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|. Introduction

1. Background

@ The bound state - charmonium of charm and anti-charm quarks is significant in
the quantum chromodynamics (QCD). It is a double-heavy meson, but not heavy
enough that its relativistic corrections are still large.

@ In 2013, a new bound state X(3823) has been observed, which is considered to
be a good candidate for spin triplet D wave charmonium , (1°D,).

@ For the decay properties of this particle, since its mass is below the DD*
threshold, and the DD channel is forbidden, there is no Okubo-Zweig-lizuka
(OZl)-allowed channel. Therefore, the single photon radiation processes are
important.
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|. Introduction

2. Previous research

@ Other works Different models have studied the radiative decays of X(3823).
These studies show that the dominate decay channel of X(3823) is the radiative
decay to x,, 7.

E. J. Eichten, K. Lane et al, Phys. Rev. Lett 89, 162002 (2002)
D. Ebert, R. N. Faustov et al, Phys. Rev. D 67, 014027 (2003)
T. Barnes, S. Godfrey er al, Phys. Rev. D 72, 054026 (2005)
B.-Q. Li and K.-T. Chao, Phys. Rev. D 79, 094004 (2009)

@ Our works The Bethe-Salpeter (BS) equation is a relativistic dynamic equation
used to describe bound state. Using Bethe-Saleter method, we get theoretical
results, which agree well with the experimental data.

Chang, Chen, and Wang, Commun. Theor. Phys. 46, 467 (2006)
Wang and Wang, Phys. Lett. B 697, 233 (2011)

Wang, Jiang and Wang, J. High Energy Phys. 03, 209 (2016)
Wang, Wang and Chang, J. High Energy Phys. 05, 006 (2022)
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Il. Bathe-Salpeter and Salpeter equation

1. Bathe-Salpeter equation

@ Bathe-Salpeter equation
For a fermion-antifermion system, there has the general formulation

4

(B, — m)Xo (@) (P, +m2) = i / %vm ka)xo (k). (2.1)

X, (q) — BS wave function, V(P, k, q) — interaction kernel.

@ The meson momentum P and relative momentum g:

m
pr=alP+q, ar= S
my + my
m
pp=aP—-q, o= .
my + my

E.E.Salpeter and H.A.Bethe , Phys. Rev. 84 (1951)
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Il. Bathe-Salpeter and Salpeter equation

@ Though the BS equation is the relativistic dynamic equation, it can not provide us
the form of a relativistic wave function for a bound state.

@ There is the difficulty about the kernel V(P, k, q) of BS equation, it is a
time-inspired interaction kernel.

@ Reduced version is needed -(instantaneous version).
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Il. Bathe-Salpeter and Salpeter equation

2. Salpeter equation

@ Salpeter equation

The reduced (instantaneous) Bathe-Salpeter wave function
dq
By — ¢ P oo
(pﬁ(qj_) = l/ (27T) Xp(q” 7qJ_)7 (22)

and new integration kernel

) = [ SRV k). @3)

The useful notations

+ 1P
wi=/m+q2, A(q,)= Z—M[Mwi:th(mi-i-;h)],

o) = 0 o !

+
M MAz (q.)-

E. E. Salpeter, PRD 87 (1952) 328.
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Il. Bathe-Salpeter and Salpeter equation

@ Then, BS equations can be written as

x(q) = S(p,)n(q, )S(—p,)- (2.4)

S(p,) and S(—p,) represent fermion and antifermion propagators, respectively.

) iAT iA~
—iS(p,) = : — + : .
g+ oM —w, +ie q,+aM+w —ie

iNf iN,

ol )
iS(=p2) qP—a2M+w2—ie+qp—a2M—w2+ie
@ Further carry out a contour integration for the time-component ¢, on both sides
of equation (2.4), then obtain Salpeter wave function

A g )n(g )N (g) A (g0l )A, (q.)

- - . 2.5
elq.) M—w, —o, M+w, o, (2.9)
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Il. Bathe-Salpeter and Salpeter equation
@ Salpeter wave function include four parts

@P(‘h_) :WIT+(QL)+@;r7(qJ_) +‘P;+(QL)+QP;7(CIJ_)'

@ Positive and negative energy wave function

To apply the complete set of the projection operators A (¢, ), then obtain the
four equations

(M_wl _WZ)QO;Hr(q ) (‘h)ﬂp( )A;(QL)v
M +wi +w)e, (q.) =M (g.)n,(q.)A5 (9.),
¢, (@) =9, (g.)=0.

@ Normalization

Lo P PP
[ G e e g ) = 2

C.-H. Chang, J.-K. Chen, and G.-L.Wang, Commun. Theor.' Phys: 46, 467 (2006). o/



Il. Bathe-Salpeter and Salpeter equation

@ Cornell potential

In our model, Cornell potential is chosen as the instantaneous interaction kernel

040%

V=Vo+Vi(r) +79 @7 Vo(r) = Vo+ Ar — v, @7 35 (2.6)

127 1

the running coupling constant o, (§) = 5555
S

.
log(a+ AZ)CI) )

@ In momentum space

V(@) =~ (5 + Vo'

S
+

C.S.Kim, G-L Wang, PLB 584 (2004) 285.
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ll. Relativistic wave function and transition amplitude

1. Relativistic wave function

@ For JP¢ = 0~ state, the relativistic wave function

P P
_ f1L T 5
900,+ (6]&) _Mf[ﬁfal +a2 + Mfm(_ az] )

X
07*(28)(GeV?)

,,,,,,,

g g 1
lal Gev 1] GeV

The positive energy wave function

' P4
et (g, ) =A, + =4, + ”A 1
f

f3 w

M m M
where A, = Tf[m a, +a,), =la + éaz], A, = _f’;Aﬂ‘

C. S. Kim, Taekoon Lee, Guo-Li Wang, Phys. Lett. B 606 (2005).

(3.1)

(3.2)
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ll. Relativistic wave function and transition amplitude

@ The partial wave of 0~ state

In P = 0 frame, the most general formulation of the BS wave function for the
bound state /¢ = 0~ " ('S,) may be written as the follows

0.5 5 4T sq, 0 4T sq,
G- (@) =7+ 0 Y S By A+ 7 5, Eays (3.3)

where
1, .2 1 .2
3 +_ 0ty - oY
Ylo’Y], v :Ty vy 277

andv, =7, (0,,¢,) are spherical harmonics.

E= [Y171'7+ +Y,y —

@ In contrast to formula Eq.(3.1) and Eq.(3.3), we can know that

4 4, .
A, and L-A, terms are S wave, — %A, term is P wave.
N l, " h M2 E

Chao-Hsi Chang, Jiao-Kai Chen, Xue-Qian Li, Guo-Li Wang, Commun. Theor. Phys. 43
(2005).
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ll. Relativistic wave function and transition amplitude

@ For J7¢ = 0™ state, the positive energy wave function

++ —B qu B Pfgf# B 3.4
S0()+-%— (qfi ) —%h + Vf gp) + M2 7 ( . )
!

where B, and B, terms are P waves, relativistic B, term is S wave, with

2
q;, m, B Mf m, Mf
B, = 2 b, + o b], B, = 5[ + ™y b,], B, = > s b +b,),

b, and b, are independent radial wave functions.

*(1P)(GeV!
0**(2P)(GeV™"
0"*(3P)(GeV)

o

B 3 7 B B 7 7
lal Gev 1q1 GeV. lal Gev,

G.-L. Wang, Phys. Lett. B 650, 15 (2007).
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ll. Relativistic wave function and transition amplitude

@ For JPC = 177 state, the positive energy wave function

P P P
P (4),) = i€ i, q; 7"'[C, A “01 (3.5)

where C/l and sz terms are P waves, relativistic Cf3 term is D wave, with

_1 i L.y M;
Cfl = E[Cl + jcz], sz = —E[Efcl -‘1—6’2]7 Cf3 = —Ufcf],

¢, and ¢, are independent radial wave functions.

lale
lale;

**(2P)(GeV™")

5 4 T B B T B
1l Gev lql Gev Il Gev.

G.-L. Wang, Phys. Lett. B 650, 15 (2007).
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ll. Relativistic wave function and transition amplitude

@ For J7¢ =27+ state, the positive energy wave function

++ S
§02++ (qfl) f uqu_ qu_ [ + 7D + Mf + MZL Df4]
) !
no v P P g/L
+Me, Y q;, [D + ﬁfD + JYE Dﬁ}» (3.6)
!

where Df5 and Df6 terms are P partial waves, D, ,D, and D, terms are D partial
waves, while D, and D, terms are F partial waves, with

M
2 2 2 2 _ 7
D, = 2M [ we ;. d, +quu d, +A/Ij.uqfd5 —Mfmfd(j, D, = 2, [mfd5 —wfdﬁ],
2 2
1 m, M; l w, M; 1 Wy
= = —d, — dJ, D, = z|—d,+d, — —L 4], D, ==[d.——Ld
z[ds+ w, 4 m,w, 6]7 fa 2[m + m,w, 5]7 /s 2[ 5 m, 6]7

1

m M w
D =-[--1L D =_—L[- —La
fe 2[ w ds +d6]7 2w/[ d5+mf 6]7

1
i

d; are independent radial wave functions.
G.-L. Wang, Phys. Lett. B 650, 15 (2007).

15/34



@ For J7¢ = 27* (nD) state,

ll. Relativistic wave function and transition amplitude

2apNGev)

— lardme
e — laIYdym — laI*dym
P A — .q.;ai/w L lqisdme
-emen -lald

@ For J© = 27 (nF) state,

T

2" (1F)(GeVv"

—— laiame
--- laldMe
laids
oo -laldy

1
la] Gev

— larae
,,,,, lard

laids
-eeen -laldy

B
191 GeV

G.-L. Wang, Phys. Lett. B 674, 172 (2009).

B
la] GeV




ll. Relativistic wave function and transition amplitude

@ For JP¢ = 27 state, the relativistic wave function

P o 55 P Pd
€as 3700 457" (i + MferMnZ )

P, (ql) =

2(1D)(GeV™!

27(2D)(GeV")

\q|ZGev 1q| GeV 1q] GeV
The positive energy wave function for a 27~ state is
P4
M
where F, = 3[f, — J<fl, F, = —3[2f — 4], F, = *%FV

PY 5 P
et (q.) 4% q, ;7" [F, + TR

N = ieul’aﬁﬁ ] (38)

T.-H. Wang and G.-L. Wang er. al, Int. J. Mod. Phys. A 32, 1750035 (2017).
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ll. Relativistic wave function and transition amplitude

2. Amplitude and form factors

@ The Feynman diagrams for the transition X(3823) — x,,v

my 7 my
X(a) Xr, (4,)
P2 P2
ms my
P P

Figure: Feynman diagrams for the transition X(3823) — x_,~. The two diagrams show that
photons come from the quark and the anti-quark, respectively.

@ The amplitude can be written as

g & 44 ,
wi- (%4 Gy T, (40,07 X, (0) (278" (. — )
Sz?l(ipZ) * pr (q/)(27r)454(p1 - p: )Sfl(Pl )Xp (q)Qze'VgL (3.9)
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ll. Relativistic wave function and transition amplitude

@ The ™™, is much bigger than the ¢~ ~, so the contribution of the o™t is much
larger than others. Therefore, the decay amplitude can be written as

d3
£ _ q " £ ++
M f/@Tr[Qlewa (g, + P )7V e (9.)
H0.06 0, — P, ) bt g (@.10)

Chao-Hsi Chang, Jiao-Kai Chen, Xue-Qian Li, Guo-Li Wang, Commun. Theor. Phys. 43
(2005)
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ll. Relativistic wave function and transition amplitude

@ The form factors expression of amplitude
Integrate internal ¢, over the initial and final state wave functions, then obtain
the amplitude described using form factors.

(1) For the channel X(3823) — n,('S,)7,

M = Pec, PP b, + € P'h,, (3.11)

(2) For X(3823) = x, (P},

M =i®*"e, P P P, (3.12)

Ba' wlfuty

(3) For X(3823) — x., (P, )7,

M = ewPéPf’fPfVP €5, + efPf',’P €5, + eWP‘Eef’.LPst3

3

+e eﬂ“}‘Pj’.’s4 + ei €'ss, (3.13)

wv &f
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ll. Relativistic wave function and transition amplitude

@ The form factors expression of amplitude
(4) For X(3823) — x,, *P,)~y or X(3823) — x., CF,)V,
. BAP,
Mf =i’ (EBPf Ef,APpggl + ngf,x(ppggz + Egef,xpgz + eﬁl’f ef,AgA)

. BEPP P :_BEAP ¢
+ie” >/ (eﬂ’? € pp8s -+ E[jef,¢Pg6) + e (eﬁl,f € Ar87 + eﬁefngs) R
(3.14)

is the polarization tensor of x, (*P,), and we have used some

BAP.P _ _Bluv e 0
! eBPf € p =€ PfyuPVeﬁan €5, P".

where e, ,,

abbreviations, for example, e
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ll. Relativistic wave function and transition amplitude

@ The form factors expression of amplitude

In here, these form factors are not independent. Due to the Ward identity
(Pe — Pre)ME =0 (i = 1,2,3,4), they are linked by the following constrain

conditions:
h, = (M* — ME,)h,, (3.15)
s, = (M* = ME,)s, +s,, s; = (M>— ME,)s,, (3.16)
8 :(M27ME/)81 +g4 +g77 8 :7(M27ME/)g2 (317)

Other form factors such as ¢,, g, and g, are independent and have no such
constraints.
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ll. Relativistic wave function and transition amplitude

@ Defining the decay width

The amplitude square for the electromagnetic (EM) decay of X(3823) is

| |2 2J-|- ; ZE(’Y) ('Y)MEME (3.18)

where, séw is the polarization vector of the final state photon ~, J is the total
angular momentum of the initial state.

Finally, the two-body decay width formulation can be written as

I'=
87TM2

IMP, (3.19)

where, |P.| = (M2 - Mf) J2M.
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V. Results and discussions

1. EM decay widths of X(3823) and its radial excited states

@ EM decay widths of X(3823) as the v, (1°D,) state

Considering X(3823) as the v, (1°D,) state, the final state are 7, (15)v and
X, (1P)~, the decay widths are

T[X(3823) — x,(15)y] = 1.22 keV,

I[X(3823) — 1, (15)7] = 1.30 keV.

The EM decay results of other channels are
T[X(3823) = X, oy (1P)7] = {265, 57} keV,

and
I'[X(3823) — 7,(25)7y] = 0.069 keV.
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[1l. Results and discussions

@ EM decay widths of X(3823) as the v, (1°D,) state

TABLE 1. The decay widths (keV) of the radiative transition X(3823) — y.,(1P)y (J =0, 1, 2). X(3823) — 7.(15.2S)y. and the

L(y2(1D) =z (1P)r)
ratio of g (D=7 (P

[20] [25] [26] [27] [28] [29] Ours

RE RE NR RV RS RVS NR GI NR, NR, RE NR, NR, RE EX [31]
C(yo(1D) = o (1P)y) 250 260 297 215 215 215 307 268 307 342 208 285 296 265
C(y,(1D) = yoo(1P)y) 60 56 62 55 51 59 64 66 64 70 55 91 96 57
wq 24 22 21 26 24 27 21 25 21 20 26 32 32 22 28+ £ 2
T2 (1D) =z (1P)y) -1
C(y5(1D) = 1(1P)7) 12
I(y,(1D) = n.(18)y) 1.3
L(y2(1D) = 1(28)y) 0.069(0.067)

B[X(3823) = x,,7]
B[X(3823) — x.,7]

B[X(3823) = x.07]
B[X(3823) — x.,7]

=22%, =0.46 %.

This result is within the range of current experimental value 0.287011 +0.02 and
< 0.24.

M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 106, 052012 (2022).
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V. Results and discussions

@ EM decay widths of ¢, (2°D,) state

The dominant decay channel is v, (2D) — x_, (2P)y

I, (2D) = X, (2P)y] = 237 keV.

TABLE II. The decay widths (keV) of the radiative transition of the y,(2D) — y.;7 (/ =0, 1, 2) and
w2(2D) = 1.7
127] [47] [29] Ours
NR GI NR, NR, NR; NR, NR, RE
C(y2(2D) = 1o (1P)y) 0.16
Ty (2D) = 7. (1P)7) 26 23 17 26 10 68 68 33
C(y2(2D) = x2(1P)y) 7.2 0.62 6.7 10 3.8 20 20 7.3
T(y>(2D) = yo(1F)y) 6.2
(w2 (2D) = x.0(2P)y) 1.13
T(w,(2D) = y.1(2P)y) 298 225 140 178 92 223 188 237 (230)
T(y2(2D) = x.2(2P)y) 52 65 39 64 19 115 64 58
]1:(1// 2(2D) =y (1P)y) (v/) 8.7 10 12 15 11 30 36 14
(y2(2D)—yc1 (2P)y)
T(w2(2D) =72 (2P)y (%) 17 29 28 36 21 52 34 25
T(y2(2D) =y (2P)y)
T(y>(2D) = n.(18)y) 2.1

I(y>(2D) = 3.(2S)y)
Ty (2D) = n.(3S)y)

0.33 (0.32)
0.092
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V. Results and discussions

@ EM decay widths of ¢, (3°D,) state
The dominant decay channel is v, (3D) — x_, (3P)~y

F[wz (3D) = X (3P)'7] =218 keV.

TABLE III.  The EM decay widths (keV) of the excited state y,(3D).

Initial state Final state Tour) Final state Tour) Final state T (our)
w2(3D) Xo(1P) y 0.26 20(2P) v 0.54 20(3P) v 1.1

v, (3D) xa(1P) y 38 2a(2P) y 40(41) 2a(3P) y 218
w2(3D) Za(1P) v 6.8 22(2P) v 8.3 22(3P) v 41

wa(3D) Xea(1F) y 8.3 Xa2(2F) v 11

yw,(3D) n.(18) y 4.6 n.(28) v 2.55(2.44) n.38) v 0.24

The dominant EM decay channel for ¢, (nD) is x., (nP)~, and the second is x,, (nP)~,
where n = 1,2, 3, respectively, while x_, (nP)~ and ), (nS)~ channels always have small

contributions.
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V. Results and discussions

2. Contributions of different partial waves

@ For 1, (1D) — n,(1S)~, the contribution of D wave — S wave transition is
suppressed, indicates that the major contribution of this decay process is due to
relativistic effect.

TABLE IV. The decay width (keV) of different partial waves
for y»(1D) — n.(1S)y.

—+

9—— 0 Complete  Swave(A; .A;)) Pwave(Ay,)
Complete 1.3 0.0035 1.3
Dwave(F,,F,) 3.1 0.41 1.3

F wave(F3) 0.39 0.39 0
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V. Results and discussions

2. Contributions of Different Partial Waves

@ Partial wave contribution

For ¢, (1D) — x,(1P)~, its result is similar to the case of ¢, (1D) — n,(15)~, the
contribution of dominant P wave in final state is very small, while the contribution
of the small component of S wave is large.

TABLE V. The EM decay width (keV) of different partial
waves for y,(1D) = y.o(1P)y.

0—|—+

9—— Complete Swave(B; ) Pwave(By,, By,)
Complete 1.2 1.3 0.19
Dwave(F, F,) 1.3 1.4 0.19

Fwave(F5) 0.14 0.14 ~0
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V. Results and discussions

@ Partial wave contribution

For ¢, (1D) — x,, (1P)~, the main contribution of the final state come from the
dominant P partial wave which provides the non-relativistic result, and the
relativistic correction (D partial wave in 17 state) contribute very small.
TABLE VI. The EM decay width (keV) of different partial
waves for y,(1D) — y.1(1P)y.

1++
9—— Complete Pwave(C; .Cy) Dwave(Cy,)
Complete 265 204 4.0
Dwave(F,.F,) 209 211 42

Fwave(F) 3.4 0.17 0.0056
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V. Results and discussions

@ Partial wave contribution

For ¢, (1D) — x_, (1P)~, the main contribution of the final state come from the
dominant P partial wave which provides the non-relativistic result, and the

relativistic correction (D and F partial wave in 277 state) contribute very small.
TABLE VII.  The EM decay width (keV) of different partial waves for y,(1D) = y ., (1P)y.

o++
2—— Complete Pwave(Dy,, Dy,) Dwave(Dy,.Dy,.Dy,) Fwave(Dy,.Dy,)
Complete 57 18 1.5 0.23
Dwave(F,.F,) 75 44 4.9 0.70
Fwave(F) 1.7 6.1 1.4 0.0057
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V. Results and discussions

3. Discussions

@ From these tables, we can see that in all the decays, the main contribution of
27~ state ¢, comes from its dominant partial wave, namely D wave, which is
also its non-relativistic term, and its relativistic correction term, namely F partial
wave, has a relatively small contribution.

@ Compared with the complete relativistic results, the relativistic effects make up
68 %, 84 %, 20 %, 23 % of X(3823) — n,(18)~, X(3823) — x,, (1P)y (/ =0, 1,2),
respectively.
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@ We study the EM decays of ¢, (n’D,) (n = 1,2, 3) by using the relativistic
Bethe-Salpeter method, where the new particle X(3823) is treated as
1, (1°D,) in this paper. And the dominant EM decay channel is
b, (n°D,) — x., (nP)~.

@ Our results show that I'[X(3823) — | = 265 keV, this is the dominant
decay channel. The decay ratio 5(X(3823) — \ ,~|/B[X(3823) — x 7] = 22%
is consistent with the observation 0.28"(1} + 0.02, and the decay ratio
B[X(3823) — x,7]/B[X(3823) — ., 7] ~ 0.46% is also less than experimental

upper limit 0.24.

@ In addition, we calculated the contributions of different partial waves. For
the decays X(3823) — n,(1S)~ and X(3823) — x,,(1P)~, the main contribution
comes from the relativistic effect, while for the X(3823) — x_, (1P)vy (J = 1,2)
decay, the non-relativistic contribution is the dominant one.
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