

Recent Dark Matter combination summary from ATLAS

arXiv:2306.00641

The 4th Workshop on Frontiers of Particle Physics

Khanh N. Vu, Shu Li on behalf of TDLI ATLAS group

August 08th, 2023

Outline

Recent ATLAS Dark Matter searches with 2HDM+a

- 1. Introduction on 2HDM+a
- 2. Experimental signatures
- 3. Statistical combination of results
- 4. Summary of constraints on 2HDM+a

II. Recent ATLAS $H \rightarrow \gamma \gamma_d$ searches in resonant $\gamma + E_{\rm T}^{\rm miss}$ signature

- 1. Results in VBF and ZH Higgs production modes
- 2. Prospects for statistical combination

I. Recent ATLAS Dark Matter searches with 2HDM+a

2HDM+a

• In this talk, ATLAS DM searches interpreted in Two-Higgs-Doublet Model plus a pseudo-scalar mediator (2HDM+a):

- Minimal, UV-complete extension.
- EWK Symmetry Breaking:
 - 5 Higgs: h, H, H^{\pm}, A
 - ► 1 light pseudo-scalar: *a*

2HDM+a fully defined by 14 parameters

5 unconstrained parameters

$egin{aligned} v,M_h,M_A,M_H,M_{H^\pm},M_a,m_\chi\ &\cos(eta-lpha), aneta,\sin heta,\ &y_\chi,\lambda_3,\lambda_{P1},\lambda_{P2} \end{aligned}$	EWK, flavour constraints and to simplify parameter space	$m_A = m_H = m_{H^{\pm}}$ m_a m_{χ} $\sin \theta$ $\tan \beta$	masses of heavy Higgs mass of pseudo-scalar mediator DM mass mixing angle between CP-odd states <i>a</i> and <i>A</i> ratio of 2 Higgs doublet VEVs
* <i>h</i> : SM-like CP-even Higgs with mass of 125 GeV			LHC Dark Matter Working Group Phys. Dark Univ. 27 (2020) 100351 Bauer, Haisch, Kahlhoefer JHEP05(2017) 138

4

Experimental signatures

- 2HDM+a has rich phenomenology predicting wide range of signatures with both visible and invisible decays
 - resonantly production of $E_{\rm T}^{\rm miss} + Z/h$ (mono-Z/h)
 - additional (pseudo-)scalar bosons, e.g $tbH^{\pm}(tb)$
 - new signatures, e.g $E_{\rm T}^{\rm miss} + tW$ (backup slides)

$E_{\rm T}^{\rm miss} + Z(ll)$ signature

- Z boson recoiling against large $E_{\mathrm{T}}^{\mathrm{miss}}$
 - $E_{\rm T}^{\rm miss}$ > 90 GeV
- Presence of a pair of high- $p_{\rm T}$, same flavour, oppositely charged leptons with angular separation < 1.8
- $g = \frac{1}{2} \frac{1}{2}$

- Fit to data is performed on
 - $m_{\rm T}^{\rm lep}$ in signal region and region constraining non-resonant backgrounds.
 - $E_{\rm T}^{\rm miss}$ in regions constraining di-boson backgrounds

$E_{\rm T}^{\rm miss} + h(bb)$ signature

- Higgs boson recoiling against large $E_{\rm T}^{
 m miss}$
 - $E_{\rm T}^{\rm miss}$ > 150 GeV
- targets both gg-induced and bb-induced production
 - 2 categories: == 2 b-jets or \geq 3 b-jets.
- each category split into orthogonal $E_{\rm T}^{\rm miss}$ bins
 - Higgs decay reconstructed as single large-R jet for $E_{\rm T}^{\rm miss}$ > 500 GeV

• Fit to data: m_{bb} (in signal regions) + event yields (in background-constrained regions).

<u>JHEP 11 (2021) 209</u>

7

$tbH^{\pm}(tb)$ signature

- original analysis for 2HDM type-II, searching heavy charged Higgs, mass in [0.2, 2] TeV.
 - re-interpreted for 2HDM+a by rescaling 2HDM type-II exclusion limits.
- · targets semileptonic decay of one of top quarks
 - 1 lepton, \geq 5 jets, \geq 3 b-jets.
- 4 separate signal regions according to jet and b-jet multiplicity.
- Fit to data performed on a Neural Network distribution across regions.

Statistical combination

- $E_{\rm T}^{\rm miss} + h(bb)$, $E_{\rm T}^{\rm miss} + Z(ll)$ and $tbH^{\pm}(tb)$: Most constraining signatures of 2HDM+a.
 - $tbH^{\pm}(tb)$ gives significant complementarity to sensitivities of $E_{T}^{miss} + X$
 - stat. combination of 3 channels to maximize 2HDM+a constraints in parameter space.
- Combined exclusion limits obtained from profile likelihood ratio corresponding to 3-channel-combined likelihood.
- Decorrelate over-constrained/pulled uncertainties to avoid any phase-space-specific biases across channels.

Summary of constraints on 2HDM+a

- constraints on 2HDM+a interpreted in 6 benchmark scenarios.
 - highlight diverse phenomenology of 2HDM+a.
 - study the interplay and complementarities between different signatures.

• $h \rightarrow$ invisible constrains very low m_a .

• $h \rightarrow$ invisible constrains very low m_a .

- $h \rightarrow$ invisible constrains very low m_a .
- constraints from $E_{\rm T}^{\rm miss} + h$ signatures: similar m_A - m_a dependence, with $h \rightarrow bb$ most sensitive.
- $E_{\rm T}^{\rm miss} + tW$ similar to $E_{\rm T}^{\rm miss} + Z(ll)$ but with smaller excl. region.
- $E_{\rm T}^{\rm miss}$ + jet sensitivity notably different from those of $E_{\rm T}^{\rm miss}$ + Z and $E_{\rm T}^{\rm miss}$ + h.

- $h \rightarrow$ invisible constrains very low m_a .
- constraints from $E_{\rm T}^{\rm miss} + h$ signatures: similar m_A - m_a dependence, with $h \rightarrow bb$ most sensitive.
- $E_{\rm T}^{\rm miss} + tW$ similar to $E_{\rm T}^{\rm miss} + Z(ll)$ but with smaller excl. region.
- $E_{\rm T}^{\rm miss}$ + jet sensitivity notably different from those of $E_{\rm T}^{\rm miss}$ + Z and $E_{\rm T}^{\rm miss}$ + h.
- Complementary constraints from searches not targeting DM.

2HDM+a, Dirac DM, $\sin\theta = 0.35$, $\tan\beta = 1$, $m_{\mu} = 10$ GeV, $g_{\mu} = 1$, $m_{\mu} = m_{H} = m_{H}$ ∑9²⁰⁰⁰ 501800 1800 1600 E_{T}^{miss} +h(bb), 139 fb⁻¹ JHEP 11 (2021) 209 - E_T^{miss} +h($\tau\tau$), 139 fb⁻¹ ATLAS **√**s = 13 TeV, 36.1 - 139 fb⁻¹ arXiv:2305.12938 Limits at 95% CL E_T^{miss} +h($\gamma\gamma$), 139 fb⁻¹ Observed 1600 Expected JHEP 10 (2021) 13 — E^{miss}+Ζ(II), 139 fb⁻¹ 1400 PLB 829 (2022) 137066 $E_{T}^{miss} + Z(q\bar{q}), 36.1 \text{ fb}^{-1}$ 1200 JHEP 10 (2018) 180 E_T^{miss} +tW, 139 fb⁻¹ arXiv:2211.13138 1000 E_{T}^{miss} +j, 139 fb⁻¹ PRD 103 (2021) 112006 800 tbH[±](tb), 139 fb⁻¹ JHEP 06 (2021) 145 600 — t**ī**tī, 139 fb⁻¹ arXiv:2211.01136 400 — h→invisible, 139 fb⁻¹ arxiv:2301.10731 200 100 200 300 500 600 700 800 400 m_a [GeV]

- $h \rightarrow$ invisible constrains very low m_a .
- constraints from $E_{\rm T}^{\rm miss} + h$ signatures: similar m_A - m_a dependence, with $h \rightarrow bb$ most sensitive.
- $E_{\rm T}^{\rm miss} + tW$ similar to $E_{\rm T}^{\rm miss} + Z(ll)$ but with smaller excl. region.
- $E_{\rm T}^{\rm miss}$ + jet sensitivity notably different from those of $E_{\rm T}^{\rm miss}$ + Z and $E_{\rm T}^{\rm miss}$ + h.
- Complementary constraints from searches not targeting DM.
- Sensitivity of 2HDM+a driven by the combination.

Most comprehensive set of constraints on 2HDM+a to date

Scenario 6: m_a - m_{χ} plane

- New interpretation in m_a - m_{γ} plane:
 - Searches for SM Higgs decaying to 4 fermions via *aa* constrain previously unprobed region of 2HDM+a.
 - Complementarity to $h \rightarrow$ invisible and $E_{T}^{\text{miss}} + h(bb)$ searches.

II. Recent ATLAS $H \rightarrow \gamma \gamma_d$ searches in resonant $\gamma + E_T^{miss}$ signature

VBF $H \rightarrow \gamma \gamma_d$

- search for $H \rightarrow \gamma \gamma_d$ with VBF production mode
 - $m_H \in [60,2000]$ GeV; massless dark photon;
 - dark photon collider stable $\rightarrow E_{\rm T}^{\rm miss}$;
 - final state with 1 photon, jets and $E_{\rm T}^{\rm miss}$.
- Signal region: single-photon trigger, isolated photon, 2 forward jets with $|\Delta \eta_{jj}| > 2.5$, high $E_{\rm T}^{\rm miss}$.
- SR and CRs divided into 2 bins of m_{jj} with 5 bins of $m_T(\gamma, E_{\rm T}^{\rm miss})$ each.
- ggF $H \rightarrow \gamma \gamma_d$ signal contribution included for 125 GeV Higgs.

Eur. Phys. J. C 82 (2022) 105

An observed (expected) 95% CL upper limit on BR is set at 1.8 (1.7) %, assuming SM 125 GeV Higgs boson and massless dark photon.

ZH, $H \rightarrow \gamma \gamma_d$

- Search for $H \rightarrow \gamma \gamma_d$ with ZH production mode
 - $m_H = 125 \text{ GeV}; m_{\gamma_d} \in [0, 40] \text{ GeV};$
 - dark photon $\rightarrow E_{\rm T}^{\rm miss}$; $Z \rightarrow l^+ l^-$;

• BDT (XGBOOST) optimised specifically for 125 GeV Higgs, used to enhance sensitivity.

Prospects for statistical combination

• Combination of VBF and ZH channels for SM Higgs (125 GeV) decaying into photon and massless dark photon

Production	ZH	VBF	Combined
ATLAS	2.3(2.8)%	1.8(1.7)%	Our ongoing work
CMS	4.6(3.6)%	3.5(2.8)%	2.9(2.1)%

Observed and expected 95% CL limits at mH = 125 GeV

 Combination of VBF and ATLAS mono-photon re-interpretation for heavy Higgs decaying into photon and massless dark photon. (Our ongoing work)

ATLAS mono-photon search JHEP 02 (2021) 226	
0	

Conclusion

- Most comprehensive set of constraints on the 2HDM+a obtained by the ATLAS to date; determine sensitivity of many relevant signatures, some obtained for the first time.
- Statistical combination of $E_T^{miss} + Z(ll)$, $E_T^{miss} + h(bb)$ and $tbH^{\pm}(tb)$ extends the sensitivity to the 2HDM+*a* compared to the sensitivities derived from the individual searches across different regions of the 2HDM+*a* parameter space

For the first time the results of searches targeting *h* → *aa* → 4*f* are used to constrain a part of previously unprobed 2HDM+*a* parameter space.

- Upper limit on Br(H → γγ_d) of 1.8% obtained in VBF, H → γγ_d search, for SM 125 GeV Higgs boson and massless dark photon: the most stringent limit from experiment so far.
- Ongoing work for stat. combination to extend constraints on Br($H \rightarrow \gamma \gamma_d$) for both SM Higgs and heavy Higgs cases.

Thank you for your attention!!!

Backup

DM collider searches

- Dark Matter: supported by many of astrophysical measurements; SM is insufficient to explain → strong consideration in many BSM extensions.
- Complementary probes of DM in several areas

 E_{T}^{miss} : missing transverse momentum

2HDM+a

• Coupling of pseudo scalar P to the dark Dirac fermion χ

$$\mathcal{L}_{\chi} = -i y_{\chi} P \bar{\chi} \gamma_5 \chi \,,$$

• Yukawa couplings of Higgs doublets to SM fermions

$$\mathcal{L}_Y = -\sum_{i=1,2} \left(\bar{Q} Y_u^i \tilde{H}_i u_R + \bar{Q} Y_d^i H_i d_R + \bar{L} Y_\ell^i H_i \ell_R + \text{h.c.} \right) \,.$$

• Most general scalar potential of two Higgs doublets

$$\begin{split} V &= V_H + V_{HP} + V_P , \\ V_H &= \mu_1 H_1^{\dagger} H_1 + \mu_2 H_2^{\dagger} H_2 + \left(\mu_3 H_1^{\dagger} H_2 + \text{h.c.} \right) + \lambda_1 \left(H_1^{\dagger} H_1 \right)^2 + \lambda_2 \left(H_2^{\dagger} H_2 \right)^2 \\ &+ \lambda_3 \left(H_1^{\dagger} H_1 \right) \left(H_2^{\dagger} H_2 \right) + \lambda_4 \left(H_1^{\dagger} H_2 \right) \left(H_2^{\dagger} H_1 \right) + \left[\lambda_5 \left(H_1^{\dagger} H_2 \right)^2 + \text{h.c.} \right] , \\ V_{HP} &= P \left(i b_P H_1^{\dagger} H_2 + \text{h.c.} \right) + P^2 \left(\lambda_{P1} H_1^{\dagger} H_1 + \lambda_{P2} H_2^{\dagger} H_2 \right) , \\ V_P &= \frac{1}{2} m_P^2 P^2 . \end{split}$$

$$E_{\rm T}^{\rm miss} + tW$$
 signature

- optimised specifically for 2HDM+a and particularly sensitive to on-shell $H^{\pm} \to W^{\pm}a(\chi\bar{\chi})$
- Final interpretations
 - include both 2HDM+a $E_{\rm T}^{\rm miss} + t\bar{t}$ and $E_{\rm T}^{\rm miss} + tW$ signal contributions.
 - with combination of all three 0-, 1-, and 2-lepton channels.

HLRS searches

For lower values of m_a , there is strong complementarity with light resonance searches for H->aa->4f. A $m_a - m_y$ scan has been designed to illustrate that.

Benchmark model parameters tuned to evade constraints from total Higgs width:

 $\left\{m_A, aneta, \sin heta, \lambda_3, y_\chi
ight\} = \left\{1.2\, ext{TeV}, 1, 0.35, 3, 1
ight\}$

Orthogonality checks

- The statistical combination is facilitated as the input analyses statistically independent.
- Due to b- and lepton-multiplicity requirements, no overlap between the 3 analyses SRs is expected.
- Negligible ($\ll 1 \%$) event overlap observed between $H^{\pm} \rightarrow tb$ SR and $E_T^{miss} + h(bb)$ CR, no impact on the combination.

Input Analysis	Signal selection				
EtMiss + Z(II)	b-jet veto				
EtMiss + h(bb)	>= 2 b-jets, 0 lepton				
Charged H -> tb	>= 3 b-jets, 1 lepton				

(a) Full run 2 data, number of overlapped events

(b) Full run 2 data, fraction of overlapped events

Statistical analysis

- The combination is performed by constructing the analyses' likelihood and maximizing the corresponding profile likelihood ratio.
- The likelihood used in the combination defined as:

• 95% CL limits are obtained using the profile likelihood ratio test statistic as:

$$q_{\mu} = \frac{\mathcal{L}(\mu, \hat{\hat{\lambda}}_{\mu}, \hat{\hat{\theta}}_{\mu}))}{\mathcal{L}(\hat{\mu}, \hat{\lambda}_{\hat{\mu}}, \hat{\theta}_{\hat{\mu}})},$$

Combination strategy

- $tbH^{\pm}(tb)$ added to stat. combination with $E_T^{miss} + Z(ll)$ and $E_T^{miss} + h(bb)$ for the first time \rightarrow can significantly improve sensitivity.
- Usually, the combination is done for every common signal point over 3 channels.
- Hybrid combination approach: exclude channels that have negligible sensitivities in a certain region.
 - $m_A > 1500$ GeV: $E_T^{miss} + Z(ll)$ and $E_T^{miss} + h(bb)$.
 - $m_A < 1500$ GeV and $m_A > m_a$: all 3 channels combined.
 - $m_A < m_a$ (off-shell region for mono-X searches): $H^{\pm} \rightarrow tb$ only.

Uncertainties and their correlations

- Most experimental uncertainties related to reconstruction of physics objects are correlated across search channels.
- Uncertainties stemming from b-jet identification are not correlated due to different choices of algorithm and operating point.
- Uncertainties constrained in a particular analysis are not correlated to avoid bringing tensions from any phase-space-specific biases across channels.
- Due to different processes and phase spaces being probed, modelling uncertainties are uncorrelated across analyses.
- Different correlation choices for FTAG/JER/MET and strongly-constrained NPs were tested without observed impact on the exclusions.

Uncertainty source	Δμ [%]		
Statistical uncertainty	25.0		
Systematic uncertainties	27.6		
Theory uncertainties	16.2		
Signal modelling	2.8		
Background modelling	15.9		
Experimental uncertainties (excl. MC stat.)	18.8		
Luminosity, pile-up	3.9		
Jets, $E_{\rm T}^{\rm miss}$	12.3		
Flavour tagging	9.1		
Electrons, muons	6.1		
MC statistical uncertainty	9.3		
Total uncertainty	37.2		

stat. and syst. uncertainties to tot. uncertainty on the best-fit μ for ($m_a = 450 \text{ GeV}, m_H = 800 \text{ GeV}, \tan \beta = 1 \text{ and } \sin \theta = 0.35$) excluded by the combination but is not by any single input analysis

Uncertainties and their correlations

Correlation Scheme

Correlation scheme is studied and developed based on signal at $m_A = 800$, $m_a = 500$, $\tan\beta = 1$ and $\sin\theta = 0.35$, in the "intersection" region where it has not been excluded in all three channels but within the reach of sensitivity from combination.

NP rankings for single channels could be reproduced.

The majority of leading NPs are channel-specific systematics (e.g., theory systematics on the background modeling). The impact from correlation should be small.

18

Summary of constraints on 2HDM+a

Analysis/Scenario	1a	1b	2a	2b	3a	3b	4a	4b	5	6
$E_{\mathrm{T}}^{\mathrm{miss}} + Z(\ell\ell)$ [74]	х	х	х	х	х	х	х	х	х	
$E_{\mathrm{T}}^{\mathrm{miss}} + h(b\bar{b})$ [75]	х	х	х	х	х	х	х	х	х	х
$E_{\rm T}^{\rm miss} + h(\gamma\gamma) \ [84]$	х	х			х	х	х	х		
$E_{\mathrm{T}}^{\mathrm{miss}} + h(\tau\tau)$ [78]	х			х						
$E_{\mathrm{T}}^{\mathrm{miss}} + tW$ [77]	х	х	х	х	х	х	х	х		
$E_{\mathrm{T}}^{\mathrm{miss}} + j [45]$	х	х			х	х	х	х		
$h \rightarrow \text{invisible} [86]$	х	х			х					х
$E_{\mathrm{T}}^{\mathrm{miss}} + Z(q\bar{q}) \ [127]$	х						х	х		
$E_{\mathrm{T}}^{\mathrm{miss}} + b\bar{b} \ [128]$							х	х		
$E_{\rm T}^{\rm miss} + t\bar{t} \ [128, 129]$							х	х		
$t\bar{t}t\bar{t}$ [85]	х	х	х	х	х	Х	х	х	Х	
$tbH^{\pm}(tb)$ [76] _	х	х	х	х	х	х	х	х	х	
$h \to aa \to f\bar{f}f'f'$ [79,80,81,82,83]										х

Variety of searches interpreted in the context of different 2HDM+a benchmark scenarios

Scenario 2: $m_A - \tan \beta$ planes

- Large fraction of parameter plane excluded by $E_T^{miss} + Z(ll)$, $E_T^{miss} + h(bb)$ dominates in high- m_A but still gives sensitivity in low- m_A with $tbH^{\pm}(tb)$.
- $E_T^{miss} + Z(ll)$ and $E_T^{miss} + h(bb)$ sensitivities driven by the transition from gg- to bb-initiated production with a decrease at $\tan \beta \approx 5$.
- Combination significantly improves the excl. parameter space.

Scenario 3: $m_a - \tan\beta$ planes

- Strongest exclusion from $E_T^{miss} + Z(ll)$, $tbH^{\pm}(tb)$ is complementary to low-tan β region and moderate dependence on m_a .
- Significant improvement in sensitivity achieved by combination.

Scenario 4: $\sin\theta$ scans

• $E_T^{miss} + Z(ll)$ and

strongest limits.

ວ*1*

Scenario 5: m_{χ} scan

- At low- $m_{\chi} (m_{\chi} < m_a/2)$ sensitivity is driven by $E_T^{miss} + Z(ll)$ and $E_T^{miss} + h(bb)$ as the pseudoscalar is allowed to decay in to $\chi\chi$.
- For higher DM masses $(m_{\chi} > m_a/2)$, the sensitivity of $E_T^{miss} + X$ decreases rapidly, while that of $tbH^{\pm}(tb)$ and 4top remains nearly constant. Although none of them excludes 2HDM+a.
- Combination provides strongest exclusion.
- Possible to match the observed relic density for $m_{\chi} \approx 170~{\rm GeV}$ without changing the collider phenomenology.

Mono-photon re-interpretation for $H \rightarrow \gamma \gamma_d$

- reinterpretation of $E_{\rm T}^{\rm miss}$ + γ to search for dark photon in high-mass resonances.
 - $m_H \in [400, 3000]$ GeV; massless dark photon;
 - dark photon $\rightarrow E_{\rm T}^{\rm miss}$.

- Include contribution from both VBF and ggF production modes.
- Discriminant variable: $E_{\rm T}^{\rm miss}$.

