, 851 (1956).

• Over 60 years of experimentation

Mainz Initial State Radiation (ISR) Experiment

- Using ISR technique to reach lower Q²: 0.001 to 0.016 GeV²
- Final result: $rp = 0.878 + -0.011_{stat.} + -0.031_{syst.} + -0.002_{mod.}$ fm

Mainz Jet Target Experiment

- Using novel gas-jet target, but limited by statistics
- Fit to PRad: $\chi^2_{reduced} = 0.97$, fit to Mainz $\chi^2_{reduced} = 1.75$

Searching the Robust Fitters

- Various fitters tested with a wide range of G_E parameterizations, using PRad kinematic range and uncertainties (X. Yan *et al.* PRC 98, 025204 (2018))
- Rational (1,1), 2nd order z transformation and 2nd order continuous fraction are identified as robust fitters with also reasonable uncertainties
- Typically a floating parameter n is included to take care normalization uncertainties

Other Results from Global Analysis and Lattice QCD

Lattice QCD

WX and Chao Peng (彭潮) arXiv:2302.13818

MUSE Experiment

- First r_p measurement using muon
 4 types of incident leptons: e[±] and μ[±]
- Direct test for lepton-universality violation
- Different beam polarity can constrain • two-photon exchange
- Currently taking data at PSI

AMBER and PRES Experiments

- AMBER@CERN uses high energy (~100 GeV) muon beam
- PRES@Mainz uses 720 MeV electron beam
- Both use time-projection chamber as active target, detecting both scattered electron and recoil proton
- Q² can be reconstructed by recoil proton, largely suppress radiative effect

ULQ2 Experiment

- ULQ2 experiment at Tohoku University, Japan
- 20-60 MeV electron beam
- Normalize to the well-established $e^{-12}C$ cross section
- Rosenbluth separation to measure both G_E and G_M
- Projected uncertainty for $G_E \sim 0.1\%$
- Q²: 3 x 10⁻⁴ ~ 8 x 10⁻³ GeV²

MAGIX Experiment

- Will use the new MESA accelerator at Mainz (under construction), 20-105 MeV electron beam up to 1 mA
- Will use the fully tested jet target and two new multi-purpose spectrometers
- Strong sensitivity on both $G_{\rm E}$ and $G_{\rm M},$ can achieve an order of magnitude better precision for low Q^2 $G_{\rm M}$

Muonic Hydrogen Measurement

- Steps in muonic hydrogen 2S-2P Lamb shift measurement (R. Pohl, *et al. Nature* 466 213-216 (2010))
 - 1. Slow muon (~keV) captured and replace a electron
 - 2. 99% muons decay to ground state right away, 1% decay to meta-stable 2S state ($\tau \sim 1 \mu s$)

Muonic Hydrogen Measurement

- Steps in muonic hydrogen 2S-2P Lamb shift measurement (R. Pohl, *et al. Nature* 466 213-216 (2010))
 - 1. Slow muon (~keV) captured and replace a electron
 - 2. 99% muons decay to ground state right away, 1% decay to meta-stable 2S state ($\tau \sim 1 \mu s$)
 - 3. Use tunable laser to drives muons from 2S to 2P
 - 2P muons decay right away (~ps) to 1S, emitting a 2keV X-ray
 - 5. Events selected by the 2keV X-ray signal and a delayed electron signal from muon decay

Muonic Hydrogen Measurement

- 1. DAQ and laser system triggered by muon signal from PM1 and PM2
- 2. Anti-trigger provided by muons hitting D3
- 3. Laser activated to drive muon from 2S to 2P
- 4. 2keV photon and delayed signal from muon decay detected

Weizhi Xiong

- Possible solution to the puzzle:
 - 1. The ep scattering results are wrong
 - Fit procedure not good enough
 - \triangleright Q² not low enough, structures in the form factors
 - Proton magnetic radius

- Possible solution to the puzzle:
 - 1. The ep scattering results are wrong
 - Fit procedure not good enough
 - \triangleright Q² not low enough, structures in the form factors
 - Proton magnetic radius
 - 2. Ordinary H spectroscopy results are wrong
 - Accuracy of individual measurements
 - > Rydberg constant could be off by ~5 σ

Ma bi	
New York Times	

- Possible solution to the puzzle:
 - 1. The ep scattering results are wrong
 - Fit procedure not good enough
 - \triangleright Q² not low enough, structures in the form factors
 - Proton magnetic radius
 - 2. Ordinary H spectroscopy results are wrong
 - Accuracy of individual measurements
 - > Rydberg constant could be off by ~5 σ
 - 3. μ H spectroscopy results are wrong
 - Laser calibration, two photon exchange...?

Ally O G
E E DE
New York Times

- Possible solution to the puzzle:
 - 1. The ep scattering results are wrong
 - Fit procedure not good enough
 - \triangleright Q² not low enough, structures in the form factors
 - Proton magnetic radius
 - 2. Ordinary H spectroscopy results are wrong
 - Accuracy of individual measurements
 - > Rydberg constant could be off by $\sim 5\sigma$
 - 3. μ H spectroscopy results are wrong
 - Laser calibration, two photon exchange...?
 - 4. New physics beyond the standard model
 - Lepton universality violation

Extraction of ep Elastic Scattering Cross Section

• To reduce the systematic uncertainty, the ep cross section is normalized to the Møller cross section:

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{ep} = \left[\frac{N_{\mathrm{exp}}(ep \to ep \text{ in } \theta_i \pm \Delta \theta_i)}{N_{\mathrm{exp}}(ee \to ee)} \cdot \frac{\varepsilon_{\mathrm{geom}}^{ee}}{\varepsilon_{\mathrm{geom}}^{ep}} \cdot \frac{\varepsilon_{\mathrm{det}}^{ee}}{\varepsilon_{\mathrm{det}}^{ep}}\right] \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{ee}$$

- Method 1: bin-by-bin method taking *ep/ee* counts from the same angular bin
 - Cancellation of energy independent part of the efficiency and acceptance
 - Limited converge due to double arm Møller acceptance
- Method 2: integrated Møller method integrate Møller in a fixed angular range and use it as common normalization for all angular bins
- Luminosity cancelled from both methods
- Bin-by-bin range: 0.7° to 1.6° for 2.2 GeV, 0.75° to 3.0° for 1.1 GeV. Larger angles use integrated Møller method

Radiative Correction

Leading order

 From experiment, we look for ep → ep process and want to measure the Born level ep elastic scattering cross section

• Described by the Rosenbluth formula:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon} G_M^{p\,2}(Q^2)\right)$$

Radiative Correction

Leading order

 From experiment, we look for ep → ep process and want to measure the Born level ep elastic scattering cross section

• Described by the Rosenbluth formula:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon} G_M^{p\,2}(Q^2)\right)$$

Next-to-Leading order

Radiative Correction

- Radiative effects corrected by Monte-Carlo method:
 - 1. Geant4 simulation package with full geometry setup
 - 2. event generators with complete calculations of radiative corrections^{1,2} beyond ultra relativistic approximation
 - 3. Include emission of radiative photons beyond peaking approximation
 - 4. Include Two Photon Exchange effect³, less than 0.2% for *ep* in PRad kinematic range
 - 5. Iterative procedure applied for radiative correction

 $\sigma_{ep}^{Born(exp)} = \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{exp} / \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{sim} \cdot \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{Born(model)} \cdot \sigma_{ee}^{Born(model)}$

- 1. I. Akushevich et al., Eur. Phys. J. A 51(2015)1 (fully beyond ultra relativistic approximation)
- 2. A. V. Gramolin et al., J. Phys. G Nucl. Part. Phys. 41(2014)115001
- 3. O. Tomalak, Few Body Syst. 59, no. 5, 87 (2018)

Diagrams for *ep* elastic scattering

Radiative Correction

- Radiative effects corrected by Monte-Carlo method:
 - 1. Geant4 simulation package with full geometry setup
 - 2. event generators with complete calculations of radiative corrections^{1,2} beyond ultra relativistic approximation
 - 3. Include emission of radiative photons beyond peaking approximation
 - 4. Include Two Photon Exchange effect³, less than 0.2% for *ep* in PRad kinematic range
 - 5. Iterative procedure applied for radiative correction

 $\sigma_{ep}^{Born(exp)} = \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{exp} / \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{sim} \cdot \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{Born(model)} \cdot \sigma_{ee}^{Born(model)}$

- 1. I. Akushevich et al., Eur. Phys. J. A 51(2015)1 (fully beyond ultra relativistic approximation)
- 2. A. V. Gramolin et al., J. Phys. G Nucl. Part. Phys. 41(2014)115001
- 3. O. Tomalak, Few Body Syst. **59**, no. 5, 87 (2018)

Diagrams for ee elastic scattering

91

Systematic Uncertainties (Example of Event Selection)

- Changing elasticity cut at the radiative tail and obtain different sets of cross section results
- Sensitivity on cross section: typically within +/- 0.15%
- Mostly due to nonuniformity of HyCal modules

Checking Systematics – Azimuthal Symmetry

Checking Systematics – Different methods of Forming ep/ee ratio

- Method 1: bin-by-bin method taking *ep/ee* counts from the same angular bin
- Method 2: integrated Møller method integrate Møller in a fixed angular range and use it as common normalization for all angle bins
- Luminosity cancelled in both methods

Systematic Uncertainties

Item	r_p uncertainty [fm]	n_1 uncertainty	n_2 uncertainty
Event selection	0.0070	0.0002	0.0006
Radiative correction	0.0069	0.0010	0.0011
Detector efficiency	0.0042	0.0000	0.0001
Beam background	0.0039	0.0017	0.0003
HyCal response	0.0029	0.0000	0.0000
Acceptance	0.0026	0.0001	0.0001
Beam energy	0.0022	0.0001	0.0002
Inelastic ep	0.0009	0.0000	0.0000
G^p_M parameterization	0.0006	0.0000	0.0000
Total	0.0115	0.0020	0.0013

Checking Systematics – Stability vs. Runs

01.05 ee ratio do 1.03 1.1 GeV data 10 nA 15 nA 1.02 1.01 0.99 0.98 weighted average 0.97 10 nA: 1.0021 +/- 0.0012 (stat.) 15 nA: 0.9995 +/- 0.0006 (stat.) 0.96 0.95 20 40 80 Ω 60 100 120 140 Run number

Normalized ep/ee ratio $(6.2 \times 10^{-4} < Q^2 < 4.5 \times 10^{-3} \text{ GeV}^2)$

Normalized ep/ee ratio $(1.1 \times 10^{-3} < Q^2 < 5.6 \times 10^{-3} \text{ GeV}^2)$

Detector Calibration

HyCal HyCal energy calibration: GEM2 Tagged photon beam calibration 1. Calibration using elastic ep and ee events 2. Detector position calibration • Detector position surveyed by JLab survey group 1. Using double arm Møller events 2. Z2 GEM1 450 E_{exp} : expected energy 500 400 at a scattering angle for ep elastic events 400 350 $E_{v} = 550 \text{ MeV}$ Sigma = 3.96% 300 Counts counts 300 250 200 200 150 100 100 50 0.9 1.2 1.3 1.2 0.7 0.8 1.1 0.8 1 1.4 0.6 (E_{rec}/E_{γ}) E_{rec}/E_{exp}

Detector Calibration

Quality of the Fit

- χ^2 /ndf ~ 1.3 (statistical uncertainty only, 33 data points from 1.1 GeV, 38 data points from 2.2 GeV)
- Furthermost outlier about 2.5σ from the fit
- 67% and 58% data points within 1σ for 1.1 and 2.2 GeV data respectively

