BSM investigations with Triangle Singularity

--- a kinematic perspective

Yu Gao IHEP, CAS

2211.12920

Y.G., Yu Jia, Yugen Lin, Jia-Yue Zhang

Outline

- Triangle `Landau' singularity
- T.S. in s-channel and t-channel scattering
- T.S. at collider: beyond a threshold?
- A new physics removal of large virtuality suppression

Landau Singularity

Karplus, Sommerfield, Wichmann, Phys.Rev. 111 (1958) Landau, Nucl. Phys. 13, 181–192 (1959).

A situation when all internal particles go on shell inside a loop

figure from 0806.1498

$$\int \frac{d^Dq}{(2\pi)^Di} \frac{1}{D_1D_2\cdots D_N}$$

$$\sim \int_0^\infty d\alpha_1 \dots d\alpha_N \, \delta(\sum_i \alpha_i - 1) \int \frac{d^D q}{(2\pi)^D i (\alpha_1 D_1 + \dots + \alpha_N D_N)^N}$$

`Landau Conditions' at leading singularity

$$\sum_i \alpha_i$$
=1 and α_i >0; $\sum_i \alpha_i \ q_i^\mu = 0$;
$$\alpha_i \left(q_i^2 - m_i^2\right) = 0$$
 L.D.Landau 1958'

@ NLO: a.k.a. the `anomalous threshold'

N=3: triangle singularity

$$\begin{cases} \alpha_1 k_1^{\mu} + \alpha_2 k_2^{\mu} + \alpha_3 k_3^{\mu} = 0 \\ k_1^2 - m_1^2 = k_2^2 - m_2^2 = k_3^2 - m_3^2 = 0. \end{cases}$$

$$\alpha_{1,2,3} \in (0,1)$$

For fixed k and p, the Eq. Sys. with the internal momentum l^{μ} is solvable for $N \leq 4$

A well-known T.S. situation in s-channel

Two produced particles p_1, p_2 (in decay, etc.) exchange another physical particle (k_3)

* Singularity emerges in amplitude if the (re)scattering with k_3 is **inelastic**.

C.Schmid,1967
I. Aitchison, C. Kacser,1968

Hadron interactions

Hadron spectroscopy review:

Guo, Liu, Sakai, 1912.07030

Singularity may be mis-identified as new resonances.

One TS diagram in f(1285) decay Aceti, Dias, Oset, 1501.06505

X(3872) production with a TS diagram F.K.Guo, 1902.11221

- Large number of hadronic states opt to meet Landau conditions
- Mild (compared to HE) virtuality suppression for external momenta

@ weak / higher energy scale?

Known example in the SM: tt -> X*X*

Virtual final-state W bosons: Can trigger T.S. for $350 < \sqrt{s} < 750$ GeV No physical solution for two on-shell Ws.

leads to an anomalous threshold: finite correction in xsec.

Other discussions in (NLO) SM, see:

Landau singularity in Z Z-> Z Z, Denner, Dittmaier, Hahn, 9612390 N=4 (box) Landau singularity in gg-> h bb, Boudjema and Duc Ninh, 0806.1498

Anomalous threshold in MSSM slepton pair production:

Why not try BSM?

- A kaleidoscope of new particles.
- Extra bosons (a blessing).
- Can have a purely SM final state.

Drell-Yan like (gaugino+sfermion loop, MSSM)
[GIM theorem may apply when k₁ and k₂

assume different particles]

VBF diagram (slepton loop, MSSM) [SM final state: visible for a `compressed' MSSM spectrum, when $m_{\tilde{I}} \approx m_{\tilde{\nu}}$]

VBF – all bosons (2HDM) $[k_1, k_2 \text{ can assume identical particles}]$

Kinematic region

For given internal line masses & p_B^2 , physical solutions require

Assume k_3 direction: $B \rightarrow A$

$$p_C^2 \in \left[\underbrace{(m_1 + m_2)^2}, m_1^2 + m_2^2 + m_2 m_3 + \frac{m_2}{m_3} \left(m_1^2 - p_B^2 \right) \right] \implies \text{init. state inv. m}^2$$

$$p_A^2 \in \left[\underbrace{(m_2 + m_3)^2}, m_2^2 + m_3^2 + m_1 m_2 + \frac{m_2}{m_1} \left(m_3^2 - p_B^2 \right) \right] \implies \text{at least one final-state system is massive}$$

- (1) above pair-production threshold
- (2) Satisfy physical boundary ($\alpha_i > 0$)

T.S. region on
$$\{{\rm m_1,m_2}\}$$
 plane at given $\sqrt{p_{\rm C}^2}$, and $p_{\rm A}^2,p_{\rm B}^2>0$

A singularity in t-channel

- p_A^2 , p_C^2 are likely massive when internal lines are at BSM mass scale.
- NOTE: Solutions exist for a negative $p_B^2 \le 0$ when p_A^2 , $p_C^2 > 0$.

A negative p_B^2 stands for a momentum exchange in a scattering process (MSSM)

massive init. state particle (can not be a LSP dark matter candidate) massive final state particle or particle system Extendable to (soft) $\sqrt{|p_B^2|} << m_{BSM}$ region.

$$\begin{cases} m_1 \to m_3 \\ p_C^2 \to p_A^2 \end{cases} \text{ for } p_B^2 \to 0$$

Ideal in case a model contains light boson(s).

- $\stackrel{ ext{ }}{\bigcirc}$ Not a spontaneous decay when $p_B^2 < 0$.
- Need a massive initial state particle for 2->2 scattering (difficult at collider for a BSM particle)
- The massive initial state is unstable (so unlikely a vanilla dark matter)

An MSSM benchmark point.

Loop particles	Process	$m_1(\Gamma_1)$ (GeV)	$m_2(\Gamma_2)$ (GeV)	$m_3(\Gamma_3)$ (GeV)	$p_A^2 (\text{GeV}^2)$	$p_B^2 (\text{GeV}^2)$	$p_C^2 (\text{GeV}^2)$
$\{ ilde{\chi}_{2}^{-}, ilde{\chi}_{1}^{+}, ilde{\chi}_{1}^{0}\}$	DY-like	1528(13)	359(0.9)	306(0)	700^{2}	800^{2}	1943^{2}
$\{ ilde{l_1}, ilde{l_2}, ilde{ u}\}$	WW fusion	1701(1.56)	1500(0.34)	1499(0.16)	3000^{2}	100^{2}	3202^{2}
$\{\tilde{\chi}_3^0, Z, \tilde{\chi}_2^+\}$	t-channel	1351(3.79)	91(2.45)	1528(13)	1621^{2}	-2500^2	1528^{2}

`EWSBMSSM' parameters

(SUSPECT2)

Parameter	Value		
tanβ	10		
μ	300 GeV		
m_1	1.5 TeV		
m_2	1.4 TeV		
ml3	1.5 TeV		
mr3	1.7 TeV		

(modified pars. only) pass LHC search bounds

s-channel: Drell-Yan & VBF, into SM V*V* final states.

t-channel: $p_A^2 < p_C^2$,

system becomes (more) excited after scattering

Dalitz plot

Conventional choice:

fix m $_2$, m $_3$ and p_B^2 , p_C^2 m1 and as $m_{23}=\sqrt{p_A^2}$ as variables

blue: trajectory of det $|y_{ii}| = 0$ (t-channel)

red: physical solutions

asterisk: MSSM benchmark

Landau conditions equiv. as

$$eta_i + \sum_{j}^{j \neq i} eta_j y_{ij} = 0,$$
 where $y_{ij} \equiv rac{m_i^2 + m_j^2 - p_k^2}{2m_i m_j},$ and $eta_i \equiv lpha_i m_i$

Solutions require

$$\left.\begin{array}{c|c} \det \left|\begin{array}{ccc} 1 & y_{12} & y_{13} \\ y_{12} & 1 & y_{23} \\ y_{13} & y_{23} & 1 \end{array}\right| = 0 \\ 1 + 2y_{12}y_{23}y_{13} - y_{12}^2 - y_{23}^2 - y_{13}^2 = 0 \end{array}\right.$$

containing 6 kinematic parameters.

 $\alpha_i > 0$ select a small section (red) of physical solutions.

Peak in amplitude (C₀)

Singularity encoded in
$$I\left(\sqrt{p_A^2}\right) = \int \frac{\mathrm{d}^4 l}{i\pi^2} \left[\frac{1}{l^2 - m_3^2} \cdot \frac{1}{(l + p_A)^2 - m_2^2} \cdot \frac{1}{(l + p_A + p_C)^2 - m_1^2} \right]$$

Finite width of internal particles gives a small Im part.

Singularity -> broadened peak

Plots: VBF & t-channel at MSSM benchmark scenarios, with p_{C}^{2} fixed.

Reconstruction of T.S.?

 p_A , p_B can be particle systems

- Physical range(s) of external inv. masses: peak → threshold
- \sqrt{s} at T.S. shrinks to a peak only if final-state inv. $p_{A,B}^2$ become both fixed.
- Extension toward higher \sqrt{s} from beam pdf / ISR.

(e.g. if particle states lay inside p_A^2 and p_B^2 physical ranges.)

More than a threshold?

Low inv-mass-sq system may identify with a particle.

- Physical range(s) of external inv. masses: peak → threshold
- \sqrt{s} at T.S. shrinks to a peak only if final-state inv. $p_{A,B}^2$ become both fixed.
- Smeared toward higher \sqrt{s} from beam pdf / ISR.

physical ranges.)

(e.g. if particle states

lay inside p^2_{Δ} and p^2_{R}

One FS mass extends to lower (EW) range:

One physical FS particle:

Correlate COM energy and FS par.sys. invariant mass at singularity

* par. sys. should be visible

* F.S. combinatorics

* broadening by external width

(fixed) Internal mass:

Visibility (threshold-case)

- EW/BSM scale loop correction to SM-> SM
- Apply to `compressed scenarios'

Correction percentage around threshold for $H^*(Q) \rightarrow W^* W^* \rightarrow \mu^+ e^- \nu \bar{\nu}$

(T.S. with neutralino-muon loop) hep-ph/0310182: slepton production: correction from multiple thresholds

Less suppressed scenario?

A not small virtuality suppression as

$$\sqrt{p_C^2} > m_1 + m_3 \sqrt{p_A^2} > m_2 + m_3$$

when BSM particles are heavy. e.g. in an s-channel process: XX > scalar> triangle

IS: 4-particle vertex allows for TS in a boson-fusion process, avoids a large 1/s.

FS: 4-particle vertices replaces a highly virtual propagator with two *more identifiable*, on-shell particles.

~ four boson coupling. w/o heavy prop.

on-shell final particles more identifiable

`Everything on shell': bosonic couplings

Gauge couplings

$$SSV: ig(k_1 - k_2)^{\mu} \rightarrow igk_V^{\mu} \Longrightarrow$$

SSVV: $ig^2 \rightarrow const$

Derivative 3-pnt coupling: k_V . k_V may lift the large propagator suppression

Scalar couplings

SSSS: quartic couplings
$$\rightarrow \lambda = const$$

 Fermions: have no ren. 4-point vertices; three-point vertices do not cancel propagator suppression.

`EOS': not in the SM?

The SM weak-scale bosons are too few;
 the mass splits are also insufficient (w tree level vertices):

one particle must be heavier than two/three coupled particles.

BSM: `EOS' just needs one extra boson.

In 2HDM: $h_2 h_2 h_1$ loop, $m_{h_2} > m_{h_1} + m_{V_1} + m_{V_2}$, similar in other BSM models.

<GIM generally evaded in extended Higgs/scalar sectors>

A physical process at collider: VBF

An attempt with FeynArts:

WW → WaWZ yields

468 tree diagrams and

5468 1-loop diagrams

VBF: 2->6 process with pdf.

Loop diagrams involving fermions have UV divergences and need renormalization work.

(a few non-TS, interfering examples)

- Everything on shell (except for the WW pair, but w/o large virtually)
- \bigcirc UV non-divergent loop integral (C_0), demonstrating a Landau singularity.
- Purely SM, fully visible and reconstructible, final state.
 - Asymmetric kinematics: one bi-particle mass can be much larger.
- A non-resonant initial state: lots of interfering diagrams, need careful cut selection.

Summary

- BSM spectra should, and often, trigger triangle singularities.
- Unlike with hadrons, physical range(s) of external inv. momenta lead to
 - * Anomalous thresholds at collide. (no on-shell state.)
 - * Kinematic correlations (one on-shell state.)
 - * Peak (both states on shell)
- `Everything on shell' T.S. possible with bosonic couplings, by replacing a off-shell momentum with a bi-particle system.
- EW (or higher scale) `EOS' needs BSM, likely appears as A.T.
- Triangle singularity possible in a *t*-channel ($q^2 < 0$) scattering, and it can approach to a soft realm ($|q^2| < m^2$).