The electromagnetic decays of X(3823) as the $\psi_2(1^3D_2)$ state and its radial excited states

Wei-Li 李威 Hebei University

Co-author: Guo-Li Wang, Su-Yan Pei, Tian-Hong Wang and Tai-Fu Feng *Phys. Rev. D* 107 (2023) 113002

The Fourth Workshop on Frontiers of Particle Physics
Shanxi University
2023. 8. 9

Content

- I. Introduction
- II. Bathe-Salpeter and Salpeter equation
- III. Relativistic wave function and transition amplitude
- IV. Results and discussions
- **V. Summary**

I. Introduction

1. Background

- The bound state charmonium of charm and anti-charm quarks is significant in the quantum chromodynamics (QCD). It is a double-heavy meson, but not heavy enough that its relativistic corrections are still large.
- In 2013, a new bound state X(3823) has been observed, which is considered to be a good candidate for spin triplet D wave charmonium $\psi_2(1^3D_2)$.
- For the decay properties of this particle, since its mass is below the DD̄*
 threshold, and the DD̄ channel is forbidden, there is no Okubo-Zweig-lizuka
 (OZI)-allowed channel. Therefore, the single photon radiation processes are important.

I. Introduction

2. Previous research

• Other works Different models have studied the radiative decays of X(3823). These studies show that the dominate decay channel of X(3823) is the radiative decay to $\chi_{c1}\gamma$.

```
E. J. Eichten, K. Lane et al, Phys. Rev. Lett 89, 162002 (2002)
D. Ebert, R. N. Faustov et al, Phys. Rev. D 67, 014027 (2003)
T. Barnes, S. Godfrey et al, Phys. Rev. D 72, 054026 (2005)
B.-Q. Li and K.-T. Chao, Phys. Rev. D 79, 094004 (2009)
```

 Our works The Bethe-Salpeter (BS) equation is a relativistic dynamic equation used to describe bound state. Using Bethe-Saleter method, we get theoretical results, which agree well with the experimental data.

```
Chang, Chen, and Wang, Commun. Theor. Phys. 46, 467 (2006) Wang and Wang, Phys. Lett. B 697, 233 (2011) Wang, Jiang and Wang, J. High Energy Phys. 03, 209 (2016) Wang, Wang and Chang, J. High Energy Phys. 05, 006 (2022)
```

1. Bathe-Salpeter equation

Bathe-Salpeter equation

For a fermion-antifermion system, there has the general formulation

$$(p_1 - m_1)\chi_P(q)(p_2 + m_2) = i \int \frac{d^4k}{(2\pi)^4} V(P, k, q) \chi_P(k).$$
 (2.1)

 $\chi_P(q)$ – BS wave function, V(P, k, q) – interaction kernel.

• The meson momentum P and relative momentum q:

$$p_1 = \alpha_1 P + q, \quad \alpha_1 = \frac{m_1}{m_1 + m_2},$$

$$p_2 = \alpha_2 P - q, \quad \alpha_2 = \frac{m_2}{m_1 + m_2}.$$

E.E.Salpeter and H.A.Bethe , Phys. Rev. 84 (1951)

- Though the BS equation is the relativistic dynamic equation, it can not provide us the form of a relativistic wave function for a bound state.
- There is the difficulty about the kernel V(P, k, q) of BS equation, it is a time-inspired interaction kernel.
- Reduced version is needed -(instantaneous version).

2. Salpeter equation

Salpeter equation

The reduced (instantaneous) Bathe-Salpeter wave function

$$\varphi_p(q_\perp^\mu) \equiv i \int \frac{dq_p}{(2\pi)} \chi_p(q_\parallel^\mu, q_\perp^\mu), \tag{2.2}$$

and new integration kernel

$$\eta(q_{\perp}^{\mu}) \equiv \int \frac{k_T^2 dk_T ds}{(2\pi)^2} V(k_{\perp}, q_{\perp}) \varphi_P(k_{\perp}^{\mu}). \tag{2.3}$$

The useful notations

$$\omega_i = \sqrt{m_i^2 + q_{\scriptscriptstyle T}^2}, \quad \Lambda_i^\pm(q_{\scriptscriptstyle \perp}) = rac{1}{2\omega_i} \left[rac{p}{M}\omega_i \pm J_i(m_i + q_{\scriptscriptstyle \perp})
ight],$$

$$\varphi_{\scriptscriptstyle P}^{\pm\pm}(\boldsymbol{q}_{\scriptscriptstyle \perp}) = \Lambda_{\scriptscriptstyle 1}^{\pm}(\boldsymbol{q}_{\scriptscriptstyle \perp}) \frac{p}{M} \varphi_{\scriptscriptstyle P}(\boldsymbol{q}_{\scriptscriptstyle \perp}) \frac{p}{M} \Lambda_{\scriptscriptstyle 2}^{\pm}(\boldsymbol{q}_{\scriptscriptstyle \perp}).$$

E. E. Salpeter, PRD 87 (1952) 328.

Then, BS equations can be written as

$$\chi(q) = S(p_1)\eta(q_\perp)S(-p_2).$$
 (2.4)

 $S(p_1)$ and $S(-p_2)$ represent fermion and antifermion propagators, respectively.

$$\begin{split} -iS(p_1) &= \frac{i\Lambda_1^+}{q_P + \alpha_1 M - \omega_1 + i\epsilon} + \frac{i\Lambda_1^-}{q_P + \alpha_1 M + \omega_1 - i\epsilon} \\ iS(-p_2) &= \frac{i\Lambda_2^+}{q_P - \alpha_2 M + \omega_2 - i\epsilon} + \frac{i\Lambda_2^-}{q_P - \alpha_2 M - \omega_2 + i\epsilon} \end{split}$$

• Further carry out a contour integration for the time-component q_P on both sides of equation (2.4), then obtain Salpeter wave function

$$\varphi(q_{\perp}) = \frac{\Lambda_{1}^{+}(q_{\perp})\eta(q_{\perp})\Lambda_{2}^{+}(q_{\perp})}{M - \omega_{1} - \omega_{2}} - \frac{\Lambda_{1}^{-}(q_{\perp})\eta(q_{\perp})\Lambda_{2}^{-}(q_{\perp})}{M + \omega_{1} + \omega_{2}}.$$
 (2.5)

Salpeter wave function include four parts

$$\varphi_P(q_\perp) = \varphi_P^{++}(q_\perp) + \varphi_P^{+-}(q_\perp) + \varphi_P^{-+}(q_\perp) + \varphi_P^{--}(q_\perp).$$

• Positive and negative energy wave function

To apply the complete set of the projection operators $\Lambda_i^{\pm}(q_{\perp})$, then obtain the four equations

$$\begin{split} (M - \omega_1 - \omega_2) \varphi_p^{++}(q_\perp) &= \Lambda_1^+(q_\perp) \eta_p(q_\perp) \Lambda_2^+(q_\perp), \\ (M + \omega_1 + \omega_2) \varphi_p^{--}(q_\perp) &= \Lambda_1^-(q_\perp) \eta_p(q_\perp) \Lambda_2^-(q_\perp), \\ \varphi_p^{+-}(q_\perp) &= \varphi_p^{-+}(q_\perp) = 0. \end{split}$$

Normalization

$$\int \frac{d^3q_{\perp}}{(2\pi)^3} tr \left[\bar{\varphi}_p^{++} \frac{\not p}{M} \varphi_p^{++} \frac{\not p}{M} - \bar{\varphi}_p^{--} \frac{\not p}{M} \varphi_p^{--} \frac{\not p}{M} \right] = 2P_0.$$

Cornell potential

In our model, Cornell potential is chosen as the instantaneous interaction kernel

$$V = V_0 + V_s(r) + \gamma_0 \otimes \gamma^0 V_v(r) = V_0 + \lambda r - \gamma_0 \otimes \gamma^0 \frac{4}{3} \frac{\alpha_s}{r}, \tag{2.6}$$

the running coupling constant $\alpha_s(\vec{q}) = \frac{12\pi}{33-2N_f} \frac{1}{\log(a+\frac{\vec{q}^2}{\Lambda_{QCD}})}$.

In momentum space

$$\begin{split} V(\vec{q}) &= (2\pi)^3 V_s(\vec{q}) + \gamma_0 \otimes \gamma^0 V_\nu(\vec{q}) \\ V_s(\vec{q}) &= -(\frac{\lambda}{\alpha} + V_0) \delta^3(\vec{q}) + \frac{\lambda}{\pi^2} \frac{1}{(\vec{q}^2 + \alpha^2)^2}, \quad V_\nu(\vec{q}) = -\frac{2}{3\pi^2} \frac{\alpha_s(\vec{q})}{\vec{q}^2 + \alpha^2}, \end{split}$$

1. Relativistic wave function

• For $J^{PC} = 0^{-+}$ state, the relativistic wave function

$$\varphi_{0-+}(q_{f_{\perp}}) = M_f \left[\frac{p_{f_{\perp}}}{M_f} a_1 + a_2 + \frac{p_{f_{\perp}}}{M_f m_c} a_2 \right] \gamma^5, \tag{3.1}$$

The positive energy wave function

$$\varphi_{0-+}^{++}(q_{f_{\perp}}) = \left[A_{f_{1}} + \frac{p_{f_{\perp}}}{M_{f}}A_{f_{2}} + \frac{p_{f_{\perp}}q_{f_{\perp}}}{M_{f}^{2}}A_{f_{3}}\right]\gamma^{5},\tag{3.2}$$

where
$$A_{\it f_1} = \frac{M_{\it f}}{2} [\frac{\omega_{\it f}}{m_{\it f}} a_1 + a_2], \;\; A_{\it f_2} = \frac{M_{\it f}}{2} [a_1 + \frac{m_{\it f}}{\omega_{\it f}} a_2], \;\; A_{\it f_3} = -\frac{M_{\it f}}{\omega_{\it f}} A_{\it f_1}.$$

C. S. Kim, Taekoon Lee, Guo-Li Wang, Phys. Lett. B 606 (2005).

• The partial wave of 0^{-+} state

In $\vec{P}=0$ frame, the most general formulation of the BS wave function for the bound state $J^{PC}=0^{-+}(^1S_0)$ may be written as the follows

$$\varphi_{0-+}(q_{\perp}) = \gamma^0 \gamma^5 a_1 + \gamma^5 a_2 + \sqrt{\frac{4\pi}{3}} \gamma^5 \frac{q_{\perp}}{2M} E \gamma^0 a_3 + \sqrt{\frac{4\pi}{3}} \gamma^5 \frac{q_{\perp}}{2M} E a_4, \tag{3.3}$$

where

$$E \equiv [Y_{1-1}\gamma^+ + Y_{11}\gamma^- - Y_{10}\gamma^3], \quad \gamma^+ = \frac{\gamma^1 + i\gamma^2}{\sqrt{2}}, \quad \gamma^- = \frac{\gamma^1 - i\gamma^2}{\sqrt{2}},$$

and $Y_{\mbox{\tiny lm}} \equiv Y_{\mbox{\tiny lm}}(\theta_{\mbox{\tiny q}},\phi_{\mbox{\tiny q}})$ are spherical harmonics.

• In contrast to formula Eq.(3.1) and Eq.(3.3), we can know that A_{f_1} and $\frac{p_{f_{\pm}}}{M_f}A_{f_2}$ terms are S wave, $\frac{p_f g_{f_{\pm}}}{M_f^2}A_{f_3}$ term is P wave.

Chao-Hsi Chang, Jiao-Kai Chen, Xue-Qian Li, Guo-Li Wang, Commun. Theor. Phys. 43 (2005).

• For $J^{PC} = 0^{++}$ state, the positive energy wave function

$$\varphi_{0++}^{++}(q_{f_{\perp}}) = B_{f_1} + \frac{\not q_{f_{\perp}}}{M_f} B_{f_2} + \frac{\not P_f \not q_{f_{\perp}}}{M_f^2} B_{f_3}, \tag{3.4}$$

where B_{f_2} and B_{f_3} terms are *P* waves, relativistic B_{f_1} term is *S* wave, with

$$B_{f_1} = rac{q_{f_{\perp}}^2}{2m_f}[b_1 + rac{m_f}{\omega_f}b_2], \ B_{f_2} = rac{M_f}{2}[b_1 + rac{m_f}{\omega_f}b_2], \ B_{f_3} = rac{M_f}{2}[rac{\omega_f}{m_f}b_1 + b_2],$$

 b_1 and b_2 are independent radial wave functions.

G.-L. Wang, Phys. Lett. B 650, 15 (2007).

• For $J^{PC} = 1^{++}$ state, the positive energy wave function

$$\varphi_{1^{++}}^{++}(q_{f_{\perp}}) = i\epsilon_{\mu\nu\alpha\beta} \frac{P_{f}^{\nu}}{M_{f}} q_{f_{\perp}}^{\alpha} \epsilon_{f}^{\beta} \gamma^{\mu} [C_{f_{1}} + \frac{P_{f}}{M_{f}} C_{f_{2}} + \frac{P_{f} \phi_{f_{\perp}}}{M_{f}^{2}} C_{f_{3}}], \tag{3.5}$$

where C_{f_1} and C_{f_2} terms are P waves, relativistic C_{f_3} term is D wave, with

$$C_{f_1} = \frac{1}{2}[c_1 + \frac{\omega_f}{m_f}c_2], \ C_{f_2} = -\frac{1}{2}[\frac{m_f}{\omega_f}c_1 + c_2], \ C_{f_3} = -\frac{M_f}{\omega_f}C_{f_1},$$

 c_1 and c_2 are independent radial wave functions.

G.-L. Wang, Phys. Lett. B 650, 15 (2007).

• For $J^{PC} = 2^{++}$ state, the positive energy wave function

$$\varphi_{2++}^{++}(q_{f_{\perp}}) = \epsilon_{f,\mu\nu} q_{f_{\perp}}^{\mu} q_{f_{\perp}}^{\nu} \left[D_{f_{1}} + \frac{\rlap/P_{f}}{M_{f}} D_{f_{2}} + \frac{\rlap/P_{f_{\perp}}}{M_{f}} D_{f_{3}} + \frac{\rlap/P_{f} \rlap/P_{f_{\perp}}}{M_{f}^{2}} D_{f_{4}} \right]$$

$$+ M_{f} \epsilon_{f,\mu\nu} \gamma^{\mu} q_{f_{\perp}}^{\nu} \left[D_{f_{5}} + \frac{\rlap/P_{f}}{M_{f}} D_{f_{6}} + \frac{\rlap/P_{f} \rlap/P_{f_{\perp}}}{M_{f}^{2}} D_{f_{7}} \right], \tag{3.6}$$

where D_{f_5} and D_{f_6} terms are P partial waves, D_{f_1} , D_{f_2} and D_{f_7} terms are D partial waves, while D_{f_3} and D_{f_4} terms are F partial waves, with

$$\begin{split} D_{f_1} &= \frac{1}{2M_f m_f \omega_f} [\omega_f q_{f\perp}^2 \, d_3 + m_f q_{f\perp}^2 \, d_4 + M_f^2 \omega_f d_5 - M_f^2 m_f d_6], \ D_{f_2} &= \frac{M_f}{2m_f \omega_f} [m_f d_5 - \omega_f d_6], \\ D_{f_3} &= \frac{1}{2} [d_3 + \frac{m_f}{\omega_f} d_4 - \frac{M_f^2}{m_f \omega_f} d_6], \ D_{f_4} &= \frac{1}{2} [\frac{\omega_f}{m_f} d_3 + d_4 - \frac{M_f^2}{m_f \omega_f} d_5], \ D_{f_5} &= \frac{1}{2} [d_5 - \frac{\omega_f}{m_f} d_6], \\ D_{f_6} &= \frac{1}{2} [-\frac{m_f}{\omega_f} d_5 + d_6], \ D_{f_7} &= \frac{M_f}{2\omega_f} [-d_5 + \frac{\omega_f}{m_f} d_6], \end{split}$$

 d_i are independent radial wave functions.

G.-L. Wang, Phys. Lett. B 650, 15 (2007).

• For $J^{PC} = 2^{++}$ (nD) state,

• For $J^{PC} = 2^{++}$ (nF) state,

G.-L. Wang, Phys. Lett. B 674, 172 (2009).

• For $J^{PC} = 2^{--}$ state, the relativistic wave function

$$\varphi_{2--}(q_{\perp}) = i\epsilon_{\mu\nu\alpha\beta} \frac{P^{\nu}}{M} q_{\perp}^{\alpha} \epsilon^{\beta\delta} q_{\perp\delta} \gamma^{\mu} \left(f_1 + \frac{\rlap/p}{M} f_2 + \frac{\rlap/p}{M m_c} f_2 \right), \tag{3.7}$$

The positive energy wave function for a 2^{--} state is

$$\varphi_{2--}^{++}(q_{\perp}) = i\epsilon_{\mu\nu\alpha\beta} \frac{P^{\nu}}{M} q_{\perp}^{\alpha} q_{\perp\delta} \epsilon^{\beta\delta} \gamma^{\mu} \left[F_{1} + \frac{\rlap/p}{M} F_{2} + \frac{\rlap/p}{M^{2}} F_{3} \right], \tag{3.8}$$

where
$$F_1=\frac{1}{2}[f_1-\frac{\omega_c}{m_c}f_2], \;\; F_2=-\frac{1}{2}[\frac{m_c}{\omega_c}f_1-f_2], \;\; F_3=-\frac{M}{\omega_c}F_1.$$

T.-H. Wang and G.-L. Wang et. al, Int. J. Mod. Phys. A 32, 1750035 (2017).

2. Amplitude and form factors

ullet The Feynman diagrams for the transition $X(3823)
ightarrow \chi_{\scriptscriptstyle CJ} \gamma$

Figure: Feynman diagrams for the transition $X(3823) \to \chi_{cl} \gamma$. The two diagrams show that photons come from the quark and the anti-quark, respectively.

The amplitude can be written as

$$\mathcal{M}^{\xi} = \int \frac{d^{4}q}{(2\pi)^{4}} \frac{d^{4}q_{f}}{(2\pi)^{4}} Tr[\bar{\chi}_{P_{f}}(q_{f})Q_{1}e\gamma^{\xi}\chi_{P}(q)(2\pi)^{4}\delta^{4}(p_{2} - p_{2}')$$

$$S_{2}^{-1}(-p_{2}) + \bar{\chi}_{P_{f}}(q_{f})(2\pi)^{4}\delta^{4}(p_{1} - p_{1}')S_{1}^{-1}(p_{1})\chi_{P}(q)Q_{2}e\gamma^{\xi}], \tag{3.9}$$

• The φ^{++} , is much bigger than the φ^{--} , so the contribution of the φ^{++} is much larger than others. Therefore, the decay amplitude can be written as

$$\mathcal{M}^{\xi} = \int \frac{d^{3}q_{\perp}}{(2\pi)^{3}} Tr[Q_{1}e^{\rlap{/}{p}}_{M}\bar{\varphi}_{f}^{++}(q_{\perp} + \alpha_{2}P_{f_{\perp}})\gamma^{\xi}\varphi_{i}^{++}(q_{\perp}) + Q_{2}e^{\rlap{/}{\varphi}_{f}^{++}}(q_{\perp} - \alpha_{1}P_{f_{\perp}})^{\rlap{/}{p}}_{M}\varphi_{i}^{++}(q_{\perp})\gamma^{\xi}].$$
(3.10)

Chao-Hsi Chang, Jiao-Kai Chen, Xue-Qian Li, Guo-Li Wang, Commun. Theor. Phys. 43 (2005)

• The form factors expression of amplitude

Integrate internal q_{\perp} over the initial and final state wave functions, then obtain the amplitude described using form factors.

(1) For the channel $X(3823) \rightarrow \eta_c(^1S_{_0})\gamma$,

$$\mathcal{M}_{_{1}}^{\xi} = P^{\xi} \epsilon_{\mu\nu} P_{_{f}}^{\mu} P_{_{f}}^{\nu} h_{_{1}} + \epsilon_{\mu}^{\xi} P_{_{f}}^{\mu} h_{_{2}}, \tag{3.11}$$

(2) For $X(3823) \to \chi_{c0}(^{3}P_{0})\gamma$,

$$\mathcal{M}_{2}^{\xi} = i\epsilon^{\beta\xi\mu\nu} \epsilon_{\beta\alpha} P_{\mu} P_{f,\nu} P_{f}^{\alpha} t_{1}, \tag{3.12}$$

(3) For $X(3823) \to \chi_{c1}(^{3}P_{1})\gamma$,

$$\mathcal{M}_{3}^{\xi} = \epsilon_{\mu\nu} P^{\xi} P_{f}^{\mu} P_{f}^{\nu} P \cdot \epsilon_{f} s_{1} + \epsilon_{\nu}^{\xi} P_{f}^{\nu} P \cdot \epsilon_{f} s_{2} + \epsilon_{\mu\nu} P^{\xi} \epsilon_{f}^{\mu} P_{f}^{\nu} s_{3}$$

$$+ \epsilon_{\mu\nu} \epsilon_{f}^{\xi} P_{f}^{\mu} P_{f}^{\nu} s_{4} + \epsilon_{\mu}^{\xi} \epsilon_{f}^{\mu} s_{5},$$

$$(3.13)$$

• The form factors expression of amplitude

$$\begin{split} \text{(4) For } X(3823) &\to \chi_{c2}(^3P_{_2})\gamma \text{ or } X(3823) \to \chi_{c2}(^3F_{_2})\gamma, \\ \mathcal{M}_4^\xi &= i\epsilon^{\beta\lambda^P_fP} \left(\epsilon_{\beta^P_f}\epsilon_{f,\lambda^P}P^\xi g_1 + \epsilon^\phi_\beta\epsilon_{f,\lambda\phi}P^\xi g_2 + \epsilon^\xi_\beta\epsilon_{f,\lambda^P}g_3 + \epsilon_{\beta^P_f}\epsilon^\xi_{f,\lambda}g_4\right) \\ &+ i\epsilon^{\beta\xi^P_fP} \left(\epsilon_{\beta^P_f}\epsilon_{f,PP}g_5 + \epsilon^\phi_\beta\epsilon_{f,\phi^P}g_6\right) + i\epsilon^{\beta\xi\lambda^P} \left(\epsilon_{\beta^P_f}\epsilon_{f,\lambda^P}g_7 + \epsilon^\phi_\beta\epsilon_{f,\lambda\phi}g_8\right), \end{split} \tag{3.14}$$

where $\epsilon_{f,\mu\nu}$ is the polarization tensor of $\chi_{c2}(^3P_2)$, and we have used some abbreviations, for example, $\epsilon^{\beta\lambda P_f}{}^P\epsilon_{\beta P_f}\epsilon_{f,\lambda P}=\epsilon^{\beta\lambda\mu\nu}P_{f,\mu}P_{\nu}\epsilon_{\beta\alpha}P_f^{\alpha}\epsilon_{f,\lambda\rho}P^{\rho}$.

• The form factors expression of amplitude

In here, these form factors are not independent. Due to the Ward identity $(P_{\xi}-P_{f,\xi})\mathcal{M}_i^{\xi}=0$ (i=1,2,3,4), they are linked by the following constrain conditions:

$$h_2 = (M^2 - ME_f)h_1, (3.15)$$

$$s_2 = (M^2 - ME_f)s_1 + s_4, \quad s_5 = (M^2 - ME_f)s_3,$$
 (3.16)

$$g_3 = (M^2 - ME_f)g_1 + g_4 + g_7, \ g_8 = -(M^2 - ME_f)g_2.$$
 (3.17)

Other form factors such as t_1 , g_5 and g_6 are independent and have no such constraints.

Defining the decay width

The amplitude square for the electromagnetic (EM) decay of X(3823) is

$$\overline{\left|\mathcal{M}\right|^{2}} = \frac{1}{2J+1} \sum_{\gamma} \varepsilon_{\xi}^{(\gamma)} \varepsilon_{\xi'}^{(\gamma)} \mathcal{M}^{\xi} \mathcal{M}^{\xi'}, \qquad (3.18)$$

where, $\varepsilon_{\xi}^{(\gamma)}$ is the polarization vector of the final state photon γ , J is the total angular momentum of the initial state.

Finally, the two-body decay width formulation can be written as

$$\Gamma = \frac{|\vec{P_f}|}{8\pi M^2} |\overline{\mathcal{M}}|^2, \tag{3.19}$$

where,
$$|\vec{P_f}| = \left(M^2 - M_f^2\right)/2M$$
.

1. EM decay widths of X(3823) and its radial excited states

• EM decay widths of X(3823) as the $\psi_2(1^3D_2)$ state Considering X(3823) as the $\psi_2(1^3D_2)$ state, the final state are $\eta_c(1S)\gamma$ and $\chi_o(1P)\gamma$, the decay widths are

$$\Gamma[X(3823) \rightarrow \chi_{c0}(1S)\gamma] = 1.22 \text{ keV},$$

$$\Gamma[X(3823) \to \eta_c(1S)\gamma] = 1.30 \text{ keV}.$$

The EM decay results of other channels are

$$\Gamma[X(3823) \to \chi_{\{c1, c2\}}(1P)\gamma] = \{265, 57\} \text{ keV},$$

and

$$\Gamma[X(3823) \to \eta_c(2S)\gamma] = 0.069 \text{ keV}.$$

• EM decay widths of X(3823) as the $\psi_2(1^3D_2)$ state

TABLE I. The decay widths (keV) of the radiative transition $X(3823) \rightarrow \chi_{cJ}(1P)\gamma$ (J=0, 1, 2), $X(3823) \rightarrow \eta_c(1S, 2S)\gamma$, and the ratio of $\frac{\Gamma(y_S(1D) \rightarrow \chi_c(1P)\gamma_c)}{\Gamma(y_S(1D) \rightarrow \chi_c(1P)\gamma_c)}$.

	[20]	[25]		[2	26]		[2	7]		[28]		[2	29]	Ours	
	RE	RE	NR	RV	RS	RVS	NR	GI	NR_1	NR_2	RE	NR_1	NR_2	RE	EX [31]
$\Gamma(\psi_2(1D) \to \chi_{c1}(1P)\gamma)$	250	260	297	215	215	215	307	268	307	342	208	285	296	265	
$\Gamma(\psi_2(1D) \to \chi_{c2}(1P)\gamma)$	60	56	62	55	51	59	64	66	64	70	55	91	96	57	
$\frac{\Gamma(\psi_2(1D) \rightarrow \chi_{c2}(1P)\gamma)}{\Gamma(\psi_2(1D) \rightarrow \chi_{c1}(1P)\gamma)} \%$	24	22	21	26	24	27	21	25	21	20	26	32	32	22	$28^{+14}_{-11}\pm 2$
$\Gamma(\psi_2(1D) \to \chi_{c0}(1P)\gamma)$														1.2	
$\Gamma(\psi_2(1D) \to \eta_c(1S)\gamma)$														1.3	
$\Gamma(\psi_2(1D) \to \eta_c(2S)\gamma)$														0.069(0.067)	

$$\frac{\mathcal{B}[X(3823) \to \chi_{c2} \gamma]}{\mathcal{B}[X(3823) \to \chi_{c1} \gamma]} = 22 \%, \quad \frac{\mathcal{B}[X(3823) \to \chi_{c0} \gamma]}{\mathcal{B}[X(3823) \to \chi_{c1} \gamma]} = 0.46 \%.$$

This result is within the range of current experimental value $0.28^{+0.14}_{-0.11} \pm 0.02$ and < 0.24.

M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 106, 052012 (2022).

• EM decay widths of $\psi_2(2^3D_2)$ state

The dominant decay channel is $\psi_2(2D) \to \chi_{c1}(2P)\gamma$

$$\Gamma[\psi_{\mbox{\tiny 2}}(2D) \rightarrow \chi_{\mbox{\tiny $c1$}}(2P)\gamma] = 237 \; {\rm keV}. \label{eq:partial}$$

TABLE II. The decay widths (keV) of the radiative transition of the $\psi_2(2D) \rightarrow \chi_{cJ} \gamma$ (J=0, 1, 2) and $\psi_2(2D) \rightarrow \eta_c \gamma$.

	[27]			[47]			[29]	
	\overline{NR}	GI	$\overline{NR_1}$	NR_2	NR_3	$\overline{NR_1}$	NR_2	RE
$\Gamma(\psi_2(2D) \to \chi_{c0}(1P)\gamma)$								0.16
$\Gamma(\psi_2(2D) \to \chi_{c1}(1P)\gamma)$	26	23	17	26	10	68	68	33
$\Gamma(\psi_2(2D) \to \chi_{c2}(1P)\gamma)$	7.2	0.62	6.7	10	3.8	20	20	7.3
$\Gamma(\psi_2(2D) \to \chi_{c2}(1F)\gamma)$								6.2
$\Gamma(\psi_2(2D) \to \chi_{c0}(2P)\gamma)$								1.13
$\Gamma(\psi_2(2D) \to \chi_{c1}(2P)\gamma)$	298	225	140	178	92	223	188	237 (230)
$\Gamma(\psi_2(2D) \to \chi_{c2}(2P)\gamma)$	52	65	39	64	19	115	64	58
$\frac{\Gamma(\psi_2(2D) \rightarrow \chi_{c1}(1P)\gamma)}{\Gamma(\psi_2(2D) \rightarrow \chi_{c1}(2P)\gamma)} (\%)$	8.7	10	12	15	11	30	36	14
$\frac{\Gamma(\psi_2(2D) \to \chi_{c2}(2P)\gamma)}{\Gamma(\psi_2(2D) \to \chi_{c1}(2P)\gamma)} (\%)$	17	29	28	36	21	52	34	25
$\Gamma(\psi_2(2D) \to \eta_c(1S)\gamma)$								2.1
$\Gamma(\psi_2(2D) \to \eta_c(2S)\gamma)$								0.33 (0.32)
$\Gamma(\psi_2(2D) \to \eta_c(3S)\gamma)$								0.092

• EM decay widths of $\psi_2(3^3D_2)$ state

The dominant decay channel is $\psi_2(3D) \to \chi_{c1}(3P)\gamma$

$$\Gamma[\psi_2(3D) \to \chi_{c1}(3P)\gamma] = 218 \text{ keV}.$$

TABLE III. The EM decay widths (keV) of the excited state $\psi_2(3D)$.

Initial state	Final state	$\Gamma_{(our)}$	Final state	$\Gamma_{(\mathrm{our})}$	Final state	$\Gamma_{(our)}$
$\psi_2(3D)$	$\chi_{c0}(1P) \gamma$	0.26	$\chi_{c0}(2P) \gamma$	0.54	$\chi_{c0}(3P) \gamma$	1.1
$\psi_2(3D)$	$\chi_{c1}(1P) \gamma$	38	$\chi_{c1}(2P) \gamma$	40(41)	$\chi_{c1}(3P) \gamma$	218
$\psi_2(3D)$	$\chi_{c2}(1P) \gamma$	6.8	$\chi_{c2}(2P) \gamma$	8.3	$\chi_{c2}(3P) \gamma$	41
$\psi_2(3D)$	$\chi_{c2}(1F) \gamma$	8.3	$\chi_{c2}(2F) \gamma$	11		
$\psi_2(3D)$	$\eta_c(1S) \gamma$	4.6	$\eta_c(2S) \gamma$	2.55(2.44)	$\eta_c(3S) \gamma$	0.24

The dominant EM decay channel for $\psi_2(nD)$ is $\chi_{c1}(nP)\gamma$, and the second is $\chi_{c2}(nP)\gamma$, where n=1,2,3, respectively, while $\chi_{c0}(nP)\gamma$ and $\eta_c(nS)\gamma$ channels always have small contributions.

2. Contributions of different partial waves

• For $\psi_2(1D) \to \eta_c(1S)\gamma$, the contribution of D wave $\to S$ wave transition is suppressed, indicates that the major contribution of this decay process is due to relativistic effect.

TABLE IV. The decay width (keV) of different partial waves for $\psi_2(1D) \rightarrow \eta_c(1S)\gamma$.

2 0-+	Complete	$Swave(A_{f_1}, A_{f_2})$	P wave (A_{f_3})
Complete	1.3	0.0035	1.3
$Dwave(F_1, F_2)$	3.1	0.41	1.3
$Fwave(F_3)$	0.39	0.39	0

2. Contributions of Different Partial Waves

Partial wave contribution

For $\psi_2(1D) \to \chi_{c0}(1P)\gamma$, its result is similar to the case of $\psi_2(1D) \to \eta_c(1S)\gamma$, the contribution of dominant P wave in final state is very small, while the contribution of the small component of S wave is large.

TABLE V. The EM decay width (keV) of different partial waves for $\psi_2(1D) \rightarrow \chi_{c0}(1P)\gamma$.

20++	Complete	$Swave(B_{f_1})$	$\overline{Pwave(B_{f_2},B_{f_3})}$
Complete	1.2	1.3	0.19
$Dwave(F_1, F_2)$	1.3	1.4	0.19
$Fwave(F_3)$	0.14	0.14	~0

Partial wave contribution

For $\psi_2(1D) \to \chi_{c1}(1P)\gamma$, the main contribution of the final state come from the dominant P partial wave which provides the non-relativistic result, and the relativistic correction (D partial wave in 1^{++} state) contribute very small.

TABLE VI. The EM decay width (keV) of different partial waves for $\psi_2(1D) \rightarrow \chi_{c1}(1P)\gamma$.

1++			
2	Complete	$Pwave(C_{f_1}, C_{f_2})$	D wave (C_{f_3})
Complete	265	204	4.0
$Dwave(F_1, F_2)$	209	211	4.2
$Fwave(F_3)$	3.4	0.17	0.0056

Partial wave contribution

For $\psi_2(1D) \to \chi_{c2}(1P)\gamma$, the main contribution of the final state come from the dominant P partial wave which provides the non-relativistic result, and the relativistic correction (D and F partial wave in 2^{++} state) contribute very small.

TABLE VII. The EM decay width (keV) of different partial waves for $\psi_2(1D) \rightarrow \chi_{c2}(1P)\gamma$.

22++	Complete	$Pwave(D_{f_5}, D_{f_6})$	$Dwave(D_{f_1}, D_{f_2}, D_{f_7})$	$Fwave(D_{f_3}, D_{f_4})$
Complete	57	18	1.5	0.23
$Dwave(F_1, F_2)$	75	44	4.9	0.70
F wave (F_3)	1.7	6.1	1.4	0.0057

3. Discussions

- From these tables, we can see that in all the decays, the main contribution of 2^{--} state ψ_2 comes from its dominant partial wave, namely D wave, which is also its non-relativistic term, and its relativistic correction term, namely F partial wave, has a relatively small contribution.
- Compared with the complete relativistic results, the relativistic effects make up 68 %, 84 %, 20 %, 23 % of $X(3823) \rightarrow \eta_c(1S)\gamma$, $X(3823) \rightarrow \chi_{cJ}(1P)\gamma$ (J=0,1,2), respectively.

V. Summary

- We study the EM decays of $\psi_2(n^3D_2)$ (n=1,2,3) by using the relativistic Bethe-Salpeter method, where the new particle X(3823) is treated as $\psi_2(1^3D_2)$ in this paper. And the dominant EM decay channel is $\psi_2(n^3D_2) \to \chi_{c1}(nP)\gamma$.
- Our results show that $\Gamma[X(3823) \to \chi_{c1} \gamma] = 265$ keV, this is the dominant decay channel. The decay ratio $\mathcal{B}[X(3823) \to \chi_{c2} \gamma]/\mathcal{B}[X(3823) \to \chi_{c1} \gamma] = 22\%$ is consistent with the observation $0.28^{+0.14}_{-0.11} \pm 0.02$, and the decay ratio $\mathcal{B}[X(3823) \to \chi_{c0} \gamma]/\mathcal{B}[X(3823) \to \chi_{c1} \gamma] \simeq 0.46\%$ is also less than experimental upper limit 0.24.
- In addition, we calculated the contributions of different partial waves. For the decays $X(3823) \to \eta_c(1S)\gamma$ and $X(3823) \to \chi_{c0}(1P)\gamma$, the main contribution comes from the relativistic effect, while for the $X(3823) \to \chi_{cl}(1P)\gamma$ (J=1,2) decay, the non-relativistic contribution is the dominant one.

Thanks