The Second International Conference on Axion Physics and Experiment

ALP from $U(1)_L$ and its phenomenology

WEI CHAO (BNU)

2023.07.24

Based on arXiv:2210.13233, with Ying-Quan Peng、H.J.Li、M.J.Jin、Yue Wang

I: The origin of the ALP mass

There is no well-known mechanism for the mass generation of ALP, except the QCD axion.

We present a mechanism for the mass generation of Majoron dark matter via the type-II seesaw mechanism!

Preview

II: Constraints on the ALP parameter space

New physics beyond the SM-dark matter

Evidence of dark matter

measured

distance from center (light vea

WEI CHAO

What is dark matter?

New physics beyond the SM-neutrino physic

Evidence of of neutrino oscillations

WEI CHAO

Key issues for neutrino physics

The origin of tiny but non-zero neutrino masses

Neutrino mass hierarchy

CP-violating phase in lepton mixing matrix

Is neutrino Majorana or Dirac particle?

.....

Is neutrino physics correlated with DM?

Properties of neutrinos are similar to these of dark matter

Neutrino is a hot dark matter candidate

The signal of neutrino in direct detection experiments is similar to that of DM

WEI CHAO

Sterile neutrino is typical warm/cold dark matter candidate

The issue we concern in this talk

Standard model: Lepton number is accidental global U(1) symmetry

Connections between neutrino mass and the ALP physics!

- Traditional seesaw mechanisms: $U(1)_{L}$ is explicitly broken at the tree-level
- Is lepton number spontaneously broken, or explicitly broken, or both?

Neutrino mass generations

Neutrino mass generations

Neutrino mass from higher dimensional effective operators

Majorana neutrino mass the tree-level:

The unique operator of dim 2n+5, that can give ne at the tree level is

Neutrino mass from loop corrections:

- Dimension-5: Weinberg operator for neutrino-masses (S. Weinberg 1979)
- Dimension-6: W. Buchmuller and D. Wyler, 1986; B. Grzadkowski et al, 2010;
- Dimension-7: L. Lehman, 2014; Y. Liao and X.D. Ma, 2016; Dimension-8: C.W. Murphy, 2020; H.L. Li et al., 2020; ...
- Dimension-9: Y. Liao and X.D. Ma, 2020; H.L. Li et al, 2020, 2021;

(F. Bor	nnet et al, 2009; Y.	Liao, 2011)
neutrino masses O ²ⁿ⁺⁵	$= \mathcal{O}_{\text{weinberg}} \times$	$\frac{(H^{\dagger}H)^n}{\Lambda^{2n}}$
$\alpha_{LH}^{(5)} \qquad \qquad$	\mathcal{O}_{2B} \mathcal{O}_{2W}	$\frac{-\frac{1}{2} (\partial_{\mu} B^{\mu\nu}) (\partial^{\rho} B_{\rho\nu})}{-\frac{1}{2} (D_{\mu} W^{I\mu\nu}) (D^{\rho} W^{I}_{\rho\nu})}$
(a) (b) (c)	\mathcal{O}_{BDH} \mathcal{O}_{WDH}	$\partial_{\nu}B^{\mu\nu}\left(H^{\dagger}i\overleftrightarrow{D}_{\mu}H\right)$ $D_{\nu}W^{I\mu\nu}\left(H^{\dagger}i\overleftrightarrow{D}^{I}H\right)$
	\mathcal{O}_{DH}	$ \begin{pmatrix} D_{\mu}D^{\mu}H \end{pmatrix}^{\dagger} \begin{pmatrix} D_{\nu}D^{\nu}H \end{pmatrix} $ $ \begin{pmatrix} H^{\dagger}H \end{pmatrix} \begin{pmatrix} D_{\mu}H \end{pmatrix}^{\dagger} \begin{pmatrix} D_{\mu}H \end{pmatrix}^{\dagger} \begin{pmatrix} D_{\mu}H \end{pmatrix} $
$\alpha_{LH}^{(5)} \qquad \qquad$	$\mathcal{O}_{HD}^{\prime\prime}$	$(H^{\dagger}H)(D_{\mu}H)(D^{\mu}H)$ $(H^{\dagger}H)D_{\mu}(H^{\dagger}i\overleftrightarrow{D}^{\mu}H)$
(d) Chala and Titov 2104.08248	$\mathcal{O}_{LD} \ \mathcal{O}_{HL}^{\prime(1)}$	$rac{i}{2}L\left\{ D_{\mu}D^{\mu}, D\!\!\!\!\!D ight\} L \ \left(H^{\dagger}H ight) \left(\overline{L}i\overleftrightarrow{D}L ight)$
$\alpha_{LH}^{(5)}$	${\cal O}^{\prime\prime(1)}_{HL} onumber {\cal O}^{\prime(3)}_{HL}$	$\partial_{\mu} ig(H^{\dagger} H ig) ig(\overline{L} \gamma^{\mu} L ig) \ (H^{\dagger} \sigma^{I} H) ig(\overline{L} i \overleftrightarrow{D}^{I} L ig)$
	$\mathcal{O}_{HL}^{\prime\prime(3)}$	$D_{\mu} (H^{\dagger} \sigma^{I} H) (\overline{L} \gamma^{\mu} \sigma^{I} L)$
$\begin{array}{cccc} \alpha_{LH}^{(5)} & \alpha_{LH}^{(5)} & & & \alpha_{LH}^{(5)} \\ & & (f) & & & (g) \end{array} \qquad $	$\mathcal{O}_{LHD}^{(R)}$	$\epsilon_{ij}\epsilon_{mn}L^iCL^mH^j\Box H^n$

Majoron & neutrino mass via type-II seesaw

Type-II seesaw + spontaneous breaking $U(1)_I$ symmetry

 $V(S, \Phi, \Delta) = V(\Phi, \Delta) - \mu_S^2(S^{\dagger}S) + \lambda_6(S^{\dagger}S)^2$

$$\Phi = \begin{pmatrix} \phi^+ \\ \frac{v_{\phi} + \phi + i\chi}{\sqrt{2}} \end{pmatrix} \qquad \Delta = \begin{pmatrix} \frac{\Delta^+}{\sqrt{2}} & \Delta^{++} \\ \frac{v_{\Delta} + \delta + i\xi}{\sqrt{2}} & \frac{\Delta^+}{\sqrt{2}} \end{pmatrix}$$

Yukawa Interaction

 $-\mathscr{L}_{\Delta} = Y_{\alpha\beta} \overline{\mathscr{L}_{L}^{\alpha C}} i\sigma^{2} \Delta \mathscr{L}_{L}^{\beta} + h.c.$

Key term:

 $\mu \Phi^T i \sigma^2 \Delta \Phi + h . c .$

WEI CHAO

LNV term! $+\lambda_7(S^{\dagger}S)(\Phi^{\dagger}\Phi) + \lambda_8(S^{\dagger}S)\operatorname{Tr}(\Delta^{\dagger}\Delta) + \mu \Phi^T i\tau_2 \Delta^{\dagger}\Phi + \lambda S \Phi^T i\tau_2 \Delta^{\dagger}\Phi + h.c.,$

$$S = \frac{v_s + \tilde{s} + i\tilde{a}}{\sqrt{2}}$$

 \tilde{a} : Majoron

Majoron & neutrino mass via type-II seesaw

$$m_W^2 = \frac{g^2}{4} \left(v_{\phi}^2 + 2v_{\Delta}^2 \right), \quad m_Z^2 = \frac{g^2}{4\cos^2\theta_W} \left(v_{\phi}^2 + 4v_{\Delta}^2 \right), \qquad \rho \equiv \frac{m_W^2}{m_Z^2\cos^2\theta_W} = \frac{1 + \frac{2v_{\Delta}^2}{v_{\phi}^2}}{1 + \frac{4v_{\Delta}^2}{v_{\phi}^2}}$$
Scalar mixings and masses
$$\begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = \mathscr{R}(\beta) \begin{pmatrix} \phi^{\pm} \\ \Delta^{\pm} \end{pmatrix}, \quad \begin{pmatrix} G \\ A \\ a \end{pmatrix} = \mathscr{V}(\beta_1', \beta_2', \beta_3') \begin{pmatrix} \chi \\ \xi \\ \tilde{a} \end{pmatrix}, \quad \begin{pmatrix} h \\ H \\ s \end{pmatrix} = \mathscr{U}(\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} \phi \\ \delta \\ \tilde{s} \end{pmatrix},$$
Mixing angl for pseudo-scalars
$$\tan \beta = \frac{\sqrt{2}v_{\Delta}}{v_{\phi}}, \quad \tan \beta_1' = \frac{2v_{\Delta}}{v_{\phi}}, \quad \tan \beta_2' = 0, \qquad \tan 2\beta_3' = \frac{2v_{\Delta}^2 + \lambda v_S^2 + \sqrt{2}\mu v_s}{v_{\phi}^2 + 4v_{\Delta}^2 + v_S^2 + \sqrt{2}\mu v_s} + 4v_{\Delta}^2 v_s \left(\sqrt{2\mu} + v_{\Delta}^2 +$$

$$m_W^2 = \frac{g^2}{4} \left(v_{\phi}^2 + 2v_{\Delta}^2 \right), \quad m_Z^2 = \frac{g^2}{4\cos^2\theta_W} \left(v_{\phi}^2 + 4v_{\Delta}^2 \right), \qquad \rho \equiv \frac{m_W^2}{m_Z^2\cos^2\theta_W} = \frac{1 + \frac{2v_{\Delta}^2}{v_{\phi}^2}}{1 + \frac{4v_{\Delta}^2}{v_{\phi}^2}}$$
Scalar mixings and masses
$$\begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = \mathscr{R}(\beta) \begin{pmatrix} \phi^{\pm} \\ \Delta^{\pm} \end{pmatrix}, \quad \begin{pmatrix} G \\ A \\ a \end{pmatrix} = \mathscr{V}(\beta_1', \beta_2', \beta_3') \begin{pmatrix} \chi \\ \xi \\ \tilde{a} \end{pmatrix}, \quad \begin{pmatrix} h \\ H \\ s \end{pmatrix} = \mathscr{U}(\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} \phi \\ \delta \\ \tilde{s} \end{pmatrix},$$
Mixing angl for pseudo-scalars
$$\tan \beta = \frac{\sqrt{2}v_{\Delta}}{v_{\phi}}, \quad \tan \beta_1' = \frac{2v_{\Delta}}{v_{\phi}}, \quad \tan \beta_2' = 0, \qquad \tan 2\beta_3' = \frac{2v_{\Delta}^2 + \lambda v_S^2 + \sqrt{2}\mu v_s}{v_{\phi}^2 + 4v_{\Delta}^2 + v_S^2 + \sqrt{2}\mu v_s} + 4v_{\Delta}^2 v_s \left(\sqrt{2\mu} + v_{\Delta}^2 +$$

$$\begin{aligned} & \text{Gauge boson masses} \\ & m_W^2 = \frac{g^2}{4} \left(v_{\phi}^2 + 2v_{\Delta}^2 \right), \quad m_Z^2 = \frac{g^2}{4\cos^2\theta_W} \left(v_{\phi}^2 + 4v_{\Delta}^2 \right), \qquad \rho \equiv \frac{m_W^2}{m_Z^2\cos^2\theta_W} = \frac{1 + \frac{2v_{\Delta}^2}{v_{\phi}^2}}{1 + \frac{4v_{\Delta}^2}{v_{\phi}^2}} \end{aligned}$$
Scalar mixings and masses
$$\begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = \mathscr{R}(\beta) \begin{pmatrix} \phi^{\pm} \\ \Delta^{\pm} \end{pmatrix}, \quad \begin{pmatrix} G \\ A \\ a \end{pmatrix} = \mathscr{V}(\beta_1', \beta_2', \beta_3') \begin{pmatrix} \chi \\ \xi \\ \tilde{a} \end{pmatrix}, \quad \begin{pmatrix} h \\ H \\ s \end{pmatrix} = \mathscr{U}(\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} \phi \\ \delta \\ \tilde{s} \end{pmatrix}, \end{aligned}$$
Mixing angl for pseudo-scalars
$$\tan \beta = \frac{\sqrt{2}v_{\Delta}}{v_{\phi}}, \quad \tan \beta_1' = \frac{2v_{\Delta}}{v_{\phi}}, \quad \tan \beta_2' = 0, \quad \tan 2\beta_3' = \frac{2v_{\Delta}^2 + \lambda v_S^2 + \sqrt{2}\mu v_s}{v_{\phi}^2 + 4v_{\Delta}^2 + v_S^2 + \sqrt{2}\mu v_s} + 4v_{\Delta}^2 v_s \left(\sqrt{2}\mu + v_{\Delta}^2 + v_$$

Majoron & neutrino mass via type-II seesaw

Sequential breaking of various symmetries

Majoron massive!

Neutrino massive

EWSB scale

$$(m_{\nu})_{\alpha\beta} = y_{\alpha\beta}v$$

$$m_a^2 = \frac{\sqrt{2\mu v_{\phi}^2 v_{\Delta}(v_{\phi}^2 + v_{\phi}^2)}}{2v_{\phi}^2 (v_{\Delta}^2 + v_s^2) + 2\nu_{\phi}^2 (v_{\Delta}^2 + v_{\phi}^2 + v_{\phi}^2) + 2\nu_{\phi}^2 (v_{\Delta}^2 + v_{\phi}^2 + v_{\phi}^2) + 2\nu_{\phi}^2 (v_{\Delta}^2 + v_{\phi}^2 + v_{\phi}^2) + 2\nu_{\phi}^2 (v_{\Delta}^2 + v_{\phi}^2) + 2\nu_{\phi}^2 (v_{\phi}^2 + v_{\phi$$

For experts of axion physics

Majoron mass should arise from cosine like potential!

Majoron DM—oscillation time

Scale

Energy

$$m_a^2(T) = \begin{cases} \frac{\mu v_\phi^2(T) v_\Delta(T)}{\sqrt{2} f_a^2}, & T \le T_{\rm C} \\ 0, & T > T_{\rm C} \end{cases}$$

$$T_{\rm osc} = \begin{cases} T_*, & m_a < m_{aC} \\ T_{\rm C}, & m_a \ge m_{aC} \end{cases}$$

$$m_{aC} = 1.079 \times 10^{-4} \,\mathrm{eV}$$

Majoron DM—simulations

Equation of motion

Analytical results $\theta(t) = -\pi \left[-2m -Y_{\frac{1}{4}}(m_a t)J + 2m_a t_i J_{\frac{1}{4}}(m_a t) Y_{\frac{5}{4}}(m_a t_i) \right] / \left\{ +J_{\frac{5}{4}}(m_a t_i) Y_{\frac{1}{4}}(m_a t_i) - J_{\frac{1}{4}}(m_a t_i) \right\}$

Majoron energy density $\rho_a(T_0)$

WEI CHAO

 $\ddot{\theta} + 3H\dot{\theta} + m_a^2(T)\theta = 0$

$$n_{a}t_{i}J_{\frac{1}{4}}(m_{a}t)Y_{-\frac{3}{4}}(m_{a}t_{i}) + 2m_{a}t_{i}Y_{\frac{1}{4}}(m_{a}t)J_{-\frac{3}{4}}(m_{a}t_{i})$$

$$J_{\frac{1}{4}}(m_{a}t_{i}) - 2m_{a}t_{i}Y_{\frac{1}{4}}(m_{a}t)_{\frac{5}{4}}(m_{a}t_{i}) + J_{\frac{1}{4}}(m_{a}t)Y_{\frac{1}{4}}(m_{a}t)$$

$$\left\{2\sqrt{3}t^{\frac{1}{4}}t^{\frac{3}{4}}_{i}\left[J_{\frac{1}{4}}(m_{a}t_{i})Y_{-\frac{3}{4}}(m_{a}t_{i}) - J_{-\frac{3}{4}}(m_{a}t_{i})Y_{\frac{1}{4}}(m_{a}t_{i})\right]$$

$$= \frac{1}{2}m_{a}^{2}f_{a}^{2}\langle\theta_{a,i}^{2}\rangle\frac{g_{*s}(T_{0})}{g_{*s}(T_{0}c)}\left(\frac{T_{0}}{T_{0}cc}\right)^{3}$$

Majoron DM—Relic Density

Majoron interactions from mixings

Interactions with scalars

Vertices	Coefficients		
a^4	$\frac{1}{4}\lambda_1V_{13}^4 + \frac{1}{4}\lambda_4V_{13}^2V_{23}^2 + \frac{1}{4}\lambda_5V_{13}^2V_{23}^2 + \frac{1}{2}\lambda V_{13}^2V_{23}V_{33} + \frac{1}{4}\lambda_2V_{23}^4 + \frac{1}{4}\lambda_3V_{23}^4 + \frac{1}{4}\lambda_6V_{33}^4$		
a^3G	$\begin{split} \lambda_1 V_{11} V_{13}^3 + \frac{1}{2} \lambda_4 V_{11} V_{13} V_{23}^2 + \frac{1}{2} \lambda_5 V_{11} V_{13} V_{23}^2 + \lambda V_{11} V_{13} V_{23} V_{33} + \frac{1}{2} \lambda_4 V_{13}^2 V_{21} V_{23} \\ + \frac{1}{2} \lambda_5 V_{13}^2 V_{21} V_{23} + \frac{1}{2} \lambda V_{13}^2 V_{21} V_{33} + \frac{1}{2} \lambda V_{13}^2 V_{23} V_{31} + \lambda_2 V_{21} V_{23}^3 + \lambda_3 V_{21} V_{23}^3 + \lambda_6 V_{31} V_{33}^3 \end{split}$		
a^2h^2	$\frac{\frac{1}{2}\lambda_{1}U_{11}^{2}V_{13}^{2} + \frac{1}{4}\lambda_{4}U_{11}^{2}V_{23}^{2} + \frac{1}{4}\lambda_{5}U_{11}^{2}V_{23}^{2} - \frac{1}{2}\lambda U_{11}^{2}V_{23}V_{33} + \lambda U_{11}U_{21}V_{13}V_{33}}{-\lambda U_{11}U_{31}V_{13}V_{23} + \frac{1}{4}\lambda_{4}U_{21}^{2}V_{13}^{2} + \frac{1}{4}\lambda_{5}U_{21}^{2}V_{13}^{2} + \frac{1}{2}\lambda_{2}U_{21}^{2}V_{23}^{2} + \frac{1}{2}\lambda_{3}U_{21}^{2}V_{23}^{2} + \frac{1}{2}\lambda U_{21}U_{31}V_{13}^{2} + \frac{1}{2}\lambda_{6}U_{31}^{2}V_{33}^{2}}$		
a^2h	$ \begin{split} \lambda_{1}U_{11}v_{\phi}V_{13}^{2} + \frac{1}{2}\lambda_{4}U_{11}v_{\phi}V_{23}^{2} + \frac{1}{2}\lambda_{5}U_{11}v_{\phi}V_{23}^{2} - \lambda U_{11}v_{\phi}V_{23}V_{33} - \sqrt{2}\mu U_{11}V_{13}V_{23} \\ -\lambda U_{11}V_{13}V_{23}v_{s} + \lambda U_{11}V_{13}V_{33}v_{\Delta} + \lambda U_{21}v_{\phi}V_{13}V_{33} + \frac{1}{\sqrt{2}}\mu U_{21}V_{13}^{2} + \frac{1}{2}\lambda_{4}U_{21}V_{13}^{2}v_{\Delta} + \frac{1}{2}\lambda_{5}U_{21}V_{13}^{2}v_{\Delta} \\ + \frac{1}{2}\lambda U_{21}V_{13}^{2}v_{s} + \lambda_{2}U_{21}V_{23}^{2}v_{\Delta} + \lambda_{3}U_{21}V_{23}^{2}v_{\Delta} - \lambda U_{31}v_{\phi}V_{13}V_{23} + \frac{1}{2}\lambda U_{31}V_{13}^{2}v_{\Delta} + \lambda_{6}U_{31}V_{33}^{2}v_{s} \end{split}$		
a^2G^2	$\frac{\frac{3}{2}\lambda_{1}V_{11}^{2}V_{13}^{2} + \frac{1}{4}\lambda_{4}V_{11}^{2}V_{23}^{2} + \frac{1}{4}\lambda_{5}V_{11}^{2}V_{23}^{2} + \frac{1}{2}\lambda V_{11}^{2}V_{23}V_{33} + \lambda_{4}V_{11}V_{13}V_{21}V_{23} + \lambda_{5}V_{11}V_{13}V_{21}V_{23}}{+\lambda_{11}V_{13}V_{21}V_{33} + \lambda_{11}V_{13}V_{23}V_{31} + \frac{1}{4}\lambda_{4}V_{13}^{2}V_{21}^{2} + \frac{1}{4}\lambda_{5}V_{13}^{2}V_{21}^{2} + \frac{1}{2}\lambda V_{13}^{2}V_{21}V_{31} + \frac{3}{2}\lambda_{2}V_{21}^{2}V_{23}^{2} + \frac{3}{2}\lambda_{3}V_{21}^{2}V_{23}^{2} + \frac{3}{2}\lambda_{6}V_{31}^{2}V_{33}^{2}$		
$a^2G^+G^-$	$\begin{aligned} \lambda_1 V_{13}^2 \cos^2 \beta + \frac{1}{2} \lambda_4 V_{13}^2 \sin^2 \beta + \frac{1}{4} \lambda_5 V_{13}^2 \sin^2 \beta + \frac{1}{\sqrt{2}} \lambda_5 V_{13} V_{23} \sin \beta \cos \beta \\ + \sqrt{2} \lambda V_{13} V_{33} \sin \beta \cos \beta + \lambda_2 V_{23}^2 \sin^2 \beta + \frac{1}{2} \lambda_3 V_{23}^2 \sin^2 \beta + \frac{1}{2} \lambda_4 V_{23}^2 \cos^2 \beta \end{aligned}$		
aG^3	$ \lambda_1 V_{11}^3 V_{13} + \frac{1}{2} \lambda_4 V_{11}^2 V_{21} V_{23} + \frac{1}{2} \lambda_5 V_{11}^2 V_{21} V_{23} + \frac{1}{2} \lambda V_{11}^2 V_{21} V_{33} + \frac{1}{2} \lambda V_{11}^2 V_{23} V_{31} \\ + \frac{1}{2} \lambda_4 V_{11} V_{13} V_{21}^2 + \frac{1}{2} \lambda_5 V_{11} V_{13} V_{21}^2 + \lambda V_{11} V_{13} V_{21} V_{31} + \lambda_2 V_{21}^3 V_{23} + \lambda_3 V_{21}^3 V_{23} + \lambda_6 V_{31}^3 V_{33} $		
ah^2G	$ \begin{array}{c} \lambda_{1}U_{11}^{2}V_{11}V_{13} + \frac{1}{2}\lambda_{4}U_{11}^{2}V_{23} + \frac{1}{2}\lambda_{5}U_{11}^{2}V_{23} - \frac{1}{2}\lambda U_{11}^{2}V_{23} - \frac{1}{2}\lambda U_{11}^{2}V_{23}V_{31} \\ + \lambda U_{11}U_{21}V_{11}V_{33} + \lambda U_{11}U_{21}V_{13}V_{31} - \lambda U_{11}U_{31}V_{11}V_{23} - \lambda U_{11}U_{31}V_{13}V_{21} + \frac{1}{2}\lambda_{4}U_{21}^{2}V_{11}V_{13} \\ + \frac{1}{2}\lambda_{5}U_{21}^{2}V_{11}V_{13} + \lambda_{2}U_{21}^{2}V_{21}V_{23} + \lambda_{3}U_{21}^{2}V_{21}V_{23} + \lambda U_{21}U_{31}V_{11}V_{13} + \lambda_{6}U_{31}^{2}V_{31}V_{33} \end{array} $		
$a\overline{ u} u$	$V_{23}m_ u/v_\Delta$		

WEI CHAO

Interactions with fermions

 $\overline{\nu_L^C}ia\lambda_{a\overline{\nu}\nu}\nu_L + h.c.$

 $\rightarrow \lambda_{a\overline{\nu}\nu}: V_{23}m_{\nu}/v_{\Delta},$

 $Y_E \overline{\ell_L} H E_R + h.c. \rightarrow$

 $\lambda_{aee} \bar{e} i \gamma_5 e$

 $\rightarrow \lambda_{aee}: V_{13} \frac{m_e}{\cdots},$ v_h

Majoron interactions from anomaly

Schemas

Majoron interactions from anomaly

Interactions in mass eigenstates

Neutrino oscillation in Majoron star

Effective potential

$$V_{\rm eff} = i \sqrt{2\rho_a} V_{23} m_a^{-1} v_{\Delta}^{-1} \cos(m_a t) \overline{\nu_L^C} m_\nu \nu_L + \text{h.c.}$$

Amplitude:

$$A_{\alpha \to \beta} = \sum_{i} \widehat{U}_{\beta i} \widehat{U}_{\alpha i}^{*} \exp\left[-i\frac{m_{i}^{2}x}{2E}\left(1 + \frac{\rho_{a}V_{23}^{2}}{m_{a}^{2}v_{\Delta}^{2}} + \frac{\rho_{a}V_{23}^{2}\cos 2m_{a}x}{2xm_{a}^{3}v_{\Delta}^{2}}\right)\right]$$

Direct detections of Majoron DM

Boosted Majoron by supernova ν

WEI CHAO

Differential event rate

20

Direct detections of Majoron DM

Direct detections in condensed

matter systems

DM mass	DM energy or momentum	CM scale
$50 { m MeV}$	$p_{\chi} \sim 50 \text{ keV}$	zero-point ion momentum in lattice
$20 { m MeV}$	$E_{\chi} \sim 10 \text{ eV}$	atomic ionization energy
$2 { m MeV}$	$E_{\chi} \sim 1 \text{ eV}$	semiconductor band gap
100 keV	$E_{\chi} \sim 50 \mathrm{meV}$	optical phonon energy

 $R \sim \frac{1}{\rho} \frac{\rho_a}{m_a} \frac{3m_a^2}{4m_e^2} \frac{g_{aee}^2}{e^2} \langle n_e \sigma_{abs} v_{rel} \rangle_{\gamma}$

 $Im\Pi(\omega)$ $\langle n_e \sigma_{abs} v_{rel} \rangle_{\gamma} =$

Absorption rate for photon in material

Combined Constraints

Relevant pheno: W-boson mass anomaly

$$m_W^2 = \frac{m_Z^2}{2} \left[1 + \sqrt{1 - \frac{4\pi\alpha_{\text{em}}}{\sqrt{2}G_F m_Z^2}} (1 + \Delta r) \right]$$

$$\Delta r = \Delta \alpha_{\rm em} - c_W^2 / s_W^2 \Delta \rho_{\rm loop} + \Delta r_{\rm rem}$$

$$\Delta \alpha_{\text{em}} = \Pi'_{\gamma\gamma}(0) - \Pi'_{\gamma\gamma}(m_Z^2) \,,$$

$$\Delta \rho_{\text{loop}} = \frac{\Pi_{ZZ}(0)}{m_Z^2} - \frac{\Pi_{WW}(0)}{m_W^2} + \frac{2s_W}{c_W} \frac{\Pi_{Z\gamma}(0)}{m_Z^2} ,$$

$$\Delta r_{\text{rem}} = \frac{c_W^2}{s_W^2} \left[\frac{\Pi_{ZZ}(0)}{m_Z^2} - \frac{\text{Re}\left[\Pi_{ZZ}(m_Z^2)\right]}{m_Z^2} \right] + \left(1 - \frac{c_W^2}{s_W^2}\right) \left[\frac{\Pi_{WW}(0)}{m_W^2} - \frac{1 - \frac{c_W^2}{m_W^2}}{m_W^2} \right]$$

Relevant pheno: $0\nu\beta\beta$ process and muon g-2

$0\nu\beta\beta$ process in type-II seesaw

Concluding Remarks

WEI CHAO

Thank you

