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I. Introduction

1. Background

The bound state - charmonium of charm and anti-charm quarks is significant in
the quantum chromodynamics (QCD). It is a double-heavy meson, but not heavy
enough that its relativistic corrections are still large.

In 2013, a new bound state X(3823) has been observed, which is considered to
be a good candidate for spin triplet D wave charmonium ψ2 (13D2 ).

For the decay properties of this particle, since its mass is below the DD̄∗

threshold, and the DD̄ channel is forbidden, there is no Okubo-Zweig-Iizuka
(OZI)-allowed channel. Therefore, the single photon radiation processes are
important.
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I. Introduction

2. Previous research

Other works Different models have studied the radiative decays of X(3823).
These studies show that the dominate decay channel of X(3823) is the radiative
decay to χc1γ.

E. J. Eichten, K. Lane et al, Phys. Rev. Lett 89, 162002 (2002)
D. Ebert, R. N. Faustov et al, Phys. Rev. D 67, 014027 (2003)
T. Barnes, S. Godfrey et al, Phys. Rev. D 72, 054026 (2005)
B.-Q. Li and K.-T. Chao, Phys. Rev. D 79, 094004 (2009)

Our works The Bethe-Salpeter (BS) equation is a relativistic dynamic equation
used to describe bound state. Using Bethe-Saleter method, we get theoretical
results, which agree well with the experimental data.

Chang, Chen, and Wang, Commun. Theor. Phys. 46, 467 (2006)
Wang and Wang, Phys. Lett. B 697, 233 (2011)
Wang, Jiang and Wang, J. High Energy Phys. 03, 209 (2016)
Wang, Wang and Chang, J. High Energy Phys. 05, 006 (2022)
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II. Bathe-Salpeter and Salpeter equation

1. Bathe-Salpeter equation

Bathe-Salpeter equation
For a fermion-antifermion system, there has the general formulation

(/p1
− m1)χP (q)(/p2

+ m2) = i
∫

d4k
(2π)4 V(P, k, q)χP (k). (2.1)

χP (q) − BS wave function, V(P, k, q) − interaction kernel.

The meson momentum P and relative momentum q:

p1 = α1P + q, α1 =
m1

m1 + m2
,

p2 = α2P− q, α2 =
m2

m1 + m2
.

E.E.Salpeter and H.A.Bethe , Phys. Rev. 84 (1951)
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II. Bathe-Salpeter and Salpeter equation

Though the BS equation is the relativistic dynamic equation, it can not provide us
the form of a relativistic wave function for a bound state.

There is the difficulty about the kernel V(P, k, q) of BS equation, it is a
time-inspired interaction kernel.

Reduced version is needed -(instantaneous version).
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II. Bathe-Salpeter and Salpeter equation

2. Salpeter equation

Salpeter equation

The reduced (instantaneous) Bathe-Salpeter wave function

ϕp(qµ⊥) ≡ i
∫

dqp

(2π)
χP (qµ‖ , q

µ
⊥), (2.2)

and new integration kernel

η(qµ⊥) ≡
∫

k2
T dkT ds
(2π)2 V(k⊥ , q⊥)ϕP(kµ⊥). (2.3)

The useful notations

ωi =
√

m2
i + q2

T , Λ±i (q⊥) =
1

2ωi

[ /P
M
ωi ± Ji(mi + /q⊥)

]
,

ϕ±±P (q⊥) = Λ±1 (q⊥)
/P
M
ϕP (q⊥)

/P
M

Λ±2 (q⊥).

E. E. Salpeter, PRD 87 (1952) 328.
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II. Bathe-Salpeter and Salpeter equation

Then, BS equations can be written as

χ(q) = S(p1 )η(q⊥)S(−p2 ). (2.4)

S(p1 ) and S(−p2 ) represent fermion and antifermion propagators, respectively.

−iS(p1 ) =
iΛ+

1

qP + α1 M − ω1 + iε
+

iΛ−1
qP + α1 M + ω1 − iε

iS(−p2 ) =
iΛ+

2

qP − α2 M + ω2 − iε
+

iΛ−2
qP − α2 M − ω2 + iε

Further carry out a contour integration for the time-component qP on both sides
of equation (2.4), then obtain Salpeter wave function

ϕ(q⊥) =
Λ+

1 (q⊥)η(q⊥)Λ+
2 (q⊥)

M − ω1 − ω2

−
Λ−1 (q⊥)η(q⊥)Λ−2 (q⊥)

M + ω1 + ω2

. (2.5)
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II. Bathe-Salpeter and Salpeter equation

Salpeter wave function include four parts

ϕP (q⊥) = ϕ++
P (q⊥) + ϕ+−

P (q⊥) + ϕ−+
P (q⊥) + ϕ−−P (q⊥).

Positive and negative energy wave function
To apply the complete set of the projection operators Λ±i (q⊥), then obtain the
four equations

(M − ω1 − ω2)ϕ
++
P (q⊥) = Λ+

1 (q⊥)ηP (q⊥)Λ+
2 (q⊥),

(M + ω1 + ω2)ϕ
−−
P (q⊥) = Λ−1 (q⊥)ηP (q⊥)Λ−2 (q⊥),

ϕ+−
P (q⊥) = ϕ−+

P (q⊥) = 0.

Normalization ∫
d3q⊥
(2π)3 tr

[
ϕ̄++

P

/P
M
ϕ++

P

/P
M
− ϕ̄−−P

/P
M
ϕ−−P

/P
M
]

= 2P0 .

C.-H. Chang, J.-K. Chen, and G.-L.Wang, Commun. Theor. Phys. 46, 467 (2006).
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II. Bathe-Salpeter and Salpeter equation

Cornell potential

In our model, Cornell potential is chosen as the instantaneous interaction kernel

V = V0 + Vs(r) + γ0 ⊗ γ
0Vv(r) = V0 + λr − γ0 ⊗ γ

0 4
3
αs

r
, (2.6)

the running coupling constant αs (~q) = 12π
33−2Nf

1

log(a+ ~q2
ΛQCD

)
.

In momentum space

V(~q) = (2π)3Vs(~q) + γ0 ⊗ γ
0Vv(~q)

Vs(~q) = −(
λ

α
+ V0 )δ

3(~q) +
λ

π2

1
(~q2 + α2)2 , Vv(~q) = − 2

3π2

αs (~q)

~q2 + α2 ,

C.S.Kim, G-L Wang, PLB 584 (2004) 285.
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III. Relativistic wave function and transition amplitude

1. Relativistic wave function

For JPC = 0−+ state, the relativistic wave function

ϕ
0−+ (qf⊥

) = Mf [
/P

f⊥

Mf

a1 + a2 +

/P
f /qf⊥

Mf mc

a2 ]γ
5, (3.1)
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The positive energy wave function

ϕ++

0−+
(qf⊥

) = [Af1
+
/P

f⊥

Mf

Af2
+

/P
f /qf⊥

M2
f

Af3
]γ5, (3.2)

where Af1
=

Mf
2 [

ωf
mf

a1 + a2 ], Af2
=

Mf
2 [a1 +

mf
ωf

a2 ], Af3
= −

Mf
ωf

Af1
.

C. S. Kim, Taekoon Lee, Guo-Li Wang, Phys. Lett. B 606 (2005).
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III. Relativistic wave function and transition amplitude

The partial wave of 0−+ state

In ~P = 0 frame, the most general formulation of the BS wave function for the
bound state JPC = 0−+(1S0 ) may be written as the follows

ϕ
0−+ (q⊥) = γ0γ5a1 + γ5a2 +

√
4π
3
γ5 q⊥

2M
Eγ0a3 +

√
4π
3
γ5 q⊥

2M
Ea4 , (3.3)

where

E ≡
[
Y1−1γ

+ + Y11γ
− − Y10γ

3], γ+ =
γ1 + iγ2

√
2

, γ− =
γ1 − iγ2

√
2

,

and Ylm ≡ Ylm (θq , φq ) are spherical harmonics.

In contrast to formula Eq.(3.1) and Eq.(3.3), we can know that

Af1
and

/P
f⊥

Mf
Af2

terms are S wave,
/P

f /
q

f⊥
M2

f
Af3

term is P wave.

Chao-Hsi Chang, Jiao-Kai Chen, Xue-Qian Li, Guo-Li Wang, Commun. Theor. Phys. 43

(2005).
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III. Relativistic wave function and transition amplitude

For JPC = 0++ state, the positive energy wave function

ϕ++

0++
(qf⊥

) = Bf1
+
/q

f⊥

Mf

Bf2
+

/P
f /qf⊥

M2
f

Bf3
, (3.4)

where Bf2
and Bf3

terms are P waves, relativistic Bf1
term is S wave, with

Bf1
=

q2
f⊥

2mf

[b1 +
mf

ωf

b2 ], Bf2
=

Mf

2
[b1 +

mf

ωf

b2 ], Bf3
=

Mf

2
[
ωf

mf

b1 + b2 ],

b1 and b2 are independent radial wave functions.
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G.-L. Wang, Phys. Lett. B 650, 15 (2007).

13 / 34



III. Relativistic wave function and transition amplitude

For JPC = 1++ state, the positive energy wave function

ϕ++
1++(qf⊥

) = iεµναβ
Pνf
Mf

qαf⊥ ε
β
f γ

µ[Cf1
+
/P

f

Mf

Cf2
+

/P
f /qf⊥

M2
f

Cf3
], (3.5)

where Cf1
and Cf2

terms are P waves, relativistic Cf3
term is D wave, with

Cf1
=

1
2

[c1 +
ωf

mf

c2 ], Cf2
= −1

2
[
mf

ωf

c1 + c2 ], Cf3
= −

Mf

ωf

Cf1
,

c1 and c2 are independent radial wave functions.
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G.-L. Wang, Phys. Lett. B 650, 15 (2007).
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III. Relativistic wave function and transition amplitude

For JPC = 2++ state, the positive energy wave function

ϕ++

2++
(qf⊥

) = εf ,µν qµf⊥ qνf⊥ [Df1
+
/P

f

Mf

Df2
+
/q

f⊥

Mf

Df3
+

/P
f /qf⊥

M2
f

Df4
]

+Mf εf ,µνγ
µqνf⊥ [Df5

+
/P

f

Mf

Df6
+

/P
f /qf⊥

M2
f

Df7
], (3.6)

where Df5
and Df6

terms are P partial waves, Df1
, Df2

and Df7
terms are D partial

waves, while Df3
and Df4

terms are F partial waves, with

Df1
=

1
2Mf mf ωf

[ωf q
2
f⊥

d3 +mf q
2
f⊥

d4 +M2
f ωf d5−M2

f mf d6 ], Df2
=

Mf

2mf ωf

[mf d5−ωf d6 ],

Df3
=

1
2

[d3 +
mf

ωf

d4 −
M2

f

mf ωf

d6 ], Df4
=

1
2

[
ωf

mf

d3 + d4 −
M2

f

mf ωf

d5 ], Df5
=

1
2

[d5 −
ωf

mf

d6 ],

Df6
=

1
2

[−
mf

ωf

d5 + d6 ], Df7
=

Mf

2ωf

[−d5 +
ωf

mf

d6 ],

di are independent radial wave functions.
G.-L. Wang, Phys. Lett. B 650, 15 (2007).
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III. Relativistic wave function and transition amplitude

For JPC = 2++ (nD) state,
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G.-L. Wang, Phys. Lett. B 674, 172 (2009).
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III. Relativistic wave function and transition amplitude

For JPC = 2−− state, the relativistic wave function

ϕ
2−−

(q⊥) = iεµναβ
Pν

M
qα⊥ε

βδq⊥δγ
µ(f1 +

/P
M

f2 +
/P/q
⊥

Mmc

f2

)
, (3.7)
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The positive energy wave function for a 2−− state is

ϕ++

2−−
(q⊥) = iεµναβ

Pν

M
qα⊥q⊥δ ε

βδγµ
[
F1 +

/P
M

F2 +
/P/q
⊥

M2 F3

]
, (3.8)

where F1 = 1
2 [f1 −

ωc
mc

f2 ], F2 = − 1
2 [

mc
ωc

f1 − f2 ], F3 = − M
ωc

F1 .

T.-H. Wang and G.-L. Wang et. al, Int. J. Mod. Phys. A 32, 1750035 (2017).
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III. Relativistic wave function and transition amplitude

2. Amplitude and form factors

The Feynman diagrams for the transition X(3823)→ χcJγ

χ
P
(q) χ

Pf
(q

f
)

p1

m1

p
′
1

m1

m2

p
′
2

m2

p2

γξ

χ
P
(q) χ

Pf
(q

f
)

p1

m1

p
′
1

m1

m2

p
′
2

m2

p2

γξ

Figure: Feynman diagrams for the transition X(3823)→ χcJγ. The two diagrams show that
photons come from the quark and the anti-quark, respectively.

The amplitude can be written as

Mξ =

∫
d4q

(2π)4

d4qf

(2π)4 Tr[χ̄Pf
(qf )Q1 eγξχP (q)(2π)4δ4(p2 − p′2 )

S−1
2 (−p2 ) + χ̄Pf

(qf )(2π)4δ4(p1 − p′1 )S−1
1 (p1 )χP (q)Q2 eγξ], (3.9)

18 / 34



III. Relativistic wave function and transition amplitude

The ϕ++, is much bigger than the ϕ−−, so the contribution of the ϕ++ is much
larger than others. Therefore, the decay amplitude can be written as

Mξ =

∫
d3q⊥
(2π)3 Tr[Q1 e

/P
M
ϕ̄++

f (q⊥ + α2 Pf⊥
)γξϕ++

i (q⊥)

+Q2 e ϕ̄++
f (q⊥ − α1 Pf⊥

)
/P
M
ϕ++

i (q⊥)γξ]. (3.10)

Chao-Hsi Chang, Jiao-Kai Chen, Xue-Qian Li, Guo-Li Wang, Commun. Theor. Phys. 43

(2005)
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III. Relativistic wave function and transition amplitude

The form factors expression of amplitude
Integrate internal q⊥ over the initial and final state wave functions, then obtain
the amplitude described using form factors.

(1) For the channel X(3823)→ ηc (
1S0 )γ,

Mξ
1 = PξεµνPµf Pνf h1 + εξ

µ
Pµf h2 , (3.11)

(2) For X(3823)→ χc0 (
3P0 )γ,

Mξ
2 = iεβξµνεβαPµPf ,νPαf t1 , (3.12)

(3) For X(3823)→ χc1 (
3P1 )γ,

Mξ
3 = εµνPξPµf Pνf P · εf s1 + εξ

ν
Pνf P · εf s2 + εµνPξεµf Pνf s3

+εµν ε
ξ
f Pµf Pνf s4 + εξ

µ
εµf s5 , (3.13)
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III. Relativistic wave function and transition amplitude

The form factors expression of amplitude

(4) For X(3823)→ χc2 (
3P2 )γ or X(3823)→ χc2 (

3F2 )γ,

Mξ
4 = iεβλPf P

(
εβPf

εf ,λP Pξg1 + εφ
β
εf ,λφPξg2 + εξ

β
εf ,λP g3 + εβPf

εξ
f ,λ

g4

)
+iεβξPf P

(
εβPf

εf ,PP g5 + εφ
β
εf ,φP g6

)
+ iεβξλP

(
εβPf

εf ,λP g7 + εφ
β
εf ,λφg8

)
,

(3.14)

where εf ,µν is the polarization tensor of χc2 (
3P2 ), and we have used some

abbreviations, for example, εβλPf P
εβPf

εf ,λP = εβλµνPf ,µPν εβαPαf εf ,λρPρ.
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III. Relativistic wave function and transition amplitude

The form factors expression of amplitude

In here, these form factors are not independent. Due to the Ward identity
(Pξ − Pf ,ξ)Mξ

i = 0 (i = 1, 2, 3, 4), they are linked by the following constrain
conditions:

h2 = (M2 −MEf )h1 , (3.15)

s2 = (M2 −MEf )s1 + s4 , s5 = (M2 −MEf )s3 , (3.16)

g3 = (M2 −MEf )g1 + g4 + g7 , g8 = −(M2 −MEf )g2 . (3.17)

Other form factors such as t1 , g5 and g6 are independent and have no such
constraints.
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III. Relativistic wave function and transition amplitude

Defining the decay width

The amplitude square for the electromagnetic (EM) decay of X(3823) is

|M|2 =
1

2J + 1

∑
γ

ε(γ)
ξ
ε(γ)
ξ
′ M

ξMξ
′

, (3.18)

where, ε(γ)
ξ

is the polarization vector of the final state photon γ, J is the total
angular momentum of the initial state.

Finally, the two-body decay width formulation can be written as

Γ =
|~Pf |

8πM2 |M|
2, (3.19)

where, |~Pf | =
(

M2 −M2
f

)
/2M.
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IV. Results and discussions

1. EM decay widths of X(3823) and its radial excited states

EM decay widths of X(3823) as the ψ2(1
3D2) state

Considering X(3823) as the ψ2 (13D2 ) state, the final state are ηc (1S)γ and
χc0 (1P)γ, the decay widths are

Γ[X(3823)→ χc0 (1S)γ] = 1.22 keV,

Γ[X(3823)→ ηc (1S)γ] = 1.30 keV.

The EM decay results of other channels are

Γ[X(3823)→ χ{c1, c2}(1P)γ] = {265, 57} keV,

and
Γ[X(3823)→ ηc (2S)γ] = 0.069 keV.
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III. Results and discussions

EM decay widths of X(3823) as the ψ2(1
3D2) state

B[X(3823)→ χc2γ]

B[X(3823)→ χc1γ]
= 22 %,

B[X(3823)→ χc0γ]

B[X(3823)→ χc1γ]
= 0.46 %.

This result is within the range of current experimental value 0.28+0.14
−0.11 ± 0.02 and

< 0.24.

M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 106, 052012 (2022).
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IV. Results and discussions

EM decay widths of ψ2(2
3D2) state

The dominant decay channel is ψ2 (2D)→ χc1 (2P)γ

Γ[ψ2 (2D)→ χc1 (2P)γ] = 237 keV.
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IV. Results and discussions

EM decay widths of ψ2(3
3D2) state

The dominant decay channel is ψ2 (3D)→ χc1 (3P)γ

Γ[ψ2 (3D)→ χc1 (3P)γ] = 218 keV.

The dominant EM decay channel for ψ2 (nD) is χc1 (nP)γ, and the second is χc2 (nP)γ,
where n = 1, 2, 3, respectively, while χc0 (nP)γ and ηc (nS)γ channels always have small
contributions.
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IV. Results and discussions

2. Contributions of different partial waves

For ψ2 (1D)→ ηc (1S)γ, the contribution of D wave→ S wave transition is
suppressed, indicates that the major contribution of this decay process is due to
relativistic effect.
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IV. Results and discussions

2. Contributions of Different Partial Waves

Partial wave contribution

For ψ2 (1D)→ χc0 (1P)γ, its result is similar to the case of ψ2 (1D)→ ηc (1S)γ, the
contribution of dominant P wave in final state is very small, while the contribution
of the small component of S wave is large.
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IV. Results and discussions

Partial wave contribution

For ψ2 (1D)→ χc1 (1P)γ, the main contribution of the final state come from the
dominant P partial wave which provides the non-relativistic result, and the
relativistic correction (D partial wave in 1++ state) contribute very small.
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IV. Results and discussions

Partial wave contribution

For ψ2 (1D)→ χc2 (1P)γ, the main contribution of the final state come from the
dominant P partial wave which provides the non-relativistic result, and the
relativistic correction (D and F partial wave in 2++ state) contribute very small.
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IV. Results and discussions

3. Discussions

From these tables, we can see that in all the decays, the main contribution of
2−− state ψ2 comes from its dominant partial wave, namely D wave, which is
also its non-relativistic term, and its relativistic correction term, namely F partial
wave, has a relatively small contribution.

Compared with the complete relativistic results, the relativistic effects make up
68 %, 84 %, 20 %, 23 % of X(3823)→ ηc (1S)γ, X(3823)→ χcJ (1P)γ (J = 0, 1, 2),
respectively.
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V. Summary

We study the EM decays of ψ2 (n3D2 ) (n = 1, 2, 3) by using the relativistic
Bethe-Salpeter method, where the new particle X(3823) is treated as
ψ2 (13D2 ) in this paper. And the dominant EM decay channel is
ψ2 (n3D2 )→ χc1 (nP)γ.

Our results show that Γ[X(3823)→ χc1γ] = 265 keV, this is the dominant
decay channel. The decay ratio B[X(3823)→ χc2γ]/B[X(3823)→ χc1γ] = 22%

is consistent with the observation 0.28+0.14
−0.11 ± 0.02, and the decay ratio

B[X(3823)→ χc0γ]/B[X(3823)→ χc1γ] ' 0.46% is also less than experimental
upper limit 0.24.

In addition, we calculated the contributions of different partial waves. For
the decays X(3823)→ ηc (1S)γ and X(3823)→ χc0 (1P)γ, the main contribution
comes from the relativistic effect, while for the X(3823)→ χcJ (1P)γ (J = 1, 2)
decay, the non-relativistic contribution is the dominant one.
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Thanks
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