

DarkSHINE: a new initiative to search for light dark matter at SHINE facility

Yufeng Wang on behalf of the DarkSHINE R&D team

The 4th Workshop on Frontiers of Particle Physics Taiyuan, Aug. 2023

Shanghai Jiao Tong University

Outline

- Physics motivation
- The SHINE facility
- DarkSHINE simulation
- Prospective sensitivity
- Summary

Physics motivation

Page. 3

Evidence from cosmology and astronomy showing that **Dark Matter (DM)** exists in the universe.

- constituting $\sim 25\%$ of the universe energy content.
- one typical origin hypothesis: thermal equilibrium in the early universe.
 - Temperature drops due to the over-expansion of the universe → DM density becomes stable ("freeze-out" mechanism).

Physics motivation

交通大學

GHALILAO TONG UNIVERSITY

研究町

Tsung-Dao Lee Institute

Physics motivation

٠

研究町

Dao Lee Institute

不改直研究近

Introduce extra U(1)_X symmetry \rightarrow New gauge field X \rightarrow dark mediator A' U(1)_{em} \rightarrow U(1)_{em}×U(1)_X

Minimal dark photon model with 3 unknown parameters:

- Kinetic mixing parameter ε;
 (Mixing-induced coupling suppressed relative to that of photon by factor ε)
- Dark photon mass $m_{A'}$;

上海交通大學

• Decay branching ratio (assumed to be either unity or zero) of dark photon decaying into invisible dark sector.

Page. 6

Dark photon production & decay

Physics processes and anticipated signatures concerning the dark photon A':

Phys. Rev. D 86, 095019

Page . 7

- Goal: put constraints on the kinetic mixing parameter ε .
- Challenge: small production rate \rightarrow suppress bkg. from SM processes.

Electron source: SHINE facility

また道み完好 Tsung-Dao Lee Institute

海交通大學

ANGHAI JIAO TONG UNIVERSITY

Project Institution HEPS IHEP Bein North Korea Seou IMP South Korea Japan Toky **XFEL** SINAP • Wuhar HIAF& CADS IHEP-GD Hong Kon Myanma (Burma

Shanghai High Repetition-Rate XFEL and Extreme Light Facility (SHINE) @ Zhangjaing area, Shanghai

Electron source: SHINE facility

→ with dedicated kicker to be designed and deployed.

- Electron energy: 8 GeV; Frequency: 1 MHz
- Beam intensity: 100 pC (6.25e8 electrons/bunch)
- ~3×10¹⁴ electrons-on-target (EOT) per year

- Under construction in Zhangjiang (2018-2026)
- Beam techniques: SARI, CAS/Shanghai Tech
- Detector R&D: SJTU/FDU/SIC, CAS

Invisible signal signature

Dao Lee Institute

Missing particle signature: soft recoil electron, large missing energy & p_T .

Leading background: SM photon bremsstrahlung
 Rare background processes:

Page . 10

Events generated with calcHEP

Invisible signal signature

Missing particle signature: soft recoil electron, large missing energy & p_T .

海交通大学

The Dark SHINE detector hardware technical R&D is carried out in parallel to the full detector system simulation and prospective study/optimization.

Readout electronics, trigger system, TDAQ, magnetic system (1.5 T), etc.

DarkSHINE simulation framework

上海交通大學 | 李旼道研究町

ighai Iiao Tong University

Tsung-Dao Lee Institute

Page.13

- Based on GEANT4 v10.6.0: event simulation, reconstruction and display.
- Optimization and machine learning implementation ongoing...

专政道研究近

Tsung-Dao Lee Institute

x A

I IIAO TONG UNIVERSITY

Acceptance efficiency

- 2.5e9 inclusive bkg. events and 1e7~1e8 rare bkg. events produced for better background estimation. None of which survives the cut-flow.
- $\sim 60\%$ signal events survive the cut-flow. Efficiency drops in:
 - Low-mass region of a few MeV: tight energy cuts.
 - High-mass region above 1 GeV: particles with large incident/recoil angle go into the HCAL directly.

Page. 16

Expective sensitivity comparison

The DarkSHINE experiment will provide competitive sensitivity, which will be able to exclude most sensitive regions.

Expected 90% C.L. limit estimated with 3×10^{14} EOTs (running ~1 year), 9×10^{14} EOTs (~3 years), 1.5×10^{15} EOTs (~5 years) and 1×10^{16} EOTs (with Phase-II upgrade).

Sci. China-Phys. Mech. Astron., 66(1): 211062 (2023)

Detector R&D: tracking system

AC-LGAD silicon strip sensor prototype designed (1x1 mm²) and tested in collaboration with Prof. Zhijun Liang and Prof. Mei Zhao from IHEP.

- Designed resolution:
 - Better position resolution than $10 \ \mu m$.
 - Better angle resolution than 0.1%.

设道研究厅

Tsung-Dao Lee Institute

交通大學

hanghai Ilao Tong University

Working point W11: 350V W12: 150V

Detector R&D: electromagnetic calorimeter

Baseline design of each crystal: X,Y = 2.5 cm, Z = 4 cm (radiation length: 1.14 cm)

Measure the deposited energy of electron and photon.

- Designed resolution: better energy resolution than 5%.
- LYSO crystal $(Lu_{(1-x-y)}Y_{2y}Ce_{2x}SiO_5)$:
 - high light yield (30000 p.e/MeV) with good linearity.
 - short decay time (40 ns).
- Readout with SiPM and waveform sampling.
- Intrinsic radiation and radioactive source tests ongoing.

Detector R&D: electromagnetic calorimeter

SiPM laser calibration

Reflection and light yield investigation

Detector R&D: hadronic calorimeter

Veto backgrounds with same behavior as signal in ECAL

- $1.5 \text{ m} \times 1.5 \text{ m}$ (perpendicular to the beam), ~10 λ (~160 cm iron, parallel to the beam)
- Split to 4 modules, 75 cm \times 75 cm each
- Iron absorber: 10 mm/50 mm thick, 75 cm
 × 75 cm
- Plastic scintillator: 10 mm thick, 75 cm × 5 cm, 15 bars per layer per module
 - Each scintillator: wavelength shift fiber + SiPM

Detector R&D: hadronic calorimeter

Tested with radioactive source and cosmic ray source.

Page . 22

Scintillator: HND-S2 (高能科迪) polystyrene WLS: Kurary, d=1 mm, reflector on one side SiPM: EQR15 11-3030D-S, 3 mm × 3 mm, 40000 microcell Wrapper: 80 mm ESR

More physics opportunities...

-Dao Lee Institute

Minimal dark Axion-like particle portal and Axion+DP co-existence

ILAO TONG UNIVERSITY

- Dramatically different sensitivity curve of Dark Photon search when changing from **electron beam to positron beam**.
- Extra s/t-channel annihilation diagrams come into play for Dark Photon production.
- SHINE can also deliver positron beam with low current...

Fig. 1 Three different A' production modes in fixed target lepton beam experiments: (a) A'-strahlung in e^-/e^+ -nucleon scattering; (b) A'-strahlung in e^+e^- annihilation; (c) resonant A' production in e^+e^- annihilation

Eur. Phys. J. A (2021) 57:253

Summary

DarkSHINE: a fixed-target experiment searching for dark photon.

- almost background-free: expected 0.02 background from 1 yr. running.
- above 50% dark photon signal acceptance efficiency.

DarkSHINE has competitive sensitivity.

• Sensitive to most of the light dark matter models with 3 yrs running. (Sci. China-Pay. Mech. Astron., 66(1):211062 (2023))

Detector key technology R&D ongoing, sponsored by NSFC (原创探索计划项目).

With more physics opportunities ahead, stay tuned! ③

SHANGHAI JIAO TONG UNIVERSITY ISUNG-Dao Lee Institute

Collaboration with SHINE

TSUNG-DAO LEE INSTITUTE

以天之语 解物之道

Dark Matter Direct Detections

- Direct Detection (DD): nuclear recoils from DM-nuclei scattering (CDEX, PandaX, LZ, XenonNT, ...)
- Indirect Detection (ID): products from DM annihilation (DAMPE, HESS, IceCube, ..)
- Colliders: DM production in high-energy collisions, focusing on the productions of a SM particle(s) (X) with large missing E_T

Dark Matter Indirect Detections

- Direct Detection (DD): nuclear recoils from DM-nuclei scattering (CDEX, PandaX, LZ, XenonNT, ...)
- Indirect Detection (ID): products from DM annihilation (DAMPE, HESS, IceCube, ..)
- Colliders: DM production in high-energy collisions, focusing on the productions of a SM particle(s) (X) with large missing E_T

Dark Matter Collider productions

- Direct Detection (DD): nuclear recoils from DM-nuclei scattering (CDEX, PandaX, LZ, XenonNT, ...)
 Indirect Detection (ID): products from DM annihilation (DAMPE, HESS, IceCube, ..)
- Colliders: DM production in high-energy collisions, focusing on the productions of a SM particle(s) (X) with large missing E_T

Dark Matter search at Accelerator Experiments

SUND-DAO LEE

TSUNG-DAO LEE INSTITUTE

以天之语 解物之道

Signal region definition

专政道研究听

上海交通大學

Five cuts are applied to separate signal from backgrounds:

(1st round DarkSHINE analysis)

ECAL Detector Unit

LYSO: $Lu_{(1-x-y)}Y_{2y}Ce_{2x}SiO_5$

Density	Decay Time	Light Yield	Refraction Index	Radiation Length
7.2 g/cm3	40 ns	30000 p.e/MeV	1.82	1.14 cm

Intrinsic Radiation and Radioactive Source Test

- 2.5×2.5×2.5 cm³ LYSO, HAMAMATSU MPPC S13360-6050CS
- Simulate the decay process of $^{176}_{71}Lu$ in LYSO crystal. The energy spectrum contains one beta decay and three gamma decay.
- ⁶⁰₂₇Co radioactive measurement result
- $5 \times 2.5 \times 2.5 \ cm^3$ LYSO
- Light Yield: 1255.75 PE/MeV

Detector R&D: ECAL readout system

Crystal ECAL readout electronics:

LED driver

Design scheme

- Ecal used SiPM to detect photon
- SiPM
 - Width : tens of nanoseconds
 - Rising edge : about 2-3 nanoseconds
 - Requirement : higher sample rate ~ GSPS
- ADC chip : AD9680 (from ADI)
 - Sanple rate : 1GSPS
 - Resolution : 14 bits 1.7Vpp 0.1038mV/LSB
 - 2 channels/piece, 2GHz input bandwidth
- ADC Mezzanine Card (picture)
 - ADC : AD9680
 - Clock : AD9528
 - FMC HPC connector to the FPGA board
- Data transfer and processing
 - Kintex-7 KC705 board
 - ADC DAQ system block diagram

Test results

- Test the performance of ADC
 - 10.3MHz standard sine wave
 - SNR = 58.4dB , ENOB = 9.4bit
 - SFDR = 75.8dB
- Test with SiPM input
 - Analog input :
 - Cosmic ray + SiPM (S13360-3050VE) + plastic scintillator
 - ADC board : Full-bandwidth 1GSPS
- Test results
 - Waveform of an SPE signal and a cosmic ray signal
 - Amplitude of SPE signal : ~ 42 LSB, 4.4mV
 - Noise level : about 10 LSB, 1mV

HCAL design

2-100 mm absorber ,0.5 GeV incident energy Incident particles : 10000 Condition : Deposited energy > 1 MeV

Inclusive cross-section

Inclusive cross-section of dark photon bremsstrahlung from electron interacting with W target, assuming $\varepsilon = 1$.

Background cut-flow

Cut efficiency for each background processes:

- Inclusive background: 2.5×10^9 EOTs produced.
- Rare background: only GMM (target) process exceeds 3×10^{14} EOTs.

-	-				
Process	Generate Events	Branching Ratio	EOTs	'	
Inclusive	2.5×10^{9}	1.0	2.5×10^{9}	• N	Jon
Bremsstrahlung	1×10^{7}	6.70×10^{-2}	1.5×10^{8}		ver
GMM_target	1×10^{7}	$1.5(\pm 0.5) \times 10^{-8}$	4.3×10^{14}		V CI
GMM_ECAL	1×10^{7}	$1.63(\pm 0.06) \times 10^{-6}$	6.0×10^{12}	-	
PN_target	1×10^{7}	$1.37(\pm 0.05) \times 10^{-6}$	4.0×10^{12}	• E	Sut
PN_ECAL	1×10^{8}	$2.31(\pm 0.01) \times 10^{-4}$	4.4×10^{11}	E	lO]
EN_target	1×10^{8}	$5.1(\pm 0.3) \times 10^{-7}$	1.6×10^{12}	•	
EN_ECAL	1×10^{7}	$3.25(\pm 0.08) \times 10^{-6}$	1.8×10^{12}	•	
	EN_ECAL	PN_ECAL G	MM_ECAL	EN_target	Р
total events	100%	100%	100%	100%	
only 1 track	58.87%	70.48%	87.36%	5.85%	
$p_{tag} - p_{rec} > 4 \text{ G}$	eV 0.0044%	0.0033%	0.0041%	5.58%	
$E_{HCAL}^{total} < 100 \text{ Me}$	$< 10^{-3}\%$	$< 10^{-3}\%$	0%	0.30%	
$E_{HCAL}^{MaxCell} < 10 \text{ Me}$	$eV < 10^{-3}\%$	< 10 ⁻³ %	0%	0.13%	
$E_{HCAL}^{MaxCell} < 2 \text{ Met}$	$< 10^{-3}\%$	< 10 ⁻³ %	0%	0.058%	(
$\overline{E_{ECAL}^{total}} < 2.5 \text{ Ge}$	V 0%	0%	0%	0%	

- e of the simulated background nts remains after the cut-flow.
- what would happen with 3×10^{14} [s (~1 year run)?

	EN_ECAL	PN_ECAL	GMM_ECAL	EN_target	PN_target	GMM_target	hard_brem	inclusive
total events	100%	100%	100%	100%	100%	100%	100%	100%
only 1 track	58.87%	70.48%	87.36%	5.85%	5.88%	$< 10^{-3}\%$	78.73%	84.40%
$p_{tag} - p_{rec} > 4 \text{ GeV}$	0.0044%	0.0033%	0.0041%	5.58%	5.46%	< 10 ⁻⁵ %	70.49%	4.80%
$E_{HCAL}^{total} < 100 \text{ MeV}$	< 10 ⁻³ %	< 10 ⁻³ %	0%	0.30%	0.72%	0%	69.61%	4.76%
$E_{HCAL}^{MaxCell} < 10 \text{ MeV}$	$< 10^{-3}\%$	$< 10^{-3}\%$	0%	0.13%	0.27%	0%	65.00%	4.48%
$E_{HCAL}^{MaxCell} < 2 \text{ MeV}$	$< 10^{-3}\%$	$< 10^{-3}\%$	0%	0.058%	0.095%	0%	58.14%	4.04%
$E_{ECAL}^{total} < 2.5 \text{ GeV}$	0%	0%	0%	0%	0%	0%	0%	0%

Background estimation

Event ratio as a function of the cut value on ECAL energy. (rare processes scaled according to branching ratio)

Page . 41

Extrapolation: rare processes

Not all the rare processes need further extrapolation.

There are 6 rare background processes in total:

• EN(ECAL), PN(ECAL), GMM(ECAL), EN(target), PN(target), GMM(target)

- Available statistics: ~4.3×10¹⁴ (target) and ~6×10¹² (ECAL) EOTs considering the branching ratio.
- extrapolation method no longer applicable due to the energy distribution.
- Can always be effectively rejected by the HCAL requirement (fraction of the remaining GMM events $< 10^{-6}$).

Extrapolation: rare processes

专政道研究近

Tsung-Dao Lee Institute

上海交通大學

Sum: 0.015 ~3×10¹⁴ EOTs

Validated using simulated inclusive background.

Background estimation validation

波道研究近

Tsung-Dao Lee Institute

