Searching for Evidence of Dark Energy Īn Milky Way

Rui Zhang (张睿) 2023年8月9日 with Zhen Zhang (张镇), JCAP06(2023)031 (arxiv: 2303.14047)

Outline

- why locally probe dark energy
- theory for dark energy local effects
- searching for dark energy in Milky Way

originate from cosmological constant

 $R^{\mu}_{\ \nu} - \frac{1}{2}g^{\mu}_{\ \nu}R = 8\pi G T^{\mu}_{\ \nu} + g^{\mu}_{\ \nu}\Lambda = 8\pi G (T^{\mu}_{\ \nu} + T^{\mu}_{\ \nu,w})$

equation-of-state parameter

$$w \equiv \frac{T^{i}_{i,w}}{T^{0}_{0,w}} = \frac{-\Lambda}{\Lambda} = -1$$

indirect probe from SN Ia measurements on scale factor a(t), since 1998 at cosmological scales > 100 Mpc

accelerating cosmic expansion is discovered, can be explained by cosmological constant. need direct evidence for DE.

Phenomenological Models

Quintessence (Wetterich 1988) Phantom (Caldwell 2002) Quintom (Feng, Wang, Zhang 2005) Holographic (Li 2004) Agegraphic (Wei, Cai 2008) oscillating (Turner 1983) coupled quintessence (Amendola 2000) K-essense (Chiba, Okabe, Yamaguchi 2000) cuscuton (Afshordi, Chung, Geshnizjani 2007) kinetic gravity braiding (Deffayet 2010) Chaplygin Gas (Kamenshchik, Moschella, Pasquier 2001) viscous Fluid (Brevik 2002) ghost condensation (Arkani-Hamed, Cheng, Luty, Mukohyama 2004)

DE models offer ρ , p, especially w

higher spin (2004-2011) fermion (Ribas, Devecchi, Kremer 2005) (Cai, Wang 2008) (Yajnik 2011) (Tsyba 2011) vector (Armendariz-Picon 2004) (Zhao, Zhang 2006) p-form (Koivisto, Nunes 2009) (Das Gupta 2009) Lorentz-violating (DeDeo 2006) minimum length (Bohmer Harko 2008) time-varying neutrino (Takahashi, Tanimoto 2006) conformal Galilei algebra (Stichel Zakrzewski, 2009) asymptotically AdS (Das 2009) creation CDM (Lima, Jesus, Oliveira 2010) entropic (Verlinde 2017) anisotropic (Singh, Sharma 2013)

Basic Problems of Dark Energy

- state parameter $w \equiv p_w / \rho_w$
- if w = -1, what is the value of Λ ?
- a long story if $w \neq -1$...
 - if w > -1, maybe Quintessence; if w < -1, maybe Phantom
 - how to distinguish models if w = w(z)
 - need to fix other parameters, like $\rho(z)$

Current Experimental Results Planck 2018

wCDM model $w = w_0$

 $w_0 = -1.028 \pm 0.031$

w(z)CDM model $w = w_0 + (1 - a)w_a$

 $w_0 = -0.957 \pm 0.080, \quad w_a = -0.29^{+0.32}_{-0.26}$

a(t) depends on cosmological assumptions and contributions of all components

Gong-Bo Zhao et al. Nature Astron. 1 (2017) 9, 627-632

dynamical dark energy model is 3.5 sigma preferred

Locally Probe Dark Energy

- direct search for DE, point by point
- independent with cosmological assumptions
- higher precision
- distinguish DE models (model independent method)

We propose to directly probe DE on astrophysical scales, such as galaxies or galaxy clusters, around kpc-Mpc scales.

w can be constant

Difficulties on Astrophysical Scales

- Locally define isotropic dark fluid: How to coordinate-independently define isotropic energy-momentum tensor?
- Relate to dark energy model: How to coordinate-independently define energy and pressure?
- Determine dark force: How to deal with realistic astrophysical system?

Coordinate-Independent **Energy-Momentum Tensor** Energy momentum tensor $\widetilde{T} = T_{\mu\nu} dx^{\mu} \otimes dx^{\nu}$ should be coordinate-independent component $T_{\mu\nu}$ is coordinate-dependent $T_{\mu\nu}$ $x \rightarrow 2x$ rotate isotropic?

anisotropic?

Static Isotropic Metric

- quasi-Minkowskian coordinates $x^1 = r \sin \theta \cos \phi$, $x^2 = r \sin \theta \sin \phi$, $x^3 = r \cos \theta$
- static isotropic invariants $x \cdot x, \quad x \cdot dx, \quad dx \cdot dx$
- general metric tensor $ds^{2} = (1+2\Phi(r))dt^{2} - (1+2\Phi(r))dt^{2}$

(Steven Weinberg) Gravitation and cosmology: principles and applications of the general theory of relativity

$$\Phi(r))^{-1} \mathrm{d}r^2 - r^2 (\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\varphi^2)$$

general expression for DE in Weinberg's form

$$T^{t}_{t} = A(r), \quad T^{t}_{i} = 0, \quad T^{t}_{i} = 0$$

$$T^{i}_{\ j} dx_{i} dx^{j} = -B(r) dx^{i} dx^{i}$$
$$\int dx \cdot dx$$

Perfect Dark Fluid

 $T^{i}_{j} = B(r)\delta^{i}_{j} + C(r)x^{i}x_{j}.$ $-C(r)(x^i \mathrm{d} x^i)^2$ $(x \cdot dx)^2$

Pressure from T^{μ}_{ν}

component $T_{\mu\nu}$ is coordinate-dependent

 $T^{\mu}_{\ \nu} = (\rho, -p, -p, -p) \quad \Rightarrow$ isotropic in Minkowski space

3. compatible with cosmological-scale description

$$T^{i}_{j} = -p\delta^{i}_{j} + \mathbf{0}r^{i}r_{j}$$

How to relate it to local system?

- 1. define pressure from $C(r)r^ir_j$ term
- 2. must be coordinate-independent

Coordinate-Independent Pressure from T^{μ}_{ν}

The coordinate-independent observables can be only defined by:

$$T^0_{\ 0} = \rho$$
, $\sum T^i_{\ i} = -3p$

Definition: Any energy-momentum tensor with $T_i^t = 0$ (comoving observer)

$$\rho_w \equiv T^t_{t}, \ p_w \equiv -\frac{\operatorname{Tr}[T^i_{j}]}{3}$$

Relation to Cosmological Description **Extended Robertson-Walker Metric**

 $(ds)^{2} = (dt)^{2} - a^{2}(t)R^{2}(x, y, z) \left[(dr)^{2} + r^{2}(d\theta)^{2} + r^{2}\sin^{2}\theta(d\phi)^{2} \right]$ general metric describe inhomogeneous universe **Friedmann Equation**

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}T_0^0 - \frac{K(x, y, z)}{a^2} \qquad K(x, y, z): \text{ local Gaussian curvature}$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi}{3}(T_0^0 - T_i^i) \qquad \Rightarrow \frac{\ddot{a}}{a} = -\frac{4\pi}{3}(\rho + 3p)$$

$$\textbf{Conservation Equation} \qquad T_j^i \text{ always in trace}$$

$$0 = \frac{dT_0^0}{dt} + \frac{3\dot{a}}{a}(T_0^0 - \frac{1}{3}T_i^i) \qquad \Rightarrow \rho \propto a^{-(3w+3)}$$

- inhomogeneity from primordial quantum fluctuations or catastrophic astrophysical events

SdS_w metric:
$$dS_w^2 = \left[1 - 2\frac{M}{r} - 2\left(\frac{r_0}{r}\right)^{3w+1}\right] dt^2 \frac{1}{\left[1 - 2\frac{M}{r} - 2\left(\frac{r_0}{r}\right)^{3w+1}\right]} dr^2 - r^2 \left(d\theta^2 + \sin^2\theta d\phi^2 + \sin^2\theta d\phi^2$$

$$\Phi(r) = \frac{a}{r} + \frac{b}{r^{3w+1}} \equiv -\frac{M}{r} - \left(\frac{r_0}{r}\right)^{3w+1}$$

- 3w + 1 < 0 at 22σ on cosmological scales (planck2018)
- 3w + 1 > 0 cause strong force at $r \to 0$
- $3w + 1 > 0 \leftrightarrow 3w + 1 < 0$ strong phase transition

Solution of Dark Energy

require w < -1/3

Realistic Astrophysical Systems

astrophysical matters

 $\nabla^2 \Phi_{\rm m} = 4\pi \left(\rho_{\rm m} + 3p_{\rm m}\right)$ $\Phi_{\rm m} = -\int \frac{\rho_{\rm m}(r')}{|\vec{r} - \vec{r'}|} d\vec{r'}$

add matters by post-Newtonian approximation

$$\rho_w + 3p_w + \rho_m + 3p_m)$$

$\overrightarrow{F} = -\overrightarrow{\nabla} \Phi = -\overrightarrow{\nabla} \Phi_{\rm m} -$

Repulsive Local Force

$$(3w+1)\frac{1}{r}\left(\frac{r_0}{r}\right)^{3w+1}\hat{e}_r$$

weak field condition guaranteed by $|\Phi_w| \lesssim |\Phi_m| \sim \frac{M}{r} \sim v^2 \ll 1$

Scale of Dark Force: Critical Radius

$$|3w+1| \frac{1}{r_{\rm cri}} \left(\frac{r_0}{r_{\rm cri}}\right)^{3w+1} \approx |\vec{\nabla} \Phi_{\rm m}| \approx \frac{V_0^2}{r_{\rm cri}}$$
$$\frac{r_{\rm cri}}{r_0} = \left(\frac{V_0^2}{|3w+1|}\right)^{\frac{1}{|3w+1|}} \approx \frac{500 \text{ kpc}}{7.71 \times 10^6 \text{ kpc}}$$

$$|3w+1| \frac{1}{r_{\rm cri}} \left(\frac{r_{\rm O}}{r_{\rm cri}}\right)^{3w+1} \approx |\vec{\nabla} \Phi_{\rm m}| \approx \frac{V_{\rm 0}^2}{r_{\rm cri}}$$
$$\frac{r_{\rm cri}}{r_{\rm O}} = \left(\frac{V_{\rm 0}^2}{|3w+1|}\right)^{\frac{1}{|3w+1|}} \approx \frac{500 \text{ kpc}}{7.71 \times 10^6 \text{ kpc}}$$

power law behavior and precise rotation velocity reduce the scale

Gravitational-

Bound System

$$r \gg r_{cri}$$

conformally flat
 $ds^2 = (1 + 2\Phi)dt^2 - (1 + 2\Phi)^{-1}dr^2 - r^2d\Omega$
 $r' = R(r)r$
 $ds^2 = R^2(dt'^2 - dr'^2 - r'^2d\Omega)$
He and Zhang
JCAP 08 (2017) 036
arxiv: 1701.03418

$$\frac{r_{\rm cri}}{r_{\rm O}} = \left(\frac{V_0^2}{|3w+1|}\right)^{\overline{13}}$$

Let

 $V_0 = 200 \text{ km/s}$ -1 < w < -0.8 $260 \text{ kpc} < r_{cri} < 1 \text{ Mpc}$

 $r_{\rm O} \sim (0.1 - 10) \sqrt{6/\Lambda}$

Conclusion

- We introduce concept of perfect dark fluids in curved spacetime, and associated with dark energy models.
- We offer the basic theory for dark energy local effects: dark force.
- Dark force can be probed on the scale of a galaxy.
- Results consistent with dynamical dark energy model, not cosmological constant model.

Backup

 \mathcal{U}

data from B. Namumba et cl. MNRAS 478 (2018) 1, 487-500 arxiv: 1804.07730

$$\rho_{\rm h,0} = 0.005 \ M_{\odot} \, {\rm pc}^{-3}$$

 $r_{\rm h} = 9.9 \ {\rm kpc}$
 $w = -0.74$

3.5 kpc still sensitive to DE

Ζ

Expect More Data

data from E. Teodoro et cl. MNRAS 507 (2021) 4, 5820-5831 arxiv: 2109.03828

$$V_0^2 = |3w + 1| \left(\frac{r_0}{r_{\rm cri}}\right)^{3w+1}$$

 $1 < r_{\rm cri}/r < 20$

Scale of Dark Energy

$$(\mathrm{d}s)^{2} = (1+2\Phi(r))(\mathrm{d}t)^{2} - (1+2\Phi(r))^{-1}(\mathrm{d}r)^{2} - r^{2}(\mathrm{d}t)^{2}$$

$$\Phi = \frac{a}{r} + \frac{b}{r^{3w+1}} \equiv -\frac{M}{r} - \left(\frac{r_{\mathrm{O}}}{r}\right)^{3w+1}$$

$$\Phi_{w}\Big|_{\Lambda} = -\frac{1}{6}\Lambda r^{2} \equiv -\left(\frac{r_{\mathrm{O}}}{r}\right)^{-2}, r_{\mathrm{O}} = 7.71 \times 10^{6} \,\mathrm{kpc}$$

Benchmark
fix
$$r_0 = 7.71 \times 10^6$$
 kpc !

 $(\mathrm{d}r)^2 - r^2(\mathrm{d}\theta)^2 - r^2\sin^2\theta(\mathrm{d}\phi)^2$

(Steven Weinberg) Gravitation and cosmology:

step 1:
$$t \to t + \Phi(r)$$
, $\frac{d\Phi}{dr} = \frac{d\sigma}{dr}$
 $ds^2 = F(r)dt^2 - r^2 \left(D(r) + \frac{d\sigma}{dr}\right)^2$
step 2: $r^2 \to C(r)r^2$
 $ds^2 = \beta(r)dt^2 - \alpha(r)dr^2 - r^2$

step 3: Newtonian gauge $\alpha(r) \cdot \beta(r) = 1$

Static Isotropic Metric $ds^{2} = F(r)dt^{2} - 2rE(r)dt\mathbf{x} \cdot d\mathbf{x} - r^{2}D(r)(\mathbf{x} \cdot d\mathbf{x})^{2} - C(r)d\mathbf{x} \cdot d\mathbf{x}$ the general theory of relativity $\mathbf{x} \cdot d\mathbf{x} = rdr$ $d\mathbf{x} \cdot d\mathbf{x} = dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\phi^2$

rE(r)F(r) $\left(\frac{E^2(r)}{F(r)}\right) dr^2 - C(r)(dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2)$

 $\beta(r)dt^2 - \alpha(r)dr^2 - r^2(d\theta^2 + \sin^2\theta d\phi^2)$

 $ds^{2} = (1+2\Phi(r))dt^{2} - (1+2\Phi(r))^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$

$$\begin{split} g_{ii} &= -a^{2}(t)a^{2}(x,y,z), \quad g^{ii} = -a^{-2}a^{-2}, \quad g_{00} = \beta^{2}(x,y,z), \quad g^{00} = \beta^{-2}, \quad g_{ij} = g^{ij} = 0 \\ (i \neq j). \\ \Gamma^{0}_{ii} &= -\frac{1}{2}g^{00}\partial_{0}g_{ii}, \quad \Gamma^{i}_{\ \ 0} = \Gamma^{i}_{\ \ 0i} = \frac{1}{2}g^{ii}\partial_{0}g_{ii}, \quad \Gamma^{i}_{\ \ ii} = \frac{1}{2}g^{ii}\partial_{i}g_{ii}, \quad \Gamma^{i}_{\ \ jj} = -\frac{1}{2}g^{ii}\partial_{i}g_{jj}, \quad \Gamma^{i}_{\ \ j} = \Gamma^{i}_{\ \ ji} = \frac{1}{2}g^{ii}\partial_{j}g_{ii}. \\ R_{0i} &= \Gamma^{\nu}_{0i,\nu} - \Gamma^{\nu}_{\nu i,0} + \Gamma^{\lambda}_{0i}\Gamma^{\nu}_{\ \lambda\nu} - \Gamma^{\lambda}_{\ \nu i}\Gamma^{\nu}_{\ \lambda0} \\ &= \Gamma^{0}_{0i,0} + \Gamma^{i}_{\ \ 0i,i} - \Gamma^{0}_{\ 0i,0} - \Gamma^{j}_{\ \ ji,0} + \Gamma^{0}_{\ 0i}\Gamma^{j}_{\ \ 0j} + \Gamma^{i}_{\ \ 0i}\Gamma^{0}_{\ \ 0} + \Gamma^{i}_{\ \ 0i}\Gamma^{j}_{\ \ 0} - \Gamma^{0}_{\ \ i}\Gamma^{i}_{\ \ 0} - \Gamma^{0}_{\ \ 0i}\Gamma^{i}_{\ \ 0} - \Gamma^{i}_{\ \ 0i}\Gamma^{0}_{\ \ 0} \\ &= \Gamma^{i}_{\ \ 0i,i} - \Gamma^{j}_{\ \ ji,0} + \Gamma^{0}_{\ 0i}\Gamma^{j}_{\ \ 0j} + \Gamma^{i}_{\ \ 0i}\Gamma^{j}_{\ \ 0} - \Gamma^{0}_{\ \ i}\Gamma^{i}_{\ \ 0} \\ &= \partial_{i}[\frac{1}{2}g^{ii}\partial_{0}g_{ii}] - \partial_{0}[\frac{1}{2}g^{ij}\partial_{i}g_{jj}] + \frac{1}{2}g^{00}\partial_{i}g_{00}\frac{1}{2}g^{ij}\partial_{0}g_{jj} + \frac{1}{2}g^{ii}\partial_{0}g_{ii}\frac{1}{2}g^{ij}\partial_{0}g_{ij} - \frac{1}{2}g^{ij}\partial_{0}g_{jj} - \frac{1}{2}g^{00}\partial_{0}g_{ii}\frac{1}{2}g^{ij}\partial_{0}g_{ij} \\ &= \partial_{i}[\frac{1}{2}g^{ii}\partial_{0}g_{ii}] - \partial_{0}[\frac{1}{2}g^{ij}\partial_{i}g_{jj}] + \frac{1}{2}g^{00}\partial_{i}g_{00}\frac{1}{2}g^{ij}\partial_{0}g_{ij} + \frac{1}{2}g^{ii}\partial_{0}g_{ii}\frac{1}{2}g^{ij}\partial_{0}g_{ij}\frac{1}{2}g^{ij}\partial_{0}g_{ij} - \frac{1}{2}g^{00}\partial_{0}g_{ii}\frac{1}{2}g^{ij}\partial_{0}g_{ij}\partial_{0}g_{ij} \\ &= \frac{1}{2}\partial_{i}[g^{ii}\partial_{0}g_{ii}] - \frac{3}{2}\partial_{0}[g^{ii}\partial_{i}g_{ii}] + \frac{3}{4}g^{00}\partial_{i}g_{00}g^{ii}\partial_{0}g_{ii} + \frac{3}{4}g^{ii}\partial_{0}g_{ii}g^{ii}\partial_{0}g_{ii}g^{ii}\partial_{0}g_{ii} - \frac{1}{4}g^{ii}\partial_{0}g_{ii}g^{0}\partial_{0}g_{ij}\partial_{0}g_{ij} \\ &= -g^{ii}\partial_{0}\partial_{i}g_{ii} - \frac{1}{2}(g^{ii}\partial_{i}g_{ii})(g^{ii}\partial_{0}g_{ii}) - \frac{3}{2}g^{ii}\partial_{0}\partial_{i}g_{0i} + \frac{3}{2}(g^{ii}\partial_{0}g_{ii})(g^{ii}\partial_{0}g_{ij}) + \frac{1}{2}(g^{00}\partial_{i}g_{00})(g^{ii}\partial_{0}g_{ii}) \\ &= -g^{ii}\partial_{0}\partial_{i}g_{ii} + (g^{ii}\partial_{i}g_{ii})(g^{ii}\partial_{0}g_{ii}) + \frac{1}{2}(g^{00}\partial_{i}g_{00})(g^{ii}\partial_{0}g_{ii}) \\ &= -g^{ii}\partial_{0}\partial_{i}g_{ii} + (g^{ii}\partial_{i}g_{ii})(g^{ii}\partial_{0}g_{ii}) + \frac{1}{2}(g^{00}\partial_{i}g_{00})(g^{ii}\partial_{0}g_{$$

Proof for $T^t_i = 0$

Apply to Dark Energy

$$(\mathrm{d}s)^{2} = g_{tt}(\mathrm{d}t)^{2} - g_{rr}(\mathrm{d}r)^{2} - r^{2}\left[(\mathrm{d}\theta)^{2} + \sin^{2}\theta(\mathrm{d}\phi)^{2}\right] \quad \Leftrightarrow \quad (\mathrm{d}s)^{2} = g_{tt}(\mathrm{d}t)^{2} - \left[\left(g_{rr} - 1\right)\frac{x^{i}x^{j}}{r^{2}} + \delta^{ij}\right]\mathrm{d}x_{i}\mathrm{d}x_{j}$$

$$\widetilde{T} = g_{tt}(r)A(r) dt \otimes dt$$
$$- \left[\left(g_{rr}(r) - 1 \right) B(r) + g_{rr}(r) C(r) r^2 \right] dr \otimes dr$$
$$- B(r) \left(dr \otimes dr + r^2 d\theta \otimes d\theta + r^2 \sin^2 \theta d\varphi \otimes d\varphi \right)$$

a little difference when considering g_{rr}

$$\begin{aligned} & \text{Solution of Dark Energy} \\ & {}^{(ds)^2 = g_{tt}(dt)^2 - g_{rr}(dr)^2 - r^2 \left[(d\theta)^2 + \sin^2 \theta (d\phi)^2 \right]} \\ & \widetilde{T} = g_{tt}(r) A(r) \, dt \otimes dt \\ & - \left[\left(g_{rr}(r) - 1 \right) B(r) + g_{rr}(r) \, C(r) \, r^2 \right] dr \otimes dr \\ & - B(r) \left(dr \otimes dr + r^2 d\theta \otimes d\theta + r^2 \sin^2 \theta \, d\varphi \otimes d\varphi \right) \\ & T_t^t = \rho, \quad T_i^t = 0, \quad T_j^i = 3p \left[B \delta_j^i - (1 + 3B) \frac{r^i r_j}{r^2} \right], \quad B = -\frac{1 + 3w}{6w}. \end{aligned}$$

Solution of Dark Energy

$$s)^{2} = g_{tt}(dt)^{2} - g_{rr}(dr)^{2} - r^{2} [(d\theta)^{2} + \sin^{2}\theta(d\phi)^{2}]$$

$$= g_{tt}(r)A(r) dt \otimes dt$$

$$- \left[\left(g_{rr}(r) - 1 \right) B(r) + g_{rr}(r) C(r) r^{2} \right] dr \otimes dr$$

$$- B(r) \left(dr \otimes dr + r^{2} d\theta \otimes d\theta + r^{2} \sin^{2}\theta d\varphi \otimes d\varphi \right)$$

$$T^{t}_{t} = \rho, \quad T^{t}_{i} = 0, \quad T^{i}_{j} = 3p \left[B \delta^{i}_{j} - (1 + 3B) \frac{r^{i} r_{j}}{r^{2}} \right], \quad B = -\frac{1 + 3w}{6w}.$$

Relation to Cosmological Description **Extended Robertson-Walker Metric**

 $(ds)^{2} = (dt)^{2} - a^{2}(t)R^{2}(x, y, z) \left[(dr)^{2} + r^{2}(d\theta)^{2} + r^{2}\sin^{2}\theta(d\phi)^{2} \right]$ general metric describe inhomogeneous universe **Friedmann Equation**

$$\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}T_{0}^{0} - \frac{K(x, y, z)}{a^{2}} \qquad K(x, y, z) = \frac{1}{3}\left[-\frac{2}{R^{2}}\frac{\partial_{i}^{2}R}{R} + \frac{1}{R^{2}}\left(\frac{\partial_{i}R}{R}\right)^{2}\right]$$
$$\frac{\ddot{a}}{a} = -\frac{4\pi}{3}(T_{0}^{0} - T_{i}^{i}) \qquad \Rightarrow \frac{\ddot{a}}{a} = -\frac{4\pi}{3}(\rho + 3p)$$
$$Conservation Equation \qquad T_{i}^{i} \text{ always in sum}$$
$$0 = \frac{dT_{0}^{0}}{dt} + \frac{3\dot{a}}{a}(T_{0}^{0} - \frac{1}{3}T_{i}^{i}) \qquad \Rightarrow \rho \propto a^{-(3w+3)}$$

- inhomogeneity from primordial quantum fluctuations or catastrophic astrophysical events

Metric and curvature tensor

$$d\sigma^{2} = \gamma_{ij} dx^{i} dx^{j} \equiv R^{2}(x, y, z) \left[dx^{2} + dy^{2} + dz^{2} \right]$$

$$^{(3)}R_{ijkm} = \gamma_{is} {}^{(3)}R_{jkm}^{s} = \gamma_{is} \left[{}^{(3)}\Gamma^{s}_{\ jm,k} - {}^{(3)}\Gamma^{s}_{\ jk,m} + {}^{(3)}\Gamma^{p}_{\ jm} {}^{(3)}\Gamma^{s}_{\ pk} - {}^{(3)}\Gamma^{p}_{\ jk} {}^{(3)}\Gamma^{s}_{\ pm} \right]$$

Gaussian curvature $K_p = K_p[i, j, k, m] = -\frac{{}^{(3)}R_{ijkl}}{\gamma_{ik}\gamma_{jm} - \gamma_{im}\gamma_{jk}}$

$$K_p^i = K_p[j,k,j,k] = -\frac{1}{R^2} \left[\left(\frac{\partial_j R}{R} \right)^2 - \frac{\partial_j^2 R}{R} + \left(\frac{\partial_k R}{R} \right)^2 - \frac{\partial_k^2 R}{R} - \left(\frac{\partial_i R}{R} \right)^2 \right]$$
$$K(x,y,z) \equiv \frac{\sum K_p^i}{3} = \frac{1}{3} \left[-\frac{2}{R^2} \frac{\partial_i^2 R}{R} + \frac{1}{R^2} \left(\frac{\partial_i R}{R} \right)^2 \right]$$

Sectional Curvature I

Sectional Curvature II

$$\frac{dx^{2} + dy^{2} + dz^{2}}{\left[+ \frac{1}{4} \kappa \left(x^{2} + y^{2} + z^{2} \right) \right]^{2}} \\ \frac{1}{c \left(x^{2} + y^{2} + z^{2} \right)} \\ \frac{2}{R^{2}} \frac{\partial_{i}^{2} R}{R} + \frac{1}{R^{2}} \left(\frac{\partial_{i} R}{R} \right)^{2} \right] = \kappa$$

Energy-Momentum Tensor for DE

$\mathrm{d}s^2 = \beta(r)\mathrm{d}t^2 - \alpha(r)\mathrm{d}r^2 - \alpha(r)\mathrm{d}r^2 - \beta(r)\mathrm{d}r^2 - \alpha(r)\mathrm{d}r^2 - \alpha(r)$

$T_t^t = T_r^r$ protected by

$T_{t}^{t} = \rho, \quad T_{i}^{t} = 0, \quad T_{j}^{i} = 3w\rho | B_{t}$

$$-r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2})$$

$$T^{t}_{t} - T^{r}_{r} = -\frac{1}{r\alpha} \left(\frac{\alpha'}{\alpha} + \frac{\beta'}{\beta}\right)$$

$$\delta^{i}_{j} - (1 + 3B) \frac{r^{i}r_{j}}{r^{2}}, \quad B = -\frac{1 + 3w}{6w}$$

We need to solve the big problem for $w \neq -1$!

$$\Phi = \frac{a}{r} + \frac{b}{r^{3w+1}}$$

Solution to Einstein Equation $ds^{2} = (1 + 2\Phi(r))dt^{2} - (1 + 2\Phi(r))^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$ $\frac{M}{1} \equiv -\frac{M}{1} - \left(\frac{r_0}{1}\right)^{5w+1}$ $\langle r \rangle$

$$\Phi = \frac{a}{r} + \frac{b}{r^{3w+1}}$$

$$8\pi T^{t}{}_{t} = 8\pi T^{r}{}_{r} = -\frac{2\Phi + 2r\partial_{r}\Phi}{r^{2}}$$

$$8\pi\rho = \frac{6wb}{r^{3w+3}} > 0$$

$$\Phi = -\frac{M}{r} \pm \left(\frac{r_0}{r}\right)^{3w+1} + \text{for } v$$

Proof for b>0

 $= 8\pi\rho$

w > 0, - for w < 0

Proof for Weak Field Condition

 $r_{\rm L} = 200 \text{ kpc}, \quad r_{\rm S} = 100 \text{ kpc}, \quad v(r_{\rm S}) = 200 \text{ km/s}$ $\Delta_{w} v^{2}(r) \equiv -|3w+1| (\frac{r_{0}}{r})^{3w+1}$

$$\frac{M(r_{\rm L})}{r_{\rm L}} > |\Delta_w v^2(r_{\rm L})|$$

$$v^{2}(r_{\rm S}) = \frac{M(r_{\rm S})}{r_{\rm S}} - |\Delta_{w}v^{2}(r_{\rm S})| > \frac{M(r_{\rm S})}{r_{\rm S}} - \frac{M(r_{\rm L})}{r_{\rm L}} (\frac{r_{\rm L}}{r_{\rm S}})^{3w+1} \approx \frac{M(r_{\rm S})}{r_{\rm S}} \left[1 - (\frac{r_{\rm L}}{r_{\rm S}})^{3w+1} \right]$$
$$|\Phi_{w}(r_{\rm L})| = (\frac{r_{\rm O}}{r_{\rm L}})^{3w+1} \lesssim \frac{v^{2}(r_{\rm S})}{1 - (\frac{r_{\rm L}}{r_{\rm S}})^{3w+1}} < 10^{-6} \text{ for } w < -0.6$$

40

Cosmic Expansion vs Dark Force I

Cosmological scales

cosmic scale factor a(t)

 $(\mathrm{d}s)^2 = (\mathrm{d}t)^2 - a^2(t) \left[\frac{(\mathrm{d}r)^2}{1 - kr^2} + r^2(\mathrm{d}\theta)^2 \right]$

Astrophysical scales

local dark force: $-\overrightarrow{\nabla}\Phi$

 $(ds)^2 = (1 + 2\Phi)(dt)^2 - (1 + 2\Phi)^{-1}(dr)^2 - (1 + 2\Phi)^{-1}(d$

$$\Phi = -\int \frac{\rho_{\rm m}(\vec{r'})}{|\vec{r} - \vec{r'}|} d\vec{r'} - \left(\frac{r_{\rm o}}{r}\right)^{3w+1}$$

 $\nabla^2 \Phi = 4\pi (\rho_{\rm m} + 3p_{\rm m} + \rho_w + 3p_w)$

$$+r^2\sin^2\theta(\mathrm{d}\phi)^2$$

$$-r^2(\mathrm{d}\theta)^2 - r^2\sin^2\theta(\mathrm{d}\phi)^2$$

Cosmic Expansion vs Dark Force II

Cosmic Expansion

$$\nabla^2 \Phi_w = -\frac{3\ddot{a}}{a} \qquad \Phi_w = -\frac{\ddot{a}}{a}r^2$$

Dark Force

$$\nabla^2 \Phi_w = 4\pi (\rho_w + 3p_w) \qquad \Phi_w = -\left(\frac{r_o}{r}\right)$$

Cosmological constant model

$$\nabla^2 \Phi_w = -\Lambda \qquad \Phi_w = -\frac{1}{6}\Lambda r^2$$

Balaguera-Antolinez et al. CQG 24 (2007) 2677-2688 arxiv: 0704.1871 $z \gtrsim 0.1$ $r \gtrsim 400$ Mpc

3*w*+1

He and Zhang JCAP 08 (2017) 036 arxiv: 1701.03418 $r \approx 1 - 20$ Mpc

This work arxiv: 2303.14047

 $r \approx 100 - 200 \text{ kpc}$

Ho and Hsu Astropart.Phys. 74 (2016) 47-50 arxiv: 1501.05952

 $r \sim 500 \text{ kpc}$

Yang Huang et al. MNRAS 463 (2016) 2623 arxiv: 1604.01216

LAMOST 4.5-100 kpc $r_{200} = 255.69 \pm 7.67$ kpc

Yoshiaki Sofue Publ.Astron.Soc.Jap. 65 (2013) 118 arxiv: 1307.8241

3 points 100-200 kpc

Scale of Dark Force I

$$\overrightarrow{F} = -\overrightarrow{\nabla}\Phi = -\frac{1}{r^2} \left[M + (3w+1)\frac{r_0^{3w+1}}{r^{3w}} \right] \hat{e}_r$$

$$M_{\rm cri} = |3w+1| \frac{r_0^{3w+1}}{r_{\rm cri}^{3w}} \qquad r_{\rm cri} = r_0 \left(|3w+1| \frac{r_0}{M_{\rm cri}}\right)^{\frac{1}{3w}}$$

For MW and cosmological constant mode

el,
$$r_{\rm cri} \Big|_{\Lambda} = \Big(\frac{3GM_{\rm cri}(r_{\rm cri})}{\Lambda}\Big)^{\frac{1}{3}} = 500 \text{ kpc}$$

45

Scale of Dark Force II

critical radius

w = -1 $r'_{cri} = 3.6 \times 10^3$ kpc w = -0.8 $r'_{cri} = 176$ kpc

 $r'_{\rm cri} > 200 \text{ kpc} \Rightarrow w < -0.808$

$$\Phi = -\int \frac{\rho_{\rm m}(\vec{r'})}{|\vec{r} - \vec{r'}|} d\vec{r'} - \left(\frac{r_0}{r}\right)^{3w+1}$$

- scale of dark energy $r_O = 7.71 \times 10^6$ kpc
- critical radius $r_{\rm cri} \approx 500 \ \rm kpc$
- $r_{200} = 255.69 \pm 7.67$ kpc

Scale: Summary

Rotation Curve Sensitivity I

$$\overrightarrow{F} = -\overrightarrow{\nabla}\Phi = -\frac{1}{r^2} \left[M + (3w+1)\frac{r_0^{3w+1}}{r^{3w}} \right] \hat{e}_r$$

$$r = 0.4r_{\rm cri}$$

$$\frac{|\Delta_w V^2(r)|}{V_{\rm N}^2} \equiv |3w+1| \frac{\frac{r_0^{3w+1}}{r^{3w}}}{M} = |3w+1| \left(\frac{r}{r_{\rm cri}}\right)^{-3w} = 12.8\%$$

$$\frac{|\Delta_w V^2(r)|}{V_{\rm N}^2} = |3w+1| \frac{\frac{r_0^{3w+1}}{r^{3w}}}{M(r_{\rm cri})\frac{r}{r_{\rm cri}}} = |3w+1| \left(\frac{r}{r_{\rm cri}}\right)^{-3w-1} = 32\%$$

w = -1

Rotation Curve Sensitivity II

$$\overrightarrow{F} = -\overrightarrow{\nabla}\Phi = -\frac{1}{r^2} \left[M + (3w+1)\frac{r_0^{3w+1}}{r^{3w}} \right] \hat{e}_r$$

$$\Delta v/v$$
 $r = 0.2r_{\rm cri}$

$$w = -1 \qquad \qquad 4\%$$

w = -0.87 %

current experimental precision is 3 - 8% at 4-100 kpc

 $r = 0.4r_{\rm cri}$

16 %

19%

- bulge
- disk
- dark matter halo

dark energy

Galactic Mass Model $v^2 = v_h^2 + v_d^2 + v_h^2 + \Delta_w v^2$ $v_b(r) = 196 \text{ km/s} \left(\frac{r}{\text{kpc}}\right)^{-1/2}$ $\Sigma_d(r) = \Sigma_{d.0} \exp(-r/r_d)$ $\Sigma_d(r_{\odot}) = 54.4 \ M_{\odot} \ pc^{-2}$

NFW $\rho_h(r) = \rho_{h,0}(r/r_h)^{-1}(1 + r/r_h)^{-2} \sim r^{-3}$

Galactic Mass Model: bulge

$$\rho(R,Z) = \frac{\rho_0}{m^{\gamma}(1+m)^{\beta-\gamma}} \exp\left[-(mr_0/r_t)^2\right], \quad m(R,Z) = \sqrt{(R/r_0)^2 + (Z/qr_0)^2}$$

 $\gamma = 0, \beta = 1.8, r_0 = 0.075 \text{ kpc}, r_t = 2.1 \text{ kpc}, q = 0.5, \rho_0 = 9.93 \times 10^{10} M_{\odot} \text{kpc}^{-3}$

0.1% overestimation on velocity

Galactic Mass Model: disc

$$\Sigma_d(r) = \Sigma_{d,0} \exp(-r/r_d) \qquad \Sigma_d(r_{\odot}) =$$
$$v_c^2(r) = 4\pi G \Sigma_{d,0} r_d y^2 \Big[I_0(y) K_0(y) - I_1(y) \Big]$$

- total local stellar surface density $38.0~M_\odot\,{
 m pc}^{-2}$ [J. Bovy, H. Rix, ApJ 779 (2013) 115] - subtract stellar halo surface density $0.6~M_\odot\,{
 m pc}^{-2}$ [C. Flynn et al. MNRAS 372 (2006)1149-1160] • H_2 gas 2.0 M_{\odot} pc⁻² and warm gas 3.0 M_{\odot} pc⁻² [ibid.]
- HI gas $12.0~M_{\odot}~{
 m pc}^{-2}$ [P. Kalberla, L. Dedes, A&A 487 (2008) 951]

 $54.4 \ M_{\odot} \, {\rm pc}^{-2}$ $v)K_1(y)$

$$v_h^2 = \frac{4\pi\rho_{h,0}r_h^3}{r} \Big($$

Galactic Mass Model: NFW halo

 $\rho_h(r) = \rho_{h,0}(r/r_h)^{-1}(1 + r/r_h)^{-2} \sim r^{-3}$

 $\int \left(\ln \frac{r_h + r}{r_h} - \frac{r}{r + r_h}\right)$

Planck 2018

This value is our "best estimate" of H_0 from *Planck*, assuming the base- Λ CDM cosmology.

Since we are considering a flat universe in this section, a constraint on Ω_m translates directly into a constraint on the dark-energy density parameter, giving

 Λ CDM model

w(z) CDM model

 $\Omega_{\Lambda} = 0.6847 \pm 0.0073$ (68 %, TT, TE, EE+lowE+lensing). (15)

In terms of a physical density, this corresponds to $\Omega_{\Lambda}h^2 = 0.3107 \pm 0.0082$, or cosmological constant $\Lambda = (4.24 \pm 0.11) \times 10^{-66} \text{ eV}^2 = (2.846 \pm 0.076) \times 10^{-122} m_{\text{Pl}}^2$ in natural units (where m_{Pl} is the Planck mass).

To test a time-varying equation of state we adopt the functional form

 $w(a) = w_0 + (1-a)w_a \,$

where w_0 and w_a are assumed to be constants. In Λ CDM, $w_0 = -1$ and $w_a = 0$. We use the parameterized post-Friedmann (PPF)

Fixing the evolution parameter $w_a = 0$, we obtain the tight constraint

$$w_0 = -1.028 \pm 0.031$$

(68 %, *Planck* TT,TE,EE+lowE +lensing+SNe+BAO), (50)

Table 6. Marginalized values and 68 % confidence limits for cosmological parameters obtained by combining *Planck* TT,TE,EE +lowE+lensing with other data sets, assuming the (w_0, w_a) parameterization of w(a) given by Eq. (49). The $\Delta \chi^2$ values for best fits are computed with respect to the Λ CDM best fits computed from the corresponding data set combination.

Parameter	Planck+SNe+BAO	Planck+BAO/RSD+W
$W_0 \cdot \cdot \cdot \cdot$	-0.957 ± 0.080	-0.76 ± 0.20
W_a	$-0.29^{+0.32}_{-0.26}$	$-0.72^{+0.62}_{-0.54}$
H_0 [km s ⁻¹ Mpc ⁻¹]	68.31 ± 0.82	66.3 ± 1.8
$\sigma_8 \ldots \ldots \ldots$	0.820 ± 0.011	$0.800^{+0.015}_{-0.017}$
<i>S</i> ₈	0.829 ± 0.011	0.832 ± 0.013
$\Delta \chi^2 \dots$	-1.4	-1.4

L

 $(ds)^{2} = Z^{2}(x, y, z)(dt)^{2} - a^{2}(t)R^{2}(x, y, z) \left[(dr)^{2} + r^{2}(d\theta)^{2} + r^{2}\sin^{2}\theta(d\phi)^{2} \right]$

Conservation Equation

 $0 = D_{\nu}T^{\mu\nu} = \partial_{\nu}T^{\mu\nu} + \Gamma^{\mu}_{\ \nu\rho}T^{\rho\nu} + \Gamma^{\nu}_{\ \nu\rho}T^{\mu\rho}$

$$0 = \frac{dT_0^0}{dt} + \frac{3\dot{a}}{a}(T_0^0 - \frac{1}{3}T_i^i) \qquad \Rightarrow \rho \propto a^{-(3w+3)}$$

$$0 = \partial_j T^i{}_j + \frac{1}{R} \frac{\partial R}{\partial x^i} (T^i{}_i - T^j{}_j) + \frac{2}{R} \frac{\partial R}{\partial x^j} T^i{}_j$$

Relation to RW Universe

$$\Rightarrow \partial_i p = 0$$

Conservation Equation for Newtonian gauge

$$0 = D_{\nu}T^{\mu\nu} = \partial_{\nu}T^{\mu\nu} + \Gamma^{\mu}_{\ \nu\rho}T^{\rho\nu} + D^{\mu}_{r}$$
$$T^{t}_{t} = T^{r}_{r} = -\frac{2\Phi + 2r\partial_{r}\Phi}{r^{2}} \qquad T^{\theta}_{\theta} = T^{\phi}_{r}$$

$$0 = D_{\nu}T^{\mu\nu} = \partial_{\mu}T^{\mu\mu} + \Gamma^{\mu}_{\ \nu\nu}T^{\nu\nu} + \Gamma^{\nu}_{\ \nu\mu}T^{\mu\mu}$$

 $\partial_{\mu}T^{\mu\mu}$ $\Gamma^{\mu}_{\ \nu\nu}T^{\nu\nu}$

 $\mu = t \qquad 0 \qquad 0$ $\mu = r \qquad \partial_r (g^{rr} T^t_{\ t}) \qquad 2T^t_{\ t} \partial_r \Phi - 2T^\theta_{\ \theta} \frac{g^{rr}}{r}$ $\mu = \theta \qquad 0 \qquad \Gamma^\theta_{\ \phi \phi} g^{\phi \phi} T^\phi_{\ \phi}$ $\mu = \varphi \qquad 0 \qquad 0$

 $\Gamma^{\nu}{}_{\nu\rho}T^{\mu\rho}$ protected by Bianchi identity $\Gamma^{\varphi}{}_{\varphi} = -\partial_r \partial_r \Phi - \frac{2}{r}\partial_r \Phi$ spherical polar coordinates

$$\begin{aligned}
 \Gamma^{\nu}{}_{\nu\mu}T^{\mu\mu} & \partial_{\mu}T^{\mu\mu} + \Gamma^{\mu}{}_{\nu\nu}T^{\nu\nu} + \Gamma^{\nu}{}_{\nu\mu}T^{\mu\mu} \\
 0 & 0 \\
 \frac{2}{r}g^{rr}T^{t}{}_{t} & g^{rr}\Big(\partial_{r}(T^{t}{}_{t}) + \frac{2}{r}(T^{t}{}_{t} - T^{\theta}{}_{\theta})\Big) \\
 \Gamma^{\varphi}{}_{\varphi\theta}g^{\theta\theta}T^{\theta}{}_{\theta} & 0 \\
 0 & 0
 \end{aligned}$$

= 0

rotation velocity of Sextans A

B. Namumba et cl. MNRAS 478 (2018) 1, 487-500 arxiv: 1804.07730

velocities of non-coplanar objects in M31 (a) in linear and (b) semi-logarithmic scaling. References to the data are listed in table 1.

Prospect

P. Bhattacharjee et cl. ApJ 785 (2014) 63 arxiv: 1310.2659

63